-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.search.js
136 lines (136 loc) · 5.11 KB
/
index.search.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
var relearn_search_index = [
{
"breadcrumb": "feng web",
"content": "",
"description": "",
"tags": null,
"title": "Introduction",
"uri": "/introduction/index.html"
},
{
"breadcrumb": "feng web",
"content": "文章\n",
"description": "",
"tags": null,
"title": "Post",
"uri": "/post/index.html"
},
{
"breadcrumb": "feng web",
"content": "\r随机过程随机过程总结\n",
"description": "",
"tags": null,
"title": "note",
"uri": "/note/index.html"
},
{
"breadcrumb": "feng web \u003e note \u003e 随机过程",
"content": "2月26日 随机过程定义 研究对象:随时间演变的随机现象。一族无穷多个随机变量来描绘。 三元组表示,概率空间、F为概论空间子集,P为F意义下的集函数概率。 X是随机变量,表示F上的映射,将概率空间映射到实数上 首先是随机变量,其次形成一族,一族二元函数 T和S为指标集,为实数,对每一个时间t,均有定义在随机过程上的一个取值在S上的随机变量对应。。随机变量族为一个随机过程 对每一个t,X(t,w)为随机变量,T为参数集(时间指标集)。对固定w,X(t,w)为时刻t时过程的状态,对时间t,X(t)的所有取值为S的随机过程状态空间。 一条随时间变化的随机过程,t的函数,成为一条样本函数。 分类 离散时间,离散状态–群体生长模型 离散时间,连续状态–天气预报,Gauss序列 连续时间,离散状态–Poisson过程 连续时间,连续状态–高斯过程,Brown运动 研究 随机过程的概率结构,统计平均性质\n有限维分布和数字特征 分布函数 对于随机过程\n过程一维分布函数 $ F_t(x)=P(X(t)\\leqslant x) $ 过程一维均值函数 $\\mu_x(t)=EX(t) $ 过程方差函数 $ \\sigma_x^2(t)=Var[X(t)] $ 联合分布函数研究T1和T2两不同时刻的联合二维分布\n自相关函数 $ r_x(t1,t2)=E[X(t_1)X(t_2)] $ 协方差函数 $ R_x(t1,t2)=Cov[X(t_1)X(t_2)] =E{(X(t1)-\\mu_X(t1))(X(t2)-\\mu_X(t2))} $ 以上具有对称性,R(s,t)中st可交换。具有非负定性 随机过程性质 !并非任意过程都具有全部3条性质\n独立增量:\r$ X(t2)-X(t1),X(t3)-X(t2) $相互独立 平稳增量:任意t,h,\r$ X(t+h)-X(t) $分布与t无关,只与h有关。 Markov性: 略 平稳过程\n任意时间ti和任意h,有\r$ (X(t_1),X(t_2)...)=(X(t_1+h),X(t_2+h)...) $\n宽平稳\n满足二阶矩存在,EX(t)为常数,Rx(t,s)只与时间差t-s有关\n",
"description": "2.26",
"tags": [
"随机过程",
"第一节"
],
"title": "page 1",
"uri": "/note/%E9%9A%8F%E6%9C%BA%E8%BF%87%E7%A8%8B/children1/1/index.html"
},
{
"breadcrumb": "feng web \u003e note \u003e 随机过程",
"content": "3月4日 ",
"description": "3.4",
"tags": [
"随机过程",
"第二节"
],
"title": "page 2",
"uri": "/note/%E9%9A%8F%E6%9C%BA%E8%BF%87%E7%A8%8B/children2/2/index.html"
},
{
"breadcrumb": "",
"content": "一切的起点 2024-3-2 ",
"description": "",
"tags": null,
"title": "feng web",
"uri": "/index.html"
},
{
"breadcrumb": "feng web \u003e Introduction",
"content": "this is my wedsite\n",
"description": "",
"tags": null,
"title": "First",
"uri": "/introduction/first/index.html"
},
{
"breadcrumb": "feng web \u003e Post",
"content": "2024/3/1 3/1日,第一篇博客 ",
"description": "",
"tags": null,
"title": "Second",
"uri": "/post/second/index.html"
},
{
"breadcrumb": "feng web \u003e Post",
"content": "#Hello\n",
"description": "",
"tags": null,
"title": "First",
"uri": "/post/first/index.html"
},
{
"breadcrumb": "feng web",
"content": "made by feng\nstudied in ustc\nemail :[email protected]\"\n",
"description": "",
"tags": null,
"title": "About",
"uri": "/about/index.html"
},
{
"breadcrumb": "feng web",
"content": "",
"description": "",
"tags": null,
"title": "Categories",
"uri": "/categories/index.html"
},
{
"breadcrumb": "feng web",
"content": "",
"description": "",
"tags": null,
"title": "Tags",
"uri": "/tags/index.html"
},
{
"breadcrumb": "feng web \u003e Tags",
"content": "",
"description": "",
"tags": null,
"title": "Tag :: 第一节",
"uri": "/tags/%E7%AC%AC%E4%B8%80%E8%8A%82/index.html"
},
{
"breadcrumb": "feng web \u003e Tags",
"content": "",
"description": "",
"tags": null,
"title": "Tag :: 第二节",
"uri": "/tags/%E7%AC%AC%E4%BA%8C%E8%8A%82/index.html"
},
{
"breadcrumb": "feng web \u003e Tags",
"content": "",
"description": "",
"tags": null,
"title": "Tag :: 随机过程",
"uri": "/tags/%E9%9A%8F%E6%9C%BA%E8%BF%87%E7%A8%8B/index.html"
},
{
"breadcrumb": "feng web \u003e note",
"content": "\rpage 12.26\npage 23.4\n",
"description": "随机过程总结",
"tags": null,
"title": "随机过程",
"uri": "/note/%E9%9A%8F%E6%9C%BA%E8%BF%87%E7%A8%8B/index.html"
}
]