Skip to content

Latest commit

 

History

History
63 lines (52 loc) · 1.97 KB

README.md

File metadata and controls

63 lines (52 loc) · 1.97 KB

CUDA based Tree builder (QuadTree, Octree)

Octree QuadTree
Octree QuadTree
Octree

Functionality

  • CUDA tree builder
  • CPU kNN, Radius Search
  • 2d, 3d visualization (controls: WSAD R F, Mouse). Additional functionality for QuadTree - click on a Tree for kNN and RadiusSearch
  • Random Points Generator
  • Configuration file
  • An obj file loader

Some implementation details: Medium


Build and Run

* mkdir build && cd build
* cmake .. `[-DCUDA_ARCH=SET_YOUR_ARCH]`
* make -j8
* `./cuda_tree_app_TYPE ./app/config/AppConfig.json`
* memory check: `compute-sanitizer --tool memcheck  ./cuda_tree_app_TYPE ./app/config/AppConfig.json`
  • cuda_tree_app_TYPE:
    • cuda_tree_app_rng - to use random points
    • cuda_tree_app_obj - to read .obj file from model_path (only vertices)

Config

  • AppConfig.json - contains general information (points count, pathes to Tree and Render config files)
  • TreeConfig.json:
    • type - 'Quad' or 'Oct'
    • size - width, height, depth (if Octree)
    • threadsPerBlock - min 128 for QuadTree and 256 for Octree (1 warp for each leaf)
  • RenderConfig.json - all about rendering

Requirements

  • CUDA 11.8+
  • C++ 17+
  • OpenGL, GLFW
  • nlohmann, tinyobjloader (included)

Limitations

  • Tested on up to 150 mln points
  • Max stable depth: QuadTree = 7, Octree = 6
  • I recommend to disable rendering (AppConfig.json) if more than 50 mln points are used

Further development

  1. CUDA based kNN, Radius Search
  2. Refactoring, CPU, GPU optimization
  3. OpenGL interop for faster visualization
  4. Raycasting
  5. KDTree

Disclaimer

  • Tested on Linux: Ubuntu 22.02, CUDA: 12.2, GPU: 3060 (laptop)
  • Approach based on Nvidia's QuadTree sample (cdpQuadtree)