-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvace.py
131 lines (115 loc) · 5.74 KB
/
vace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_metric import _BaseMetric
from .. import _timing
class VACE(_BaseMetric):
"""Class which implements the VACE metrics.
The metrics are described in:
Manohar et al. (2006) "Performance Evaluation of Object Detection and Tracking in Video"
https://link.springer.com/chapter/10.1007/11612704_16
This implementation uses the "relaxed" variant of the metrics,
where an overlap threshold is applied in each frame.
"""
def __init__(self, config=None):
super().__init__()
self.integer_fields = ['VACE_IDs', 'VACE_GT_IDs', 'num_non_empty_timesteps']
self.float_fields = ['STDA', 'ATA', 'FDA', 'SFDA']
self.fields = self.integer_fields + self.float_fields
self.summary_fields = ['SFDA', 'ATA']
# Fields that are accumulated over multiple videos.
self._additive_fields = self.integer_fields + ['STDA', 'FDA']
self.threshold = 0.5
@_timing.time
def eval_sequence(self, data):
"""Calculates VACE metrics for one sequence.
Depends on the fields:
data['num_gt_ids']
data['num_tracker_ids']
data['gt_ids']
data['tracker_ids']
data['similarity_scores']
"""
res = {}
# Obtain Average Tracking Accuracy (ATA) using track correspondence.
# Obtain counts necessary to compute temporal IOU.
# Assume that integer counts can be represented exactly as floats.
potential_matches_count = np.zeros((data['num_gt_ids'], data['num_tracker_ids']))
gt_id_count = np.zeros(data['num_gt_ids'])
tracker_id_count = np.zeros(data['num_tracker_ids'])
both_present_count = np.zeros((data['num_gt_ids'], data['num_tracker_ids']))
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])):
# Count the number of frames in which two tracks satisfy the overlap criterion.
matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold)
match_idx_gt, match_idx_tracker = np.nonzero(matches_mask)
potential_matches_count[gt_ids_t[match_idx_gt], tracker_ids_t[match_idx_tracker]] += 1
# Count the number of frames in which the tracks are present.
gt_id_count[gt_ids_t] += 1
tracker_id_count[tracker_ids_t] += 1
both_present_count[gt_ids_t[:, np.newaxis], tracker_ids_t[np.newaxis, :]] += 1
# Number of frames in which either track is present (union of the two sets of frames).
union_count = (gt_id_count[:, np.newaxis]
+ tracker_id_count[np.newaxis, :]
- both_present_count)
# The denominator should always be non-zero if all tracks are non-empty.
with np.errstate(divide='raise', invalid='raise'):
temporal_iou = potential_matches_count / union_count
# Find assignment that maximizes temporal IOU.
match_rows, match_cols = linear_sum_assignment(-temporal_iou)
res['STDA'] = temporal_iou[match_rows, match_cols].sum()
res['VACE_IDs'] = data['num_tracker_ids']
res['VACE_GT_IDs'] = data['num_gt_ids']
# Obtain Frame Detection Accuracy (FDA) using per-frame correspondence.
non_empty_count = 0
fda = 0
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])):
n_g = len(gt_ids_t)
n_d = len(tracker_ids_t)
if not (n_g or n_d):
continue
# n_g > 0 or n_d > 0
non_empty_count += 1
if not (n_g and n_d):
continue
# n_g > 0 and n_d > 0
spatial_overlap = data['similarity_scores'][t]
match_rows, match_cols = linear_sum_assignment(-spatial_overlap)
overlap_ratio = spatial_overlap[match_rows, match_cols].sum()
fda += overlap_ratio / (0.5 * (n_g + n_d))
res['FDA'] = fda
res['num_non_empty_timesteps'] = non_empty_count
res.update(self._compute_final_fields(res))
return res
def combine_classes_class_averaged(self, all_res, ignore_empty_classes=True):
"""Combines metrics across all classes by averaging over the class values.
If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection.
"""
res = {}
for field in self.fields:
if ignore_empty_classes:
res[field] = np.mean([v[field] for v in all_res.values()
if v['VACE_GT_IDs'] > 0 or v['VACE_IDs'] > 0], axis=0)
else:
res[field] = np.mean([v[field] for v in all_res.values()], axis=0)
return res
def combine_classes_det_averaged(self, all_res):
"""Combines metrics across all classes by averaging over the detection values"""
res = {}
for field in self._additive_fields:
res[field] = _BaseMetric._combine_sum(all_res, field)
res = self._compute_final_fields(res)
return res
def combine_sequences(self, all_res):
"""Combines metrics across all sequences"""
res = {}
for header in self._additive_fields:
res[header] = _BaseMetric._combine_sum(all_res, header)
res.update(self._compute_final_fields(res))
return res
@staticmethod
def _compute_final_fields(additive):
final = {}
with np.errstate(invalid='ignore'): # Permit nan results.
final['ATA'] = (additive['STDA'] /
(0.5 * (additive['VACE_IDs'] + additive['VACE_GT_IDs'])))
final['SFDA'] = additive['FDA'] / additive['num_non_empty_timesteps']
return final