-
Notifications
You must be signed in to change notification settings - Fork 9
/
experience_replay.pyx
599 lines (459 loc) · 26.7 KB
/
experience_replay.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# cython: language_level=3
import numpy as np
from libc.stdint cimport uint8_t
import pickle
import os
cdef class BinarySumTree:
"""
*******************
** BinarySumTree **
*******************
Class for representing a (perfect) binary sum tree, i.e. a tree,
in which every node (except for the leaves) has got exactly two child nodes and
the key of every node (except for the leaves) is equal to the sum of the keys of its child nodes.
The tree is represented by an array, which is indexed from the leaves towards the root and from left to right.
For example, a tree with 4 leaves is indexed in the following way:
| 6 | (root)
| / \ |
| 4 5 |
| / \ / \ |
| 0 1 2 3 | (leaves)
In this setting the parent node, the left child and the right child node
of a node with index i in a tree with n leaves can be accessed in the following way:
parent(i) = floor(i / 2) + n
left_child(i) = 2 * (i - n)
right_child(i) = 2 * (i - n) + 1
-----------
Parameters:
-----------
leaf_number: int; number of leaves (has to be a power of 2 as a perfect binary tree is expected)
keys: (memory view of) array of floats; array containing the keys of the binary sum tree
"""
cdef public:
unsigned int leaf_number
float[::1] keys
unsigned int sample_size
unsigned int[::1] sampled_indices
float[::1] _sampled_keys
unsigned int _height
unsigned int _root_id
def __cinit__(self, leaf_number = 2**20, leaf_keys = None, sample_size = 32, key_dtype = np.single):
"""Initialize parameters"""
self.leaf_number = leaf_number
self._height = int(np.log2(self.leaf_number) + 1)
self._root_id = 2 * self.leaf_number - 2
self.keys = np.zeros(2 * self.leaf_number - 1, dtype = key_dtype)
if leaf_keys is not None:
self._construct(leaf_keys)
self.sample_size = sample_size
self.sampled_indices = np.zeros(sample_size, dtype = np.uintc)
self._sampled_keys = np.single(self.keys[self._root_id] * np.random.random(sample_size))
def _construct(self, float[::1] leaf_keys):
"""Construct a binary sum tree with the given leaf_keys.
For details on the tree structure, see the class description."""
cdef unsigned int level, first_1, last_1, first_2, last_2
cdef float[::1] level_view
first_1 = 0
last_1 = self.leaf_number - 1
self.keys[first_1:(last_1)+1] = leaf_keys
for level in range(1, self._height):
# compute the first and last index of the current level
first_2 = last_1 + 1
last_2 = first_2 + int(self.leaf_number / 2**(level)) - 1
# compute the keys of the current level
level_view = np.add(self.keys[first_1:(last_1 + 1):2], self.keys[(first_1 + 1):(last_1 + 1):2])
self.keys[first_2:(last_2 + 1)] = level_view
# update the level indices
first_1 = first_2
last_1 = last_2
cdef unsigned int _parent(self, unsigned int index):
"""Return the parent index of the given index"""
return(self.leaf_number + index // 2)
cdef unsigned int _left(self, unsigned int index):
"""Return the left child index of the given index"""
return(2 * (index - self.leaf_number))
cdef unsigned int _right(self, unsigned int index):
"""Return the right child index of the given index"""
return(2 * (index - self.leaf_number) + 1)
cdef unsigned int _get_index_by_key(self, float key):
""""Get the index such that: sum(self.keys[0:(index-1)]) < key <= sum(self.keys[0:index])"""
cdef unsigned int index = self._root_id
cdef unsigned int left
while index >= self.leaf_number:
left = self._left(index)
if self.keys[left] >= key:
index = left
else:
index = left + 1
key = key - self.keys[left]
return(index)
def sample_indices(self, unsigned int sample_size = 0):
"""Sample a given number of (leaf-)indices with probabilty proportional to their keys."""
if sample_size > 0:
self.sample_size = sample_size
self._sampled_keys = np.single(self.keys[self._root_id] * np.random.random(sample_size))
self.sampled_indices = np.zeros(sample_size, dtype = np.uintc)
# sample a number of sample_size random keys out of the interval [0, self.keys[self._root_id]]
self._sampled_keys = np.single(self.keys[self._root_id] * np.random.random(self.sample_size))
cdef unsigned int i = 0
for i in range(self.sample_size):
self.sampled_indices[i] = self._get_index_by_key(self._sampled_keys[i])
#return(indices)
def set_key(self, unsigned int index, float new_key):
"Set the key at the given index to the given new key."
