-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpair_train.py
363 lines (292 loc) · 13.5 KB
/
pair_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import keras
import numpy as np
import tensorflow as tf
from keras import Input
from keras import backend as K
from keras.applications import Xception
from keras.backend.tensorflow_backend import set_session
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras.layers import *
from keras.models import *
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import plot_model
from keras.applications import *
train_data_dir = '/home/fenglf/data/dog/stanford/Images/data'
validation_data_dir = '/home/fenglf/data/dog/stanford/Images/test_data'
pretrained_model_root_dir = '/home/fenglf/PycharmProjects/keras-finetuning-master/model/pretrained/'
first_trained_weights = './inv3_xc_first.h5'
fine_tuned_weights = './inv3_xc_ft.h5'
best_saved_weights = '/home/fenglf/PycharmProjects/keras-finetuning-master/xcep_incep14-0.9964-0.9976_ft_best.h5'
img_width, img_height = 299, 299
batch_size = 16
nb_fc_hidden_layer = 1024
nb_classes = 120
def get_datagen(preprocess_func):
train_datagen = ImageDataGenerator(
preprocessing_function=preprocess_func)
val_datagen = ImageDataGenerator(
preprocessing_function=preprocess_func)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
validation_generator = val_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
return train_generator, validation_generator
def get_base_model(MODEL, input_tensor, pretrained_model_dir):
# define input
base_model = MODEL(input_tensor=input_tensor, weights=pretrained_model_dir, include_top=False)
print ("Primary Checkpoint '" + pretrained_model_dir + "' loaded.")
return base_model
def get_model_out(MODEL, image_size):
pretrained_model_dir = os.path.join(pretrained_model_root_dir, MODEL.__name__,
MODEL.__name__ + '_notop.h5')
print(MODEL.__name__)
# define input
input_tensor = Input((image_size[0], image_size[1], 3))
# setup model
model = get_base_model(MODEL, input_tensor, pretrained_model_dir)
# model = GlobalAveragePooling2D()(model.output)
return model
def add_new_last_layer(feature, nb_classes, name):
"""Add last layer to the convnet
Args:
base_model: keras model excluding top
nb_classes: # of classes
Returns:
new keras model with last layer
"""
# add a global spatial average pooling layer
# x = Dropout(0.5)(x)
x = Dense(nb_fc_hidden_layer)(feature)
# print ax.shape
# add BN layer and Dropout flf
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.3)(x)
# and a logistic layer -- we have 120 classes
predictions = Dense(nb_classes, activation='softmax', name=name)(x)
return predictions
def pair_generator(cur_generator, batch_size, train=True):
cur_cnt = 0
while True:
if train and cur_cnt % 4 == 1:
# provide same image
x1, y1 = train_generator.next()
if y1.shape[0] != batch_size:
x1, y1 = train_generator.next()
# print(y1)
# print(np.sort(np.argmax(y1, 1), 0))
y1_labels = np.argmax(y1, 1)
has_move = list()
last_not_move = list()
idx2 = [-1 for i in range(batch_size)]
for i, label in enumerate(y1_labels):
if i in has_move:
continue
for j in range(i+1, batch_size):
if y1_labels[i] == y1_labels[j]:
idx2[i] = j
idx2[j] = i
has_move.append(i)
has_move.append(j)
break
if idx2[i] == -1:
# same element not found and hasn't been moved
if len(last_not_move) == 0:
last_not_move.append(i)
idx2[i] = i
else:
idx2[i] = last_not_move[-1]
idx2[last_not_move[-1]] = i
del last_not_move[-1]
x2 = list()
y2 = list()
for i2 in range(batch_size):
x2.append(x1[idx2[i2]])
y2.append(y1[idx2[i2]])
# print(y2)
x2 = np.asarray(x2)
y2 = np.asarray(y2)
# print(x2.shape)
# print(y2.shape)
else:
x1, y1 = cur_generator.next()
if y1.shape[0] != batch_size:
x1, y1 = cur_generator.next()
x2, y2 = cur_generator.next()
if y2.shape[0] != batch_size:
x2, y2 = cur_generator.next()
same = (np.argmax(y1, 1) == np.argmax(y2, 1)).astype(int)
one_hot_same = np.zeros([batch_size, 2])
one_hot_same[np.arange(batch_size), same] = 1
# print cur_cnt
# print same
# print one_hot_same
# print(np.argmax(y1, 1))
# print(np.argmax(y2, 1))
# print(same)
cur_cnt += 1
# print cur_generator.filenames
yield [x1, x2], [y1, y2, one_hot_same]
def eucl_dist(inputs):
x, y = inputs
return (x - y)**2
def first_train(train_generator, validation_generator):
if os.path.exists(first_trained_weights):
model = load_model(first_trained_weights)
else:
# create the base pre-trained model
# input_tensor = Input(shape=(299, 299, 3))
# base_model = Xception(include_top=True, weights='imagenet', input_tensor=None, input_shape=None)
# plot_model(base_model, to_file='xception_model.png')
# base_model.layers.pop()
# base_model.outputs = [base_model.layers[-1].output]
# base_model.layers[-1].outbound_nodes = []
# base_model.output_layers = [base_model.layers[-1]]
base_model1 = get_model_out(Xception, (299, 299))
base_model2 = get_model_out(InceptionV3, (299, 299))
# for i, layer in enumerate(base_model.layers):
# print (i, layer.name)
# feature = base_model
img1 = Input(shape=(299, 299, 3), name='img_1')
img2 = Input(shape=(299, 299, 3), name='img_2')
# feature3 = feature(img1)
feature1 = GlobalAveragePooling2D()(base_model1(img1))
