-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathANF_Infrastructure.v
785 lines (693 loc) · 25 KB
/
ANF_Infrastructure.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
(** Infrastructure lemmas and tactic definitions for Fsub.
Authors: Brian Aydemir and Arthur Charguéraud, with help from
Aaron Bohannon, Jeffrey Vaughan, and Dimitrios Vytiniotis.
This file contains a number of definitions, tactics, and lemmas
that are based only on the syntax of the language at hand. While
the exact statements of everything here would change for a
different language, the general structure of this file (i.e., the
sequence of definitions, tactics, and lemmas) would remain the
same.
Table of contents:
- #<a href="##fv">Free variables</a>#
- #<a href="##subst">Substitution</a>#
- #<a href="##pick_fresh">The "pick fresh" tactic</a>#
- #<a href="##apply_fresh">The "pick fresh and apply" tactic</a>#
- #<a href="##properties">Properties of opening and substitution</a>#
- #<a href="##lc">Local closure is preserved under substitution</a>#
- #<a href="##auto">Automation</a># *)
Require Export ANF_Definitions.
Require Import Coq.Arith.Peano_dec.
(* ********************************************************************** *)
(** * #<a name="subst"></a># Substitution *)
(** In this section, we define substitution for expression and type
variables appearing in types, expressions, and environments.
Substitution differs from opening because opening replaces indices
whereas substitution replaces free variables. The definitions
below are relatively simple for two reasons.
- We are using locally nameless representation, where bound
variables are represented using indices. Thus, there is no
need to rename variables to avoid capture.
- The definitions below assume that the term being substituted
in, i.e., the second argument to each function, is locally
closed. Thus, there is no need to shift indices when passing
under a binder. *)
Fixpoint subst_tt (Z : atom) (U : typ) (T : typ) {struct T} : typ :=
match T with
| typ_top => typ_top
| typ_bvar J => typ_bvar J
| typ_fvar X => if X == Z then U else T
| typ_arrow T1 T2 => typ_arrow (subst_tt Z U T1) (subst_tt Z U T2)
| typ_all T1 T2 => typ_all (subst_tt Z U T1) (subst_tt Z U T2)
| typ_prod T1 T2 => typ_prod (subst_tt Z U T1) (subst_tt Z U T2)
end.
Fixpoint subst_te (Z : atom) (U : typ) (e : exp) {struct e} : exp :=
match e with
| exp_var v => exp_var v
| exp_abs V e1 => exp_abs (subst_tt Z U V) (subst_te Z U e1)
| exp_app f x => exp_app f x
| exp_tabs V e1 => exp_tabs (subst_tt Z U V) (subst_te Z U e1)
| exp_tapp x V => exp_tapp x (subst_tt Z U V)
| exp_let e c => exp_let (subst_te Z U e) (subst_te Z U c)
| exp_pair x1 x2 => exp_pair x1 x2
| exp_fst x => exp_fst x
| exp_snd x => exp_snd x
end.
Definition subst_vv (z : atom) (y : atom) (v : var) : var :=
match v with
| var_b i => var_b i
| var_f x => if x == z then y else x
end.
Fixpoint subst_ve (z : atom) (y : atom) (e : exp) {struct e} : exp :=
match e with
| exp_var v => subst_vv z y v
| exp_abs V e1 => exp_abs V (subst_ve z y e1)
| exp_app f x => exp_app (subst_vv z y f) (subst_vv z y x)
| exp_tabs V e1 => exp_tabs V (subst_ve z y e1)
| exp_tapp x V => exp_tapp (subst_vv z y x) V
| exp_let e c => exp_let (subst_ve z y e) (subst_ve z y c)
| exp_pair x1 x2 => exp_pair (subst_vv z y x1) (subst_vv z y x2)
| exp_fst x => exp_fst (subst_vv z y x)
| exp_snd x => exp_snd (subst_vv z y x)
end.
Definition subst_tb (Z : atom) (P : typ) (b : binding) : binding :=
match b with
| bind_sub T => bind_sub (subst_tt Z P T)
| bind_typ T => bind_typ (subst_tt Z P T)
end.