# set the key of the given index to the new_key and calculate the change of the key value at this index
cdef float change = new_key - self.keys[index]
self.keys[index] = new_key
# propagate the change iteratively up to the root
cdef unsigned int parent = index
while parent != self._root_id:
parent = self._parent(parent)
self.keys[parent] += change
def get_total_weight(self):
return(self.keys[-1])
cdef class PrioritizedExperienceReplay:
"""
*********************************
** PrioritizedExperienceReplay **
*********************************
Class for the representation of the prioritized experience replay memory in Deep Q-Learning algorithms.
The class is maintaining experience-tuples of a Q-Learning agent of the following form:
exp := (state_1, action, reward, state_2),
where state_1 and state_2 consist of a specific number of stacked frames.
Example: Let state_1 := (frame_1, frame_2,...,frame_k).
state_2 := (frame_2, frame_3,...,frame_k+1)
==> storing state_1 and state_2 explicitly would be inefficient,
as they have most of their frames in common
==> only the frames will be stored and the index of one experience-tuple is set to be
equal to the index of the most recent frame of state_1 (in the example: frame_k)
-----------
Parameters:
-----------
max_frame_num: int;
maximum number of frames being stored in the replay memory
num_stacked_frames: int;
number of frames that are stacked for one state
frame_shape: tuple of two ints;
shape of one single frame
frames: (memory view of) 3d-array of unsigned ints;
array of all frames in the replay memory
actions: (memory view of) 1d-array of ints;
array of actions, which have been taken in the corresponding frames
rewards: (memory view of) 1d-array of floats;
array of rewards, which have been observed in the corresponding frames
priorities: (memory view of) 1d-array of floats;
array of priorities for the corresponding frames
episode_endings: 1d-array of unsigned ints;
array indicating the terminal frame of all episodes
batch_size: int;
size of the mini-batch, which will be used for training the agent
prio_coeff: float;
coefficient of prioritization
(alpha in 'Prioritized Experience Replay', Schaul et al. 2015)
is_schedule: list of lists of the form [start_value, end_value, num_steps];
schedule for (piecewise) linearly annealing the importance sampling coefficient
(beta in 'Prioritized Experience Replay', Schaul et al. 2015)
epsilon: float;
constant beeing added to each priority to ensure non-zero priorities
restore_path: string;
if restore_path is not none, the internal state of the replay memory will be restored from a previous training session
"""
cdef public:
unsigned int max_frame_num
unsigned int num_stacked_frames
uint8_t[:, :, ::1] frames
int[::1] actions
float[::1] rewards
unsigned int batch_size
float prio_coeff
float is_min_coeff
float is_max_coeff
float is_steps
float epsilon
object _priority_tree
uint8_t[:, :, :, ::1] _batch_frames
int[::1] _batch_actions
float[::1] _batch_rewards
float[::1] _batch_n_step_returns
uint8_t[::1] _batch_dones
uint8_t[::1] _batch_n_dones
float[::1] _batch_weights
int _current_index
bint _is_full
int _start_new_episode
int _sample_counter
def __cinit__(self, max_frame_num = 2**20,
num_stacked_frames = 4,
frame_shape = (84, 84),
frames = None,
actions = None,
rewards = None,
priorities = None,
episode_endings = None,
priority_dtype = np.single,
batch_size = 32,
prio_coeff = 1.0,
is_schedule = [0.4, 1.0, 5000000],
epsilon = 0.0001,
restore_path = None):
"""Initialize parameters"""
self.max_frame_num = max_frame_num
self.num_stacked_frames = num_stacked_frames
self.batch_size = batch_size
self.prio_coeff = prio_coeff
self.is_min_coeff = is_schedule[0]
self.is_max_coeff = is_schedule[1]
self.is_steps = is_schedule[2]
self.epsilon = epsilon
self.frames = np.zeros((max_frame_num, *frame_shape), dtype = np.uint8)
self.actions = np.zeros(max_frame_num, dtype = np.intc)
self.rewards = np.zeros(max_frame_num, dtype = np.single)
self._priority_tree = BinarySumTree(leaf_number = max_frame_num,