feature2 = GlobalAveragePooling2D()(base_model2(img2))
# feature2 = GlobalAveragePooling2D()(base_model1(img2))
# let's add a fully-connected layer
category_predict1 = add_new_last_layer(feature1, nb_classes, name='ctg_out_1')
category_predict2 = add_new_last_layer(feature2, nb_classes, name='ctg_out_2')
# category_predict1 = Dense(100, activation='softmax', name='ctg_out_1')(
# Dropout(0.5)(feature1)
# )
# category_predict2 = Dense(100, activation='softmax', name='ctg_out_2')(
# Dropout(0.5)(feature2)
# )
# concatenated = keras.layers.concatenate([feature1, feature2])
dis = Lambda(eucl_dist, name='square')([feature1, feature2])
# concatenated = Dropout(0.5)(concatenated)
# let's add a fully-connected layer
# x = Dense(1024, activation='relu')(concatenated)
x = Dense(256)(dis)
# add BN layer and Dropout
x = BatchNormalization()(x)
x = Activation('relu')(x)
judge = Dense(2, activation='softmax', name='bin_out')(x)
# judge = Dense(1, activation='sigmoid', name='bin_out')(x)
model = Model(inputs=[img1, img2], outputs=[category_predict1, category_predict2, judge])
for i, layer in enumerate(model.layers):
print (i, layer.name)
# model.save('dog_xception.h5')
plot_model(model, to_file='model_combined_inv3_xception.png', show_shapes=True)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional layers
for layer in base_model1.layers:
layer.trainable = False
for layer in base_model2.layers:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='nadam',
loss={'ctg_out_1': 'categorical_crossentropy',
'ctg_out_2': 'categorical_crossentropy',
'bin_out': 'categorical_crossentropy'},
# 'bin_out': 'binary_crossentropy'},
loss_weights={
'ctg_out_1': 1.,
'ctg_out_2': 1.,
'bin_out': 0
},
metrics=['accuracy'])
# model = make_parallel(model, 3)
# train the model on the new data for a few epochs
save_model = ModelCheckpoint('xcep_incep{epoch:01d}-{ctg_out_1_acc:.4f}-{ctg_out_2_acc:.4f}_top_best.h5',
monitor='loss',
save_best_only=True,
mode='auto',
period=1)
model.fit_generator(pair_generator(train_generator, batch_size=batch_size),
# steps_per_epoch=train_generator.samples // batch_size, # must divided exactly,
steps_per_epoch=train_generator.samples / batch_size+1,
epochs=5,
validation_data=pair_generator(validation_generator, train=False, batch_size=batch_size),
validation_steps=validation_generator.samples/batch_size+1,
callbacks=[early_stopping, auto_lr, save_model])
model.save('dog_inceptionv3_xception.h5')
def fine_tune(train_generator, validation_generator, model=None):
if os.path.exists(best_saved_weights):
model = load_model(fine_tuned_weights)
print 'load best-saved weights: {}'.format(best_saved_weights)
print 'continue fine tuning...'
elif os.path.exists(fine_tuned_weights):
model = load_model(fine_tuned_weights)
print 'load fine-tuned weights: {}'.format(fine_tuned_weights)
print 'continue fine tuning...'
for i, layer in enumerate(model.layers):
print (i, layer.name)
xception_model = model.layers[2]
for layer in xception_model.layers[:126]:
layer.trainable = False
for layer in xception_model.layers[126:]:
layer.trainable = True
inception_model = model.layers[3]
for layer1 in inception_model.layers[:295]:
layer1.trainable = False
for layer1 in inception_model.layers[295:]:
layer1.trainable = True
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer=optimizers.SGD(lr=0.0001, momentum=0.9),
loss={'ctg_out_1': 'categorical_crossentropy',
'ctg_out_2': 'categorical_crossentropy',
'bin_out': 'categorical_crossentropy'},
loss_weights={
'ctg_out_1': 1.,
'ctg_out_2': 1.,
'bin_out': 0.5
},
metrics=['accuracy'])
# model = make_parallel(model, 3)
# train the model on the new data for a few epochs
save_model = ModelCheckpoint('xcep_incep{epoch:01d}-{ctg_out_1_acc:.4f}-{ctg_out_2_acc:.4f}_ft_best.h5',
monitor='loss',
save_best_only=True,
mode='auto',
period=1)
model.fit_generator(pair_generator(train_generator, batch_size=batch_size),
steps_per_epoch=train_generator.samples / batch_size + 1,
epochs=20,
validation_data=pair_generator(validation_generator, train=False, batch_size=batch_size),
validation_steps=validation_generator.samples / batch_size + 1,
callbacks=[early_stopping, auto_lr, save_model])
model.save(fine_tuned_weights)
if __name__ == '__main__':
train_generator, validation_generator = get_datagen(xception.preprocess_input)
'''
def lr_decay(epoch):
lrs = [0.0001, 0.0001, 0.0001,0.0001,0.00001, 0.000001, 0.000001, 0.00001, 0.000001,
0.000001, 0.000001, 0.000001,
0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001]
return lrs[epoch]
'''
early_stopping = EarlyStopping(monitor='loss', patience=8)
# my_lr = LearningRateScheduler(lr_decay)
auto_lr = ReduceLROnPlateau(monitor='loss',
factor=0.1,
patience=3,
verbose=0,
mode='auto',
epsilon=0.0001,
cooldown=0,
min_lr=0)
first_train(train_generator, validation_generator)
# model = load_model(first_trained_weights)
# first_trained_model = load_model('/home/fenglf/PycharmProjects/keras-finetuning-master/xcep_incep19-0.9850-0.9902.h5')
print 'first_trained_model loaded.'
print 'start fine tune...'
# fine_tune(train_generator, validation_generator, first_trained_model)
fine_tune(train_generator, validation_generator)