(* ********************************************************************** *)
(** * #<a name="pick_fresh"></a># The "[pick fresh]" tactic *)
(** The "[pick fresh]" tactic introduces a fresh atom into the context.
We define it in two steps.
The first step is to define an auxiliary tactic [gather_atoms],
meant to be used in the definition of other tactics, which returns
a set of atoms in the current context. The definition of
[gather_atoms] follows a pattern based on repeated calls to
[gather_atoms_with]. The one argument to this tactic is a
function that takes an object of some particular type and returns
a set of atoms that appear in that argument. It is not necessary
to understand exactly how [gather_atoms_with] works. If we add a
new inductive datatype, say for kinds, to our language, then we
would need to modify [gather_atoms]. On the other hand, if we
merely add a new type, say products, then there is no need to
modify [gather_atoms]; the required changes would be made in
[fv_tt]. *)
Ltac gather_atoms :=
let A := gather_atoms_with (fun x : atoms => x) in
let B := gather_atoms_with (fun x : atom => singleton x) in
let C := gather_atoms_with (fun x : exp => fv_te x) in
let D := gather_atoms_with (fun x : var => fv_vv x) in
let E := gather_atoms_with (fun x : exp => fv_ve x) in
let F := gather_atoms_with (fun x : typ => fv_tt x) in
let G := gather_atoms_with (fun x : env => dom x) in
constr:(A `union` B `union` C `union` D `union` E `union` F `union` G).
(** The second step in defining "[pick fresh]" is to define the tactic
itself. It is based on the [(pick fresh ... for ...)] tactic
defined in the [Atom] library. Here, we use [gather_atoms] to
construct the set [L] rather than leaving it to the user to
provide. Thus, invoking [(pick fresh x)] introduces a new atom
[x] into the current context that is fresh for "everything" in the
context. *)
Tactic Notation "pick" "fresh" ident(x) :=
let L := gather_atoms in (pick fresh x for L).
(* *********************************************************************** *)
(** * #<a name="apply_fresh"></a># The "[pick fresh and apply]" tactic *)
(** This tactic is implementation specific only because of its
reliance on [gather_atoms], which is itself implementation
specific. The definition below may be copied between developments
without any changes, assuming that the other other developments
define an appropriate [gather_atoms] tactic. For documentation on
the tactic on which the one below is based, see the
[Metatheory] library. *)
Tactic Notation
"pick" "fresh" ident(atom_name) "and" "apply" constr(lemma) :=
let L := gather_atoms in
pick fresh atom_name excluding L and apply lemma.
(* ********************************************************************** *)
(** * #<a name="properties"></a># Properties of opening and substitution *)
(** The following lemmas provide useful structural properties of
substitution and opening. While the exact statements are language
specific, we have found that similar properties are needed in a
wide range of languages.
Below, we indicate which lemmas depend on which other lemmas.
Since [te] functions depend on their [tt] counterparts, a similar
dependency can be found in the lemmas.
The lemmas are split into three sections, one each for the [tt],
[te], and [ee] functions. The most important lemmas are the
following:
- Substitution and opening commute with each other, e.g.,
[subst_tt_open_tt_var].
- Opening a term is equivalent to opening the term with a fresh
name and then substituting for that name, e.g.,
[subst_tt_intro].
We keep the sections as uniform in structure as possible. In
particular, we state explicitly strengthened induction hypotheses
even when there are more concise ways of proving the lemmas of
interest. *)
(* ********************************************************************** *)
(** ** Properties of type substitution in types *)
(** The next lemma is the strengthened induction hypothesis for the
lemma that follows, which states that opening a locally closed
term is the identity. This lemma is not otherwise independently
useful. *)
Lemma open_tt_rec_type_aux : forall T j V i U,
i <> j ->
open_tt_rec j V T = open_tt_rec i U (open_tt_rec j V T) ->
T = open_tt_rec i U T.