leaf_keys = None,
key_dtype = priority_dtype,
sample_size = batch_size)
# allocate memory for a mini-batch
self._batch_frames = np.zeros((batch_size, 2*num_stacked_frames+1, *frame_shape), dtype = np.uint8)
self._batch_actions = np.zeros(batch_size, dtype = np.intc)
self._batch_rewards = np.zeros(batch_size, dtype = np.single)
self._batch_n_step_returns = np.zeros(batch_size, dtype = np.single)
self._batch_dones = np.zeros(batch_size, dtype = np.uint8)
self._batch_n_dones = np.zeros(batch_size, dtype = np.uint8)
self._batch_weights = np.zeros(batch_size, dtype = np.single)
# internal variables
self._current_index = -1
self._is_full = False
self._start_new_episode = self.num_stacked_frames
self._sample_counter = 0
if (frames is not None and
actions is not None and
rewards is not None and
priorities is not None and
episode_endings is not None):
self._init_experiences(frames, actions, rewards,
priorities, episode_endings)
if restore_path is not None:
self._restore_internal_state(restore_path)
def save_internal_state(self, save_path):
if not os.path.isdir(save_path):
os.makedirs(save_path)
memory_dict = {'frames': np.asarray(self.frames),
'actions': np.asarray(self.actions),
'rewards': np.asarray(self.rewards),
'priorities': np.asarray(self._priority_tree.keys[:self.max_frame_num]),
'is_full': self._is_full,
'current_index': self._current_index}
with open(save_path + "memory", 'wb') as file:
pickle.dump(memory_dict, file)
cdef void _restore_internal_state(self, restore_path):
with open(restore_path, 'rb') as file:
memory_dict = pickle.load(file)
self.frames = memory_dict['frames']
self.actions = memory_dict['actions']
self.rewards = memory_dict['rewards']
self._priority_tree._construct(memory_dict['priorities'])
self._is_full = memory_dict['is_full']
self._current_index = memory_dict['current_index']
cdef void _init_experiences(self, uint8_t[:, :, ::1] frames, int[::1] actions, float[::1] rewards,
float[::1] priorities, uint8_t[::1] episode_endings):
cdef unsigned int index = 1
self.add_experience(0, 0., frames[0], 0., episode_endings[0])
for index in range(1, len(episode_endings)):
self.add_experience(actions[index-1], rewards[index-1], frames[index],
priorities[index-1], episode_endings[index])
cdef void _set_batch_frames(self, unsigned int batch_index, int lower_index, unsigned int upper_index, bint n_step_frames):
cdef unsigned int shift = 0
if n_step_frames:
shift = self.num_stacked_frames + 1
# check, if both upper_index and lower_index are valid
if upper_index <= self.max_frame_num and lower_index >= 0:
self._batch_frames[batch_index][shift:(self.num_stacked_frames + 1 + shift)] = self.frames[lower_index:upper_index]
# if upper_index is invalid (i.e upper_index > self.max_frame_num),
# then the frames range from the right to the left boundary of the memory
elif upper_index > self.max_frame_num and lower_index < int(self.max_frame_num):
self._batch_frames[batch_index][shift:(self.max_frame_num - lower_index + shift)] = self.frames[lower_index:self.max_frame_num]
self._batch_frames[batch_index][(self.max_frame_num - lower_index + shift):(self.num_stacked_frames + 1 + shift)] = self.frames[:(upper_index - self.max_frame_num)]
# if both indices are out of the right range,
# then the requested frames are located at the left boundary of the memory
# (this case only occurs for the n-step mini-batch)
elif upper_index > self.max_frame_num and lower_index >= int(self.max_frame_num):
self._batch_frames[batch_index][shift:(self.num_stacked_frames + 1 + shift)] = self.frames[(lower_index - self.max_frame_num):(upper_index - self.max_frame_num)]
# if lower_index is invalid (i.e lower_index < 0),
# then the frames range from the right to the left boundary of the memory
elif lower_index < 0:
self._batch_frames[batch_index][shift:(-lower_index + shift)] = self.frames[lower_index:]
self._batch_frames[batch_index][(-lower_index + shift):(self.num_stacked_frames + 1 + shift)] = self.frames[:upper_index]
cdef int _move_index(self, unsigned int index, int amount):
