-
Notifications
You must be signed in to change notification settings - Fork 2
/
plotcmaesdat.m
222 lines (203 loc) · 7.8 KB
/
plotcmaesdat.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
function plotcmaesdat(figNb, filenameprefix, filenameextension, objectvarname)
% PLOTCMAESDAT;
% PLOTCMAES(FIGURENUMBER_iBEGIN_iEND, FILENAMEPREFIX, FILENAMEEXTENSION, OBJECTVARNAME);
% plots output from CMA-ES, e.g. cmaes.m, Java class CMAEvolutionStrategy...
% mod(figNb,100)==1 plots versus iterations.
%
% PLOTCMAES([101 300]) plots versus iteration, from iteration 300.
% PLOTCMAES([100 150 800]) plots versus function evaluations, between iteration 150 and 800.
%
% Upper left subplot: blue/red: function value of the best solution in the
% recent population, cyan: same function value minus best
% ever seen function value, green: sigma, red: ratio between
% longest and shortest principle axis length which is equivalent
% to sqrt(cond(C)).
% Upper right plot: time evolution of the distribution mean (default) or
% the recent best solution vector.
% Lower left: principle axes lengths of the distribution ellipsoid,
% equivalent with the sqrt(eig(C)) square root eigenvalues of C.
% Lower right: magenta: minimal and maximal "true" standard deviation
% (with sigma included) in the coordinates, other colors: sqrt(diag(C))
% of all diagonal elements of C, if C is diagonal they equal to the
% lower left.
%
% Files [FILENAMEPREFIX name FILENAMEEXTENSION] are used, where
% name = axlen, OBJECTVARNAME (xmean|xrecentbest), fit, or stddev.
%
manual_mode = 1;
if nargin < 1 || isempty(figNb)
figNb = 325;
end
if nargin < 2 || isempty(filenameprefix)
filenameprefix = 'outcmaes';
end
if nargin < 3 || isempty(filenameextension)
filenameextension = '.dat';
end
if nargin < 4 || isempty(objectvarname)
objectvarname = 'xmean';
objectvarname = 'xrecentbest';
end
% load data
d.x = load([filenameprefix objectvarname filenameextension]);
% d.x = load([filenameprefix 'xmean' filenameextension]);
% d.x = load([filenameprefix 'xrecentbest' filenameextension]);
d.f = load([filenameprefix 'fit' filenameextension]);
d.std = load([filenameprefix 'stddev' filenameextension]);
d.D = load([filenameprefix 'axlen' filenameextension]);
% interpret entries in figNb for cutting out some data
if length(figNb) > 1
iend = inf;
istart = figNb(2);
if length(figNb) > 2
iend = figNb(3);
end
figNb = figNb(1);
d.x = d.x(d.x(:,1) >= istart & d.x(:,1) <= iend, :);
d.f = d.f(d.f(:,1) >= istart & d.f(:,1) <= iend, :);
d.std = d.std(d.std(:,1) >= istart & d.std(:,1) <= iend, :);
d.D = d.D(d.D(:,1) >= istart & d.D(:,1) <= iend, :);
end
% set up figure window
if manual_mode
figure(figNb); % just create and raise the figure window
else % try to prevent raise
if evalin('caller', 'countiter') <= 2 && evalin('caller', 'irun') == 1
figure(324);
elseif gcf ~= 324
if ismember(324, findobj('Type', 'figure'))
set(0, 'CurrentFigure', 324); % prevents raise of figure window
else
figure(324);
end
end
end
% decide for x-axis
iabscissa = 2; % 1== versus iterations, 2==versus fevals
if mod(figNb,100) == 1
iabscissa = 1; % a short hack
end
if iabscissa == 1
xlab ='iterations';
elseif iabscissa == 2
xlab = 'function evaluations';
end
if size(d.x, 2) < 1000
minxend = 1.03*d.x(end, iabscissa);
else
minxend = 0;
end
% plot fitness etc
foffset = 1e-99;
dfit = d.f(:,6)-min(d.f(:,6));
[ignore idxbest] = min(dfit);
dfit(dfit<1e-98) = NaN;
subplot(2,2,1); hold off;
dd = abs(d.f(:,7:8)) + foffset;
dd(d.f(:,7:8)==0) = NaN;
semilogy(d.f(:,iabscissa), dd, '-k'); hold on;
% additional fitness data, for example constraints values
if size(d.f,2) > 8
dd = abs(d.f(:,9:end)) + 10*foffset; % a hack
% dd(d.f(:,9:end)==0) = NaN;
semilogy(d.f(:,iabscissa), dd, '-m'); hold on;
if size(d.f,2) > 12
semilogy(d.f(:,iabscissa),abs(d.f(:,[7 8 11 13]))+foffset,'-k'); hold on;
end
end
idx = find(d.f(:,6)>1e-98); % positive values
if ~isempty(idx) % otherwise non-log plot gets hold
semilogy(d.f(idx,iabscissa), d.f(idx,6)+foffset, '.b'); hold on;
end
idx = find(d.f(:,6) < -1e-98); % negative values
if ~isempty(idx)
semilogy(d.f(idx, iabscissa), abs(d.f(idx,6))+foffset,'.r'); hold on;
end
semilogy(d.f(:,iabscissa),abs(d.f(:,6))+foffset,'-b'); hold on;
semilogy(d.f(:,iabscissa),dfit,'-c'); hold on;
semilogy(d.f(:,iabscissa),(d.f(:,4)),'-r'); hold on; % AR
semilogy(d.std(:,iabscissa), [max(d.std(:,6:end), [], 2) ...