Proof with eauto*.
induction T; intros j V i U Neq H; simpl in *; inversion H; f_equal...
Case "typ_bvar".
destruct (j === n)... destruct (i === n)...
Qed.
(** Opening a locally closed term is the identity. This lemma depends
on the immediately preceding lemma. *)
Lemma open_tt_rec_type : forall T U k,
type T ->
T = open_tt_rec k U T.
Proof with auto*.
intros T U k Htyp. revert k.
induction Htyp; intros k; simpl; f_equal...
Case "typ_all".
unfold open_tt in *.
pick fresh X.
apply (open_tt_rec_type_aux T2 0 (typ_fvar X))...
Qed.
(** If a name is fresh for a term, then substituting for it is the
identity. *)
Lemma subst_tt_fresh : forall Z U T,
Z `notin` fv_tt T ->
T = subst_tt Z U T.
Proof with auto*.
induction T; simpl; intro H; f_equal...
Case "typ_fvar".
destruct (a == Z)...
contradict H; fsetdec.
Qed.
(** Substitution commutes with opening under certain conditions. This
lemma depends on the fact that opening a locally closed term is
the identity. *)
Lemma subst_tt_open_tt_rec : forall T1 T2 X P k,
type P ->
subst_tt X P (open_tt_rec k T2 T1) =
open_tt_rec k (subst_tt X P T2) (subst_tt X P T1).
Proof with auto*.
intros T1 T2 X P k WP. revert k.
induction T1; intros k; simpl; f_equal...
Case "typ_bvar".
destruct (k === n); subst...
Case "typ_fvar".
destruct (a == X); subst... apply open_tt_rec_type...
Qed.
(** The next lemma is a direct corollary of the immediately preceding
lemma---the index is specialized to zero. *)
Lemma subst_tt_open_tt : forall T1 T2 (X:atom) P,
type P ->
subst_tt X P (open_tt T1 T2) = open_tt (subst_tt X P T1) (subst_tt X P T2).
Proof with auto*.
intros.
unfold open_tt.
apply subst_tt_open_tt_rec...
Qed.
(** The next lemma is a direct corollary of the immediately preceding
lemma---here, we're opening the term with a variable. In
practice, this lemma seems to be needed as a left-to-right rewrite
rule, when stated in its current form. *)
Lemma subst_tt_open_tt_var : forall (X Y:atom) P T,
Y <> X ->
type P ->
open_tt (subst_tt X P T) Y = subst_tt X P (open_tt T Y).
Proof with auto*.
intros X Y P T Neq Wu.
unfold open_tt.
rewrite subst_tt_open_tt_rec...
simpl.
destruct (Y == X)...
Qed.
(** The next lemma states that opening a term is equivalent to first
opening the term with a fresh name and then substituting for the
name. This is actually the strengthened induction hypothesis for
the version we use in practice. *)
Lemma subst_tt_intro_rec : forall X T2 U k,
X `notin` fv_tt T2 ->
open_tt_rec k U T2 = subst_tt X U (open_tt_rec k (typ_fvar X) T2).
Proof with auto*.
induction T2; intros U k Fr; simpl in *; f_equal...
Case "typ_bvar".
destruct (k === n)... simpl. destruct (X == X)...
Case "typ_fvar".
destruct (a == X)... contradict Fr; fsetdec.
Qed.
(** The next lemma is a direct corollary of the immediately preceding
lemma---the index is specialized to zero. *)
Lemma subst_tt_intro : forall X T2 U,
X `notin` fv_tt T2 ->
open_tt T2 U = subst_tt X U (open_tt T2 X).
Proof with auto*.
intros.
unfold open_tt.
apply subst_tt_intro_rec...
Qed.
(* ********************************************************************** *)
(** ** Properties of type substitution in expressions *)
(** This section follows the structure of the previous section. The
one notable difference is that we require two auxiliary lemmas to
show that substituting a type in a locally-closed expression is
the identity. *)
Lemma open_te_rec_expr_aux : forall e j v i P ,
open_ve_rec j v e = open_te_rec i P (open_ve_rec j v e) ->
e = open_te_rec i P e.
Proof with eauto*.
induction e; intros j u i P H; simpl in *; inversion H; f_equal...
Qed.
Lemma open_te_rec_type_aux : forall e j Q i P,
i <> j ->
open_te_rec j Q e = open_te_rec i P (open_te_rec j Q e) ->
e = open_te_rec i P e.
Proof.
induction e; intros j Q i P Neq Heq; simpl in *; inversion Heq;
f_equal; eauto using open_tt_rec_type_aux.
Qed.
Lemma open_te_rec_expr : forall e U k,
expr e ->
e = open_te_rec k U e.
Proof with auto*.
intros e U k WF. revert k.
induction WF; intros k; simpl; f_equal; auto using open_tt_rec_type;
try solve [
unfold open_ve in *;
pick fresh x;
eapply open_te_rec_expr_aux with (j := 0) (v := x);
auto*
| unfold open_te in *;
pick fresh X;
eapply open_te_rec_type_aux with (j := 0) (Q := typ_fvar X);
auto*
].
Qed.
Lemma subst_te_fresh : forall X U e,
X `notin` fv_te e ->
e = subst_te X U e.
Proof.
induction e; simpl; intros; f_equal; auto using subst_tt_fresh.
Qed.
Lemma subst_te_open_te_rec : forall e T X U k,
type U ->
subst_te X U (open_te_rec k T e) =
open_te_rec k (subst_tt X U T) (subst_te X U e).
Proof.
intros e T X U k WU. revert k.
induction e; intros k; simpl; f_equal; auto using subst_tt_open_tt_rec.
Qed.
Lemma subst_te_open_te : forall e T X U,
type U ->
subst_te X U (open_te e T) = open_te (subst_te X U e) (subst_tt X U T).
Proof with auto*.
intros.
unfold open_te.
apply subst_te_open_te_rec...
Qed.
Lemma subst_te_open_te_var : forall (X Y:atom) U e,
Y <> X ->
type U ->
open_te (subst_te X U e) Y = subst_te X U (open_te e Y).
Proof with auto*.
intros X Y U e Neq WU.
unfold open_te.
rewrite subst_te_open_te_rec...
simpl.
destruct (Y == X)...
Qed.
Lemma subst_te_intro_rec : forall X e U k,
X `notin` fv_te e ->
open_te_rec k U e = subst_te X U (open_te_rec k (typ_fvar X) e).
Proof.
induction e; intros U k Fr; simpl in *; f_equal;
auto using subst_tt_intro_rec.
Qed.
Lemma subst_te_intro : forall X e U,
X `notin` fv_te e ->
open_te e U = subst_te X U (open_te e X).
Proof with auto*.
intros.
unfold open_te.
apply subst_te_intro_rec...
Qed.
(* ********************************************************************** *)
(** ** Properties of expression substitution in expressions *)
(** This section follows the structure of the previous two sections. *)
Lemma open_vv_rec_expand : forall v x i,
v = open_vv_rec i x v ->
open_vv_rec i x v = open_vv_rec i x (open_vv_rec i x v).
Proof with auto*.
intros v x i H.
unfold open_vv_rec in *.
destruct v...
destruct (i === n)...
destruct (i === n)...
Qed.
Lemma open_vv_rec_collapse : forall v j x y i,
i <> j ->
open_vv_rec j x v = open_vv_rec i y (open_vv_rec j x v) ->
v = open_vv_rec i y v.
Proof with auto*.
intros v j x y i Neq H.
unfold open_vv_rec in *.
destruct v...
destruct (j === n).
destruct (i === n)...
assumption.
Qed.
Lemma open_ve_rec_expr_aux : forall e j x y i,
i <> j ->
open_ve_rec j y e = open_ve_rec i x (open_ve_rec j y e) ->
e = open_ve_rec i x e.
Proof with eauto using open_vv_rec_collapse.
intros e; induction e; intros j x y i Neq H; simpl in *; inversion H; f_equal...
