-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpredict.py
166 lines (129 loc) · 5.68 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding:utf-8
from keras.applications import *
from nets.inception_v3 import InceptionV3
from nets.inception_resnet_v2 import InceptionResNetV2
from nets.nasnet import NASNet
from nets.xception import Xception
from nets.inception_v4 import InceptionV4
from keras.preprocessing import image
from keras.models import *
from keras.layers import *
from keras.preprocessing.image import *
from keras import backend as K
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from keras.models import load_model
from pair_train import pair_generator
# from train import add_new_last_layer
import numpy as np
import os
test_data_dir = '/home/fenglf/data/dog/kaggle/test'
pretrained_model_root_dir = '/home/fenglf/PycharmProjects/keras-finetuning-master/model/pretrained/'
output_model_root_dir = '/home/fenglf/PycharmProjects/keras-finetuning-master/model/output'
csv_sample_path = './predict_csv/sample_submission.csv'
csv_out_path1 = './predict_csv/inv3_xc_pair_pair1.csv'
csv_out_path2 = './predict_csv/inv3_xc_pair_pair2.csv'
csv_out_path = './predict_csv/inv3_pair_9960_9980.csv'
base_model_name = InceptionV4
lambda_func = inception_v3.preprocess_input
batch_size = 16
final_weights_path = os.path.join(output_model_root_dir, base_model_name.__name__, 'final_weights', base_model_name.__name__ + '.final_weights.hdf5')
ft_best_weights_path = os.path.join(output_model_root_dir, base_model_name.__name__, 'fine_tuned_weights', base_model_name.__name__ + '.fine_tuned.best.hdf5')
final_weights_json_path = os.path.join(output_model_root_dir, base_model_name.__name__, 'final_weights', base_model_name.__name__ + '.final_weights.json')
np.random.seed(2018)
pair_model_best = '/home/fenglf/PycharmProjects/keras-finetuning-master/xcep_incep2-0.9960-0.9980_ft_best.h5'
def gen_test_gen(image_size, preprocess_func):
print "test_generator creating..."
test_datagen = ImageDataGenerator(
preprocessing_function=preprocess_func)
# 注意:使用此方法时,test_data_dir必须有子文件夹
test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size=(image_size[0], image_size[1]),
batch_size=batch_size,
shuffle=False,
# class_mode=None)
class_mode='categorical')
return test_generator
def predict(single_model, test_generator):
if os.path.exists(single_model):
# # load json and create model
# json_file = open(final_weights_json_path, 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# model = model_from_json(loaded_model_json)
# # load weights into new model
# model.load_weights(ft_best_weights_path)
model = load_model(single_model)
print ("Checkpoint " + single_model + " loaded.")
# print test_generator.filenames
predictions = model.predict_generator(
test_generator,
steps=(test_generator.samples / batch_size) + 1,
verbose=1)
return predictions
# print test
def pair_predict(pair_model_path, test_generator):
pair_model = load_model(pair_model_path)
print ("Checkpoint " + pair_model_path + " loaded.")
print 'predicting...'
for i, layer in enumerate(pair_model.layers):
print (i, layer.name)
# model_xc = Model(input=pair_model.input[0], output=pair_model.get_layer('ctg_out_1').output)
model_ic = Model(input=pair_model.layers[1].input, output=pair_model.get_layer('ctg_out_2').output)
# model2 = Model(input=pair_model.inputs, output=pair_model.get_layer('ctg_out_2').output)
# dif = Model(input=pair_model.inputs, output=pair_model.get_layer('bin_out').output)
for i, layer in enumerate(model_ic.layers):
print (i, layer.name)
# predictions1 = model_ic.predict_generator(
# test_generator,
# steps=(test_generator.samples / batch_size) + 1,
# verbose=1)
predictions1 = model_ic.predict_generator(
test_generator,
steps=(test_generator.samples / batch_size) + 1,
verbose=1)
# diffs = dif.predict_generator(
# test_generator,
# steps=(test_generator.samples / batch_size) + 1,
# verbose=1)
# return predictions1, predictions2, diffs
return predictions1
# predictions1 = pair_model.predict_generator(
# pair_generator(test_generator, batch_size, train=False),
# steps=(test_generator.samples / batch_size) + 1,
# verbose=1)
# return predictions1
def write_csv(test, csv_out_path):
n = 0
with open(csv_sample_path, 'r') as f:
id = f.readline()
# print id
with open(csv_out_path, 'a') as f:
f.writelines(id)
for i, file_dir in enumerate(test_generator.filenames):
file_name = file_dir.split('/')[-1]
file_name, file_ext = file_name.split('.')
# print file_name, file_ext
pred_test = test[i]
if file_ext == 'png' or file_ext == 'jpg':
f.write(file_name)
for str in pred_test:
f.write(',')
# f.write(str)
f.write(str.astype("str"))
f.write('\n')
n += 1
print("count_image:", n)
if __name__ == '__main__':
test_generator = gen_test_gen((299, 299), xception.preprocess_input)
test = predict(pair_model_best, test_generator)
# test1, test2, dif = pair_predict(pair_model_best, test_generator)
# test = pair_predict(pair_model_best, test_generator)
write_csv(test, csv_out_path)
# # predict single image
# im = Image.open("00d9537c197b7c4c4cdbd5d03c34b58a.jpg")
# predict_im = predict(model, im, (img_height, img_width))
# print predict_im
#
# predict images