min(d.std(:,6:end), [], 2)], '-m', 'linewidth', 2); % max,min std
[maxval, imax] = max(d.std(end,6:end));
[minval, imin] = min(d.std(end,6:end));
text(d.std(end,iabscissa), maxval, sprintf('%d:%.0e', imax, maxval));
text(d.std(end,iabscissa), minval, sprintf('%d:%.0e', imin, minval));
semilogy(d.std(:,iabscissa),(d.std(:,3)),'-g'); % sigma
% plot best f
semilogy(d.f(idxbest,iabscissa),min(dfit),'*c'); hold on;
semilogy(d.f(idxbest,iabscissa),abs(d.f(idxbest,6))+foffset,'*r'); hold on;
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
yannote = 10^(log10(ax(3)) + 0.05*(log10(ax(4))-log10(ax(3))));
text(ax(1), yannote, ...
[ 'f=' num2str(d.f(end,6), '%.15g') ]);
title('blue:abs(f), cyan:f-min(f), green:sigma, red:axis ratio');
grid on;
% ax([3,4]) = [1e-9, 1e5];
% axis(ax);
% plot x-values
subplot(2,2,2); hold off;
plot(d.x(:,iabscissa), d.x(:,6:end),'-'); hold on;
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
% add some annotation lines
[ignore idx] = sort(d.x(end,6:end));
% choose no more than 25 indices
idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25)));
yy = repmat(NaN, 2, size(d.x,2)-5);
yy(1,:) = d.x(end, 6:end);
yy(2,idx(idxs)) = linspace(ax(3), ax(4), length(idxs));
plot([d.x(end,iabscissa) ax(2)], yy, '-');
plot(repmat(d.x(end,iabscissa),2), [ax(3) ax(4)], 'k-');
for i = idx(idxs)
text(ax(2), yy(2,i), ...
['x(' num2str(i) ')=' num2str(yy(1,i), '%.3g')]);
end
lam = 'NA';
if size(d.x, 1) > 1 && d.x(end, 1) > d.x(end-1, 1)
lam = num2str((d.x(end, 2) - d.x(end-1, 2)) / (d.x(end, 1) - d.x(end-1, 1)));
end
title(['Object Variables, ' objectvarname(2:min(end,7)) ' (' num2str(size(d.x, 2)-5) ...
'-D, popsize~' lam ')']);grid on;
subplot(2,2,3); hold off; semilogy(d.D(:,iabscissa), d.D(:,6:end), '-');
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
title('Principle Axes Lengths');grid on;
xlabel(xlab);
subplot(2,2,4); hold off;
% semilogy(d.std(:,iabscissa), d.std(:,6:end), 'k-'); hold on;
% remove sigma from stds
d.std(:,6:end) = d.std(:,6:end) ./ (d.std(:,3) * ones(1,size(d.std,2)-5));
semilogy(d.std(:,iabscissa), d.std(:,6:end), '-'); hold on;
if 11 < 3 % max and min std
semilogy(d.std(:,iabscissa), [d.std(:,3).*max(d.std(:,6:end), [], 2) ...
d.std(:,3).*min(d.std(:,6:end), [], 2)], '-m', 'linewidth', 2);
maxval = max(d.std(end,6:end));
minval = min(d.std(end,6:end));
text(d.std(end,iabscissa), d.std(end,3)*maxval, sprintf('max=%.0e', maxval));
text(d.std(end,iabscissa), d.std(end,3)*minval, sprintf('min=%.0e', minval));
end
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
% add some annotation lines
[ignore idx] = sort(d.std(end,6:end));
% choose no more than 25 indices
idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25)));
yy = repmat(NaN, 2, size(d.std,2)-5);
yy(1,:) = d.std(end, 6:end);
yy(2,idx(idxs)) = logspace(log10(ax(3)), log10(ax(4)), length(idxs));
semilogy([d.std(end,iabscissa) ax(2)], yy, '-');
semilogy(repmat(d.std(end,iabscissa),2), [ax(3) ax(4)], 'k-');
for i = idx(idxs)
text(ax(2), yy(2,i), [' ' num2str(i)]);
end
title('Standard Deviations in Coordinates divided by sigma');grid on;
xlabel(xlab);
if figNb ~= 324
% zoom on; % does not work in Octave
end
drawnow;