Qed.
Lemma open_ve_rec_type_aux : forall e j V u i,
open_te_rec j V e = open_ve_rec i u (open_te_rec j V e) ->
e = open_ve_rec i u e.
Proof with eauto using open_vv_rec_expand.
induction e; intros j V u i H; simpl; inversion H; f_equal...
Qed.
Lemma open_ve_rec_expr : forall x e k,
expr e ->
e = open_ve_rec k x e.
Proof with auto*.
intros x e k Hexpr. revert k.
induction Hexpr; intro k; simpl; f_equal; auto*;
try solve [
unfold open_ve in *;
pick fresh y;
eapply open_ve_rec_expr_aux with (j := 0) (y := y);
auto*
| unfold open_te in *;
pick fresh Y;
eapply open_ve_rec_type_aux with (j := 0) (V := typ_fvar Y);
auto*
].
Qed.
Lemma subst_vv_fresh : forall (z : atom) (y : atom) (v : var),
v <> z ->
v = subst_vv z y v.
Proof with auto*.
intros z y v H.
unfold subst_vv.
destruct v...
destruct (a == z)...
Qed.
Lemma subst_ve_fresh : forall (x : atom) (y : atom) e,
x `notin` fv_ve e ->
e = subst_ve x y e.
Proof with eauto using subst_vv_fresh.
intros x u e; induction e; simpl; intro H; f_equal; unfold subst_vv; auto*;
match goal with
| [|- ?v = _] =>
destruct v as [| a];
auto*;
destruct (a == x);
auto*;
subst;
simpl in H;
fsetdec
end.
Qed.
(*
Lemma subst_ve_open_ve_rec : forall e1 e2 x (u : atom) k,
subst_ve x u (open_ve_rec k e2 e1) =
open_ve_rec k (subst_vv x u e2) (subst_ve x u e1).
Proof with auto*.
intros e1 e2 x u k WP. revert k.
induction e1; intros k; simpl; f_equal...
Case "exp_bvar".
destruct (k === n); subst...
Case "exp_fvar".
destruct (a == x); subst... apply open_ee_rec_expr...
Qed.
Lemma subst_ee_open_ee : forall e1 e2 x u,
expr u ->
subst_ee x u (open_ee e1 e2) =
open_ee (subst_ee x u e1) (subst_ee x u e2).
Proof with auto*.
intros.
unfold open_ee.
apply subst_ee_open_ee_rec...
Qed.
*)
Lemma subst_ve_open_ve_var : forall (x y : atom) u e k,
y <> x ->
open_ve_rec k y (subst_ve x u e) = subst_ve x u (open_ve_rec k y e).
Proof with auto*.
intros x y u e k Neq. revert k.
induction e; intros k; simpl; f_equal; unfold subst_vv; auto*;
match goal with
| [|- open_vv_rec k y (match ?v with var_b _ => _ | var_f _ => _ end) = _] =>
unfold open_vv_rec;
destruct v as [n | a];
[ destruct (k === n);
[ destruct (y == x);
[ contradict e0; assumption
| auto
]
| auto
]
| destruct (a == x); auto
]
end.
Qed.
Lemma subst_te_open_ve_rec : forall e x Z P k,
subst_te Z P (open_ve_rec k x e) =
open_ve_rec k x (subst_te Z P e).
Proof with auto*.
induction e; intros x Z P k; simpl; f_equal...
Qed.
Lemma subst_te_open_ve : forall e x Z P,
subst_te Z P (open_ve e x) = open_ve (subst_te Z P e) x.
Proof with auto*.
intros.
unfold open_ve.
apply subst_te_open_ve_rec...
Qed.
Lemma subst_te_open_ve_var : forall Z (x : atom) P e,
open_ve (subst_te Z P e) x = subst_te Z P (open_ve e x).
Proof with auto*.
intros.
rewrite subst_te_open_ve...
Qed.
Lemma subst_ve_open_te_rec : forall e P z u k,
subst_ve z u (open_te_rec k P e) = open_te_rec k P (subst_ve z u e).
