-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
94 lines (83 loc) · 3.11 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 30 15:06:38 2018
@author: 60236
"""
from torch import nn
import math
import torch
import torch.nn.functional as F
class conv_Relu(nn.Module):
def __init__(self,inplanes, outplanes, kernel=3):
super(conv_Relu, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(inplanes,outplanes,kernel,padding=1),
nn.BatchNorm2d(outplanes),
nn.ReLU(inplace=True),
nn.Conv2d(outplanes,outplanes,kernel,padding=1),
nn.BatchNorm2d(outplanes),
nn.ReLU(inplace=True),
)
def forward(self,x):
return self.conv(x)
class head(nn.Module):
def __init__(self, inplanes, outplanes,kernel=3):
super(head, self).__init__()
self.head = nn.Sequential(
nn.Conv2d(inplanes, outplanes,kernel, padding=1),
nn.BatchNorm2d(outplanes),
nn.LeakyReLU(0.2,inplace=True),
)
def forward(self,x):
return self.head(x)
class add(nn.Module):
def __init__(self, inplanes, outplanes, kernel=1):
super(add,self).__init__()
self.add = nn.Sequential(
nn.BatchNorm2d(inplanes),
nn.LeakyReLU(0.2,inplace=True),
nn.Conv2d(inplanes,inplanes,kernel),
)
self.smooth = nn.Conv2d(inplanes,outplanes,kernel)
def forward(self,x):
out = self.add(x)
out = self.add(x)
return self.smooth(x+out)
class up(nn.Module):
def __init__(self, inplanes, outplanes, mode='bilinear'):
super(up,self).__init__()
if mode == 'bilinear':
self.up = nn.Sequential(
nn.Conv2d(inplanes,outplanes,kernel_size=1),
#nn.Upsample(scale_factor=2,mode='bilinear',align_corners=True)
#F.interpolate(scale_factor=2,mode='bilinear',align_corners=True)
)
else:
pass
self.conv = conv_Relu(outplanes*2,outplanes)
self.add = add(outplanes*2,outplanes)
def forward(self, m, n):
m = self.up(m)
m = F.interpolate(m,scale_factor=2,mode='bilinear',align_corners=True)
X = n.size()[2] - m.size()[2]
Y = n.size()[3] - m.size()[3]
m = F.pad(m,(math.ceil(X/2),math.floor(X/2),math.ceil(Y/2),math.floor(Y/2)))
x = torch.cat([m,n], 1)
#x = self.conv(x)
x = self.add(x)
return x
class out(nn.Module):
def __init__(self, inplanes, outplanes, mode='bilinear'):
super(out,self).__init__()
if mode == 'bilinear':
self.up = nn.Sequential(
nn.Conv2d(inplanes,inplanes,kernel_size=1),
#nn.Upsample(scale_factor=2,mode='bilinear',align_corners=True)
)
else:
pass
###64,3
self.end = nn.Conv2d(inplanes, outplanes,kernel_size=1)
def forward(self,x, y):
cat = F.interpolate(self.up(x),scale_factor=2,mode='bilinear',align_corners=True) + y
return self.end(cat)