-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfunctions.c
232 lines (212 loc) · 7.46 KB
/
functions.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Fedor Iskhakov, University Technology Sidney
// John Rust, University of Maryland
// Bertel Schjerning, University of Copenhagen
// February 2011
#include <stdarg.h>
void print(double a[][NVarEqinfo], int nR, int nC) {
int r,c;
for ( r = 0 ; r < nR ; r++ ) {
for ( c = 0 ; c < nC ; c++ ) {
printf( "%2.3f ", a[r][c] );
}
printf( "\n" );
}
}
double rmax(int n, double *arr) {//returns the max of the array
/*----------------------------------------------------------------------------------------------------------------
* Recursive max function: Computes the max of over all n elements in the array arr
-----------------------------------------------------------------------------------------------------------------*/
double maybemax;
if (n==1) return *arr;
maybemax = rmax(n-1, arr+1);
if (*arr>=maybemax) return *arr;
else return maybemax;
}
double f_lnsum_nogcc(int nr,double eta, ...) {
/*----------------------------------------------------------------------------------------------------------------
** f_lnsum:
* Computes social surpus function for the logit (LogSum)
*
* inputs: j, number of alternatives
* outputs:
**----------------------------------------------------------------------------------------------------------------*/
va_list ap;
double mxm, v, sum;
int i;
va_start(ap, eta);
mxm=va_arg(ap, double);
for (i=1;i<nr;i++){
v=va_arg(ap, double);
if (v>mxm) mxm=v;
}
if (eta<=0.0){
//max
return mxm;
}
else {
//real log-sum
va_start(ap, eta);
sum=0;
va_start(ap, eta);
for (i=0;i<nr;i++){
sum=sum+exp((va_arg(ap, double)-mxm)/eta);
}
va_end(ap);
return mxm+eta*log(sum);
}
}
double f_lnsum(int nr,double eta, double arg1, double arg2) {
/*----------------------------------------------------------------------------------------------------------------
** f_lnsum:
* Computes social surpus function for the logit (LogSum)
*
* inputs: j, number of alternatives
* outputs:
**----------------------------------------------------------------------------------------------------------------*/
double sum=0.0, mxm=MAX(arg1,arg2);
if (eta<=0.0){
//max
return mxm;
}
else {
//real log-sum
sum+=exp((arg1-mxm)/eta);
sum+=exp((arg2-mxm)/eta);
return mxm+eta*log(sum);
}
}
double f_logit_nogcc(int nr, double sigma, double *pr, ...) {
//----------------------------------------------------------------------------------------------------------------
/*Calculates logit probability for the first option of nr `utility` levels with scaling parameter sigma
Also if *pr (size nr) is passed, it is filled with probabilities for all options
Variable argument list are the nr "utility" levels
Sigma=0 is correctly processed as max
*/
va_list ap;
double ave=0, sum=0, frst, mxm, v;
int i, j=0;
va_start(ap, pr);
mxm=va_arg(ap, double);
frst=mxm;
for (i=1;i<nr;i++){
v=va_arg(ap, double);
if (v>mxm) mxm=v;
}
if (sigma<=0.0){
//max ==> prob=1 or 0
//count number of args==max
va_start(ap, pr);
for (i=0;i<nr;i++, j+=(mxm==va_arg(ap, double))); //j is number of max
//calculate probs
va_start(ap, pr);
if (pr!=NULL) for(i=0;i<nr;pr[i++]=(mxm==va_arg(ap, double)?1/(double)j:0.0));
va_end(ap);
return ((mxm==frst)?(1/(double)j):0.0);
}
else {
//logit probs
sum=0;
va_start(ap, pr);
for (i=0;i<nr;i++, sum+=exp((va_arg(ap, double)-mxm)/sigma));
va_start(ap, pr);
if (pr!=NULL) for(i=0;i<nr;pr[i++]=(exp((va_arg(ap, double)-mxm)/sigma))/sum);
va_end(ap);
return (exp((frst-mxm)/sigma))/sum;
}
}
double f_logit(int nr, double sigma, double *pr, double arg1, double arg2) {
//----------------------------------------------------------------------------------------------------------------
/*Calculates logit probability for the first option of nr `utility` levels with scaling parameter sigma
Also if *pr (size nr) is passed, it is filled with probabilities for all options
Sigma=0 is correctly processed as max
*/
double sum=0, mxm;
int j=0;
mxm=MAX(arg1,arg2);
if (sigma<=0.0){
//max ==> prob=1 or 0
if (pr!=NULL)
{
if (arg1>arg2) pr[0]=1.0;
else if (arg1<arg2) pr[0]=0.0;
else pr[0]=0.5;
pr[1]=1-pr[0];
//pr[0]=(mxm==arg1?1.0:0.0);
//pr[1]=(mxm==arg2?1.0:0.0);
return pr[0];
}
else
return (mxm==arg1?1.0:0.0);
}
else {
//logit probs
sum+=exp((arg1-mxm)/sigma);
sum+=exp((arg2-mxm)/sigma);
if (pr!=NULL)
{
pr[0]=exp((arg1-mxm)/sigma)/sum;
pr[1]=exp((arg2-mxm)/sigma)/sum;
return pr[0];
}
else
return exp((arg1-mxm)/sigma)/sum;
}
}
double f_logit3(int nr, double sigma, double *pr, double arg1, double arg2, double arg3) {
//----------------------------------------------------------------------------------------------------------------
/*Calculates logit probability for the first option of nr `utility` levels with scaling parameter sigma
Also if *pr (size nr) is passed, it is filled with probabilities for all options
Sigma=0 is correctly processed as max
*/
double sum=0, mxm;
int j=0;
mxm=MAX(MAX(arg1,arg2),arg3);
if (sigma<=0.0){
//max ==> prob=1 or 0
if (pr!=NULL)
{
pr[0]=(mxm==arg1?1.0:0.0);
pr[1]=(mxm==arg2?1.0:0.0);
pr[2]=(mxm==arg3?1.0:0.0);
return pr[0];
}
else
return (mxm==arg1?1.0:0.0);
}
else {
//logit probs
sum+=exp((arg1-mxm)/sigma);
sum+=exp((arg2-mxm)/sigma);
sum+=exp((arg3-mxm)/sigma);
if (pr!=NULL)
{
pr[0]=exp((arg1-mxm)/sigma)/sum;
pr[1]=exp((arg2-mxm)/sigma)/sum;
pr[2]=exp((arg3-mxm)/sigma)/sum;
return pr[0];
}
else
return exp((arg1-mxm)/sigma)/sum;
}
}
double f_solvevf(double a, double b, double c, double eta, MPstruct *mp){
int it;
double v,v1,cp=1.0;
// Purpose: Solve scalar value function equations on the form v=a+b*logsum(v,c) w.r.t. v using Newtons method
// inputs: a,b,c: constants in value function
// eta: parameter in logsum function
// v0: starting value
// output: v: solution v=a+b*logsum(v,c)
//good starting point - from asymptotic approximation of logsum when v goes to infinity
v=a*eta/(1-b*eta);
for (it=0;((it<mp[0].maxit) && (cp>=mp[0].ctol));it++){
//Newton step
v1 = v-(v-a-b*f_lnsum(2, eta, v, c))/(1-b*f_logit(2, eta, NULL, v, c));
// printf("it=%d v=%g v1=%g ", it, v, v1);
cp=fabs(v1-v);
// printf("tol=%g\n", cp);
v=v1;
}
if (it>=mp[0].maxit) mexErrMsgTxt("Failed to converge in v=a+b*logsum(v,c) solution (see function.c/f_solvef)!");
return (v1);
}