Proof with auto*.
induction e; intros P z u k; simpl; f_equal...
Qed.
Lemma subst_ve_open_te : forall e P z u,
subst_ve z u (open_te e P) = open_te (subst_ve z u e) P.
Proof with auto*.
intros.
unfold open_te.
apply subst_ve_open_te_rec...
Qed.
Lemma subst_ve_open_te_var : forall z (X : atom) u e,
open_te (subst_ve z u e) X = subst_ve z u (open_te e X).
Proof with auto*.
intros z X u e.
rewrite subst_ve_open_te...
Qed.
Lemma subst_ve_intro_rec : forall x e y k,
x `notin` fv_ve e ->
open_ve_rec k y e = subst_ve x y (open_ve_rec k x e).
Proof with auto*.
induction e; intros u k Fr; simpl in *; f_equal...
all: match goal with
| [|- open_vv_rec ?k ?u ?v = _] => destruct v; unfold open_vv_rec, subst_vv;
[ destruct (k === n);
[ destruct (x == x); [ auto | contradict n0; reflexivity ]
| auto ]
| destruct (a == x); [ contradict e; simpl in Fr; fsetdec | auto ]
]
end.
Qed.
Lemma subst_ve_intro : forall x e y,
x `notin` fv_ve e ->
open_ve e y = subst_ve x y (open_ve e x).
Proof with auto*.
intros.
unfold open_ve.
apply subst_ve_intro_rec...
Qed.
(* *********************************************************************** *)
(** * #<a name="lc"></a># Local closure is preserved under substitution *)
(** While these lemmas may be considered properties of substitution, we
separate them out due to the lemmas that they depend on. *)
(** The following lemma depends on [subst_tt_open_tt_var]. *)
Lemma subst_tt_type : forall Z P T,
type T ->
type P ->
type (subst_tt Z P T).
Proof with auto.
intros Z P T HT HP.
induction HT; simpl...
Case "type_fvar".
destruct (X == Z)...
Case "type_all".
pick fresh Y and apply type_all...
rewrite subst_tt_open_tt_var...
Qed.
(** The following lemma depends on [subst_tt_type] and
[subst_te_open_ee_var]. *)
Lemma subst_te_expr : forall Z P e,
expr e ->
type P ->
expr (subst_te Z P e).
Proof with eauto using subst_tt_type.
intros Z P e He Hp.
induction He; simpl; auto using subst_tt_type;
try solve [
econstructor;
try instantiate (1 := L `union` singleton Z);
intros;
try rewrite subst_te_open_ve_var;
try rewrite subst_te_open_te_var;
eauto using subst_tt_type
].
Qed.
Lemma if_hoist {A B : Type} {C1 C2 : Prop} : forall (c : {C1} + {C2}) (a b : A) (f : A -> B),
(if c then f a else f b) = f (if c then a else b).
Proof.
intros c a b f.
destruct c; reflexivity.
Qed.
(** The following lemma depends on [subst_ee_open_ee_var] and
[subst_ee_open_te_var]. *)
Lemma subst_ve_expr : forall (z : atom) (y : atom) e,
expr e ->
expr (subst_ve z y e).
Proof with auto.
intros z y e He.
induction He; simpl; auto;
try solve [
econstructor;
try (instantiate (1 := L `union` singleton z) || instantiate (1 := T));
intros;
try rewrite subst_ve_open_ve_var;
try rewrite subst_ve_open_te_var;
auto
].
Case "expr_var".
destruct (x == z)...
Case "expr_abs".
apply expr_abs with (L := L `union` singleton z)...
intros x x_fresh.
unfold open_ve.
rewrite subst_ve_open_ve_var...
apply H1...
Case "expr_app".
rewrite (if_hoist (x == z) y x var_f).
rewrite (if_hoist (y0 == z) y y0 var_f).
apply expr_app.
Case "expr_tapp".
rewrite (if_hoist (x == z) y x var_f).
apply expr_tapp...
Case "expr_let".
apply expr_let with (L := L `union` singleton z)...
intros x x_fresh.
unfold open_ve.
rewrite subst_ve_open_ve_var...
apply H0...
Case "expr_pair".
rewrite (if_hoist (x == z) y x var_f).
rewrite (if_hoist (y0 == z) y y0 var_f).
apply expr_pair.
Case "expr_fst".
rewrite (if_hoist (x == z) y x var_f).
apply expr_fst.
Case "expr_snd".
rewrite (if_hoist (x == z) y x var_f).
apply expr_snd.
Qed.
Lemma eq_var_dec : forall v1 v2 : var,
{v1 = v2} + {v1 <> v2}.
Proof.
intros [i | a] [j | b]; try (right; discriminate).
- Case "bound / bound".
destruct (eq_nat_dec i j).
+ left; f_equal; apply e.
+ right; contradict n; inversion n; reflexivity.
- Case "free / free".
destruct (eq_atom_dec a b).
+ left; f_equal; apply e.
+ right; contradict n; inversion n; reflexivity.
Qed.
Lemma eq_typ_dec : forall t1 t2 : typ,
{t1 = t2} + {t1 <> t2}.
Proof.
intros t1.
induction t1; intros t2; destruct t2; try (right; discriminate).
- Case "typ_top".
left; reflexivity.
- Case "typ_bvar".
destruct (eq_nat_dec n n0).
+ left; f_equal; apply e.
+ right; contradict n1; f_equal; inversion n1; reflexivity.
- Case "typ_fvar".
destruct (eq_atom_dec a a0).
+ left; f_equal; apply e.
+ right; contradict n; f_equal; inversion n; reflexivity.
- Case "typ_arrow".
destruct (IHt1_1 t2_1), (IHt1_2 t2_2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "typ_all".
destruct (IHt1_1 t2_1), (IHt1_2 t2_2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "typ_prod".
destruct (IHt1_1 t2_1), (IHt1_2 t2_2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
Qed.
Lemma eq_exp_dec : forall e1 e2 : exp,
{e1 = e2} + {e1 <> e2}.
Proof.
intros e1.
induction e1; intros e2; destruct e2; try (right; discriminate).
- Case "exp_var".
destruct (eq_var_dec v v0).
+ left; f_equal; apply e.
+ right; contradict n; f_equal; inversion n; reflexivity.
- Case "exp_abs".
destruct (eq_typ_dec t t0), (IHe1 e2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "exp_app".
destruct (eq_var_dec v v1), (eq_var_dec v0 v2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "exp_tabs".
destruct (eq_typ_dec t t0), (IHe1 e2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "exp_tapp".
destruct (eq_typ_dec t t0), (eq_var_dec v v0); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "exp_let".
destruct (IHe1_1 e2_1), (IHe1_2 e2_2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "exp_pair".
destruct (eq_var_dec v v1), (eq_var_dec v0 v2); subst; try (right; contradict n; inversion n; reflexivity).
left; reflexivity.
- Case "exp_fst".
destruct (eq_var_dec v v0).
+ left; f_equal; apply e.
+ right; contradict n; f_equal; inversion n; reflexivity.
- Case "exp_snd".
destruct (eq_var_dec v v0).
+ left; f_equal; apply e.
+ right; contradict n; f_equal; inversion n; reflexivity.
Qed.
(* *********************************************************************** *)
(** * #<a name="auto"></a># Automation *)
(** We add as hints the fact that local closure is preserved under
substitution. This is part of our strategy for automatically
discharging local-closure proof obligations. *)
#[global]
Hint Resolve subst_tt_type subst_te_expr subst_ve_expr : core.
(** When reasoning about the [binds] relation and [map], we
occasionally encounter situations where the binding is
over-simplified. The following hint undoes that simplification,
thus enabling [Hint]s from the [Environment] library. *)
#[global]
Hint Extern 1 (binds _ (?F (subst_tt ?X ?U ?T)) _) =>
unsimpl (subst_tb X U (F T)) : core.