cdef int new_index = index + amount
if new_index >= int(self.max_frame_num):
new_index -= self.max_frame_num
elif new_index < 0:
new_index += self.max_frame_num
return new_index
cdef void _set_n_step_returns(self, unsigned int start_index, unsigned int batch_index, unsigned int max_step_num, float discount_factor):
self._batch_n_dones[batch_index] = 0
cdef unsigned int i = 0
cdef float n_step_return = 0
cdef int new_index = 0
while i < max_step_num:
new_index = self._move_index(start_index, i)
if self._priority_tree.keys[new_index] == 0:
self._batch_n_dones[batch_index] = 1
break
else:
n_step_return += discount_factor**i * self.rewards[new_index]
i += 1
if self._priority_tree.keys[self._move_index(start_index, i)] == 0:
self._batch_n_dones[batch_index] = 1
self._batch_n_step_returns[batch_index] = n_step_return
self._set_batch_frames(batch_index, start_index + i + 1 - self.num_stacked_frames, start_index + 1 + i, True)
cdef void _get_batch_weights(self):
# get current total weight and size of the replay memory
cdef float current_size = self.max_frame_num if self._is_full else self._current_index
cdef float current_total_weight = self._priority_tree.get_total_weight()
# get current beta
cdef float current_beta = min(self.is_max_coeff, self.is_min_coeff + self._sample_counter * (self.is_max_coeff - self.is_min_coeff) / self.is_steps)
# compute sample weights of the samlped keys
cdef float max_weight = 0.0000001
cdef unsigned int i = 0
for i in range(self.batch_size):
self._batch_weights[i] = (current_size * self._priority_tree.keys[self._priority_tree.sampled_indices[i]] / current_total_weight + 0.0000001)**(-current_beta)
max_weight = self._batch_weights[i] if self._batch_weights[i] > max_weight else max_weight
# rescale weights
i = 0
for i in range(self.batch_size):
self._batch_weights[i] = self._batch_weights[i] / max_weight
def get_mini_batch(self, n_step_return = None):
"""Return a mini-batch of experiences (state_1, action, reward, state_2) with prioritization.
----------
Parameter:
----------
n_step_return: list of length 2;
the first entry specifies the number n of steps for computing the n-step returns
the second entry specifies the discount factor for computing the n-step returns,
default is None (in this case, no n-step returns will be computed)
-------
Output:
-------
state_1: array of shape (batch_size, num_stacked_frames, *frame_shape);
mini-batch of first states
actions: array of shape (batch_size);
mini-batch of actions taken after observing state_1
rewards: array of shape (batch_size);
mini-batch of rewards observed after taking the action specified in actions
state_2: array of shape (batch_size, num_stacked_frames, *frame_shape);
mini-batch of states observed after taking the action specified in actions
dones: array of shape (batch_size);
mini-batch of booleans indicating, whether state_2 is the terminal state of an episode
weights: array of shape (batch_size);
mini-batch of importance sampling weights for the sampled experiences
--------------------------------------------------
Output (additional, if n_step_return is not None):
--------------------------------------------------
n_step_returns: array of shape (batch_size);
mini-batch of discounted n-step returns
state_n: array of shape (batch_size, num_stacked_frames, *frame_shape);
mini-batch of states observed n steps after observing state_1
n_dones: array of shape (batch_size);
mini-batch of booleans indicating, whether state_n is the terminal state of an episode
"""
# sample mini-batch indices
self._priority_tree.sample_indices()
self._sample_counter += 1
# get experiences (state1, action, reward, state2) for the sampled indices
cdef unsigned int i = 0
cdef unsigned int sampled_index, upper_index
cdef int lower_index
for i in range(self.batch_size):
sampled_index = self._priority_tree.sampled_indices[i]
# check, if sampled_index corresponds to a terminal state
if self._priority_tree.keys[self._move_index(sampled_index, 1)] == 0:
self._batch_dones[i] = 1
else:
