Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

part6 autoqkeras error #76

Open
qdlmcfresh opened this issue May 3, 2024 · 2 comments
Open

part6 autoqkeras error #76

qdlmcfresh opened this issue May 3, 2024 · 2 comments

Comments

@qdlmcfresh
Copy link

im getting the following error after epoch 15 is finished in this codeblock:

from qkeras.autoqkeras import AutoQKeras

autoqk = AutoQKeras(baseline_model, output_dir="autoq_cnn", metrics=["acc"], custom_objects={}, **run_config)
autoqk.fit(train_data, validation_data=val_data, epochs=15)

aqmodel = autoqk.get_best_model()
print_qmodel_summary(aqmodel)

# Train for the full epochs
callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=10, verbose=1),
    tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1),
]

start = time.time()
history = aqmodel.fit(train_data, epochs=n_epochs, validation_data=val_data, callbacks=callbacks, verbose=1)
end = time.time()
print('\n It took {} minutes to train!\n'.format((end - start) / 60.0))
Epoch 1/15

Traceback (most recent call last):
  File "/opt/conda/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 273, in _try_run_and_update_trial
    self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
  File "/opt/conda/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 238, in _run_and_update_trial
    results = self.run_trial(trial, *fit_args, **fit_kwargs)
  File "/opt/conda/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial
    obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
  File "/opt/conda/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 233, in _build_and_fit_model
    results = self.hypermodel.fit(hp, model, *args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/keras_tuner/src/engine/hypermodel.py", line 149, in fit
    return model.fit(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 70, in error_handler
    raise e.with_traceback(filtered_tb) from None
  File "/tmp/__autograph_generated_file18rk8csp.py", line 15, in tf__train_function
    retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)
tensorflow.python.autograph.pyct.error_utils.MultilineMessageKeyError: in user code:

    File "/opt/conda/lib/python3.10/site-packages/keras/engine/training.py", line 1249, in train_function  *
        return step_function(self, iterator)
    File "/opt/conda/lib/python3.10/site-packages/keras/engine/training.py", line 1233, in step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    File "/opt/conda/lib/python3.10/site-packages/keras/engine/training.py", line 1222, in run_step  **
        outputs = model.train_step(data)
    File "/opt/conda/lib/python3.10/site-packages/keras/engine/training.py", line 1027, in train_step
        self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
    File "/opt/conda/lib/python3.10/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 527, in minimize
        self.apply_gradients(grads_and_vars)
    File "/opt/conda/lib/python3.10/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 1140, in apply_gradients
        return super().apply_gradients(grads_and_vars, name=name)
    File "/opt/conda/lib/python3.10/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 634, in apply_gradients
        iteration = self._internal_apply_gradients(grads_and_vars)
    File "/opt/conda/lib/python3.10/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 1166, in _internal_apply_gradients
        return tf.__internal__.distribute.interim.maybe_merge_call(
    File "/opt/conda/lib/python3.10/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 1216, in _distributed_apply_gradients_fn
        distribution.extended.update(
    File "/opt/conda/lib/python3.10/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 1213, in apply_grad_to_update_var  **
        return self._update_step(grad, var)
    File "/opt/conda/lib/python3.10/site-packages/keras/optimizers/optimizer_experimental/optimizer.py", line 216, in _update_step
        raise KeyError(

    KeyError: 'The optimizer cannot recognize variable conv_0/kernel:0. This usually means you are trying to call the optimizer to update different parts of the model separately. Please call `optimizer.build(variables)` with the full list of trainable variables before the training loop or use legacy optimizer `tf.keras.optimizers.legacy.{self.__class__.__name__}.'

im using this container: ghcr.io/fastmachinelearning/hls4ml-tutorial/hls4ml-0.8.0-vivado-2019.1

@phucducnguyen
Copy link

I have the same problem

@phucducnguyen
Copy link

I was able to fix it by using legacy version instead
change
OPTIMIZER = tf.keras.optimizers.Adam()
to
OPTIMIZER = tf.keras.optimizers.legacy.Adam()

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants