From 67c39b33031be04378ba53d4a4d36210a2b678cb Mon Sep 17 00:00:00 2001 From: calad0i Date: Thu, 16 Nov 2023 06:49:20 +0100 Subject: [PATCH] Fix for #905 (#906) * fix multi clones w/ diff outs in stream io * fix test --------- Co-authored-by: Javier Duarte --- hls4ml/backends/fpga/passes/clone.py | 14 +++--- test/pytest/test_stream_multi_clone.py | 59 ++++++++++++++++++++++++++ 2 files changed, 65 insertions(+), 8 deletions(-) create mode 100644 test/pytest/test_stream_multi_clone.py diff --git a/hls4ml/backends/fpga/passes/clone.py b/hls4ml/backends/fpga/passes/clone.py index 40462f1175..f425855c3b 100644 --- a/hls4ml/backends/fpga/passes/clone.py +++ b/hls4ml/backends/fpga/passes/clone.py @@ -20,21 +20,19 @@ def initialize(self): class CloneFunctionTemplate(FunctionCallTemplate): def __init__(self): super().__init__(Clone, include_header=clone_include_list) - self.template = None # to be filled once number of clones known def format(self, node): params = self._default_function_params(node) for i, _output in enumerate(node.outputs): params['output' + str(i + 1)] = node.variables[node.outputs[i]].name - if self.template is None: - self.template = ( - 'nnet::clone_stream<{input_t}, {output_t}, {size}>({input}, ' - + ', '.join(['{output' + str(i + 1) + '}' for i in range(len(node.outputs))]) - + ');' - ) + template = ( + 'nnet::clone_stream<{input_t}, {output_t}, {size}>({input}, ' + + ', '.join(['{output' + str(i + 1) + '}' for i in range(len(node.outputs))]) + + ');' + ) - return self.template.format(**params) + return template.format(**params) def register_clone(backend): diff --git a/test/pytest/test_stream_multi_clone.py b/test/pytest/test_stream_multi_clone.py new file mode 100644 index 0000000000..64b4779bfe --- /dev/null +++ b/test/pytest/test_stream_multi_clone.py @@ -0,0 +1,59 @@ +import os +import random +from pathlib import Path + +import numpy as np +import pytest +import tensorflow as tf +from keras.layers import Add, Dense +from tensorflow import keras + +from hls4ml.converters import convert_from_keras_model + +test_root_path = Path(__file__).parent + + +@pytest.fixture(scope='module') +def model(): + seed = 42 + os.environ['RANDOM_SEED'] = f'{seed}' + np.random.seed(seed) + tf.random.set_seed(seed) + tf.get_logger().setLevel('ERROR') + random.seed(seed) + + inp = keras.Input(shape=(10,)) + x = Dense(10)(inp) + y = Dense(10)(inp) + z = Dense(10)(inp) + xy = Add()([x, y]) # 5 + xy = Add()([xy, y]) # 5 + out = Add()([xy, z]) # 5 + model = keras.Model(inp, out) + return model + + +@pytest.fixture(scope='module') +def data(): + rng = np.random.RandomState(42) + X = rng.normal(0, 1, (1000, 10)) + X = np.clip(X, -16, 15) + return X + + +@pytest.mark.parametrize('backend', ['Vivado', 'Quartus', 'Vitis']) +def test_multi_clone(model, data, backend: str): + output_dir = str(test_root_path / f'hls4mlprj_stream_multi_clone_{backend}') + hls_config = {'Model': {'Precision': 'fixed<32,5>', 'ReuseFactor': 1}} + model_hls = convert_from_keras_model( + model, + backend=backend, + output_dir=output_dir, + hls_config=hls_config, + io_type='io_stream', # clone only happens with stream io. + ) + model_hls.compile() + r_hls = model_hls.predict(data) + r_keras = model(data).numpy() + + assert np.allclose(r_hls, r_keras, atol=1e-5, rtol=0)