self._batch_dones[i] = 0
# get actions and rewards corresponding to the sampled indices
self._batch_actions[i] = self.actions[sampled_index]
self._batch_rewards[i] = self.rewards[sampled_index]
# get frame indices corresponding to the sampled indices
# (i.e. the frames with indices: lower_index,...,upper_index-1)
lower_index = sampled_index + 1 - self.num_stacked_frames
upper_index = sampled_index + 2
# get frames between lower and upper index and store them in _batch_frames
self._set_batch_frames(i, lower_index, upper_index, False)
# check, if n_step_return is None. If it is not None, it is assumed to be a list of
# an integer value specifying the maximum number of steps for the n-step return and
# a float value specifying the discount factor
if n_step_return is not None:
self._set_n_step_returns(sampled_index, i, n_step_return[0], n_step_return[1])
# get mini-batch importance sampling weights
self._get_batch_weights()
if n_step_return is None:
return(np.asarray(self._batch_frames[:, :self.num_stacked_frames]),
np.asarray(self._batch_actions),
np.asarray(self._batch_rewards),
np.asarray(self._batch_frames[:, 1:self.num_stacked_frames+1]),
np.asarray(self._batch_dones),
np.asarray(self._batch_weights))
else:
return(np.asarray(self._batch_frames[:, :self.num_stacked_frames]),
np.asarray(self._batch_actions),
np.asarray(self._batch_rewards),
np.asarray(self._batch_frames[:, 1:self.num_stacked_frames+1]),
np.asarray(self._batch_dones),
np.asarray(self._batch_n_step_returns),
np.asarray(self._batch_frames[:, self.num_stacked_frames+1:]),
np.asarray(self._batch_n_dones),
np.asarray(self._batch_weights))
cdef void _move_current_index(self):
self._current_index += 1
if self._current_index >= int(self.max_frame_num):
self._is_full = True
self._current_index -= self.max_frame_num
cdef void _forget_experience(self):
cdef unsigned int new_start_index = self._current_index + self.num_stacked_frames - 1
if new_start_index >= self.max_frame_num:
new_start_index -= self.max_frame_num
self._priority_tree.set_key(new_start_index, 0)
cdef void _set_new_frame(self, uint8_t[:, ::1] new_frame):
self._move_current_index()
if self._is_full:
self._forget_experience()
self.frames[self._current_index][:] = new_frame
self._priority_tree.set_key(self._current_index, 0)
def add_experience(self, int action, float reward, uint8_t[:, ::1] new_frame, float priority, bint episode_done = False):
"""Add an experience to the replay memory.
-----------
Parameters:
-----------
action: int;
the action chosen in the considered experience
reward: float;
the reward received in the considered experience
new_frame: array of unsigned integers with shape equal to frame_shape;
the new frame observed in the considered experience
priority: float;
the priority of the considered experience
episode_done: bool;
variable indicating whether the considered experience is the end of an episode
Note: - if state_1 = (frame_1,frame_2,...,frame_k), where k = num_stacked_frames,
then state_2 = (frame_2,...,frame_k, new_frame)
==> as frame_1,...,frame_k already exist in the memory,
it is only necessary to add new_frame to the memory
- as the first k-1 frames and the last frame of an episode can't be used
for building a state, their priorities are set equal to zero
- if the memory is out of capacity the least recent experience will be overwritten
"""
if self._start_new_episode == 0:
self.actions[self._current_index] = action
self.rewards[self._current_index] = reward
self._priority_tree.set_key(self._current_index, (priority + self.epsilon)**(self.prio_coeff))
else:
self._start_new_episode -= 1
if episode_done:
self._start_new_episode = self.num_stacked_frames
self._set_new_frame(new_frame)
def update_mini_batch_priorities(self, float[::1] new_priorities):
"""Update the priorities of the recent mini-batch with the given new_priorities."""
cdef unsigned int index = 0
for index in range(self.batch_size):
self._priority_tree.set_key(self._priority_tree.sampled_indices[index], new_priorities[index]**(self.prio_coeff))