-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_kernel.cpp
689 lines (638 loc) · 22.1 KB
/
conv_kernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include <iostream>
#include <cstring>
#include <stdio.h>
#include <sys/time.h>
#include <math.h>
#include "sds_lib.h"
#define N 16
#define M 16
#define IR 56
#define IC 56
#define OR 56
#define OC 56
#define K 3
#define S 1
#define P 1
#define w_m 1
#define ROW_G 3
#define w_n 3 //w_n = w_m + w_r - 1 = 4 + 3 -1 = 6
typedef float FIXDATA;
typedef struct ifm_struct
{
float a0;
float a1;
float a2;
float a3;
float a4;
float a5;
float a6;
float a7;
float a8;
float a9;
float a10;
float a11;
float a12;
float a13;
float a14;
float a15;
} IPACK;
typedef struct filter_struct
{
float f0;
float f1;
float f2;
float f3;
float f4;
float f5;
float f6;
float f7;
float f8;
float f9;
float f10;
float f11;
float f12;
float f13;
float f14;
float f15;
} FPACK;
typedef struct ofm_struct
{
float b0;
float b1;
float b2;
float b3;
float b4;
float b5;
float b6;
float b7;
float b8;
float b9;
float b10;
float b11;
float b12;
float b13;
float b14;
float b15;
} OPACK;
void convolution_sw(float *ifm, float *ofm, float *weight)
{
for (int m = 0; m < M; m++)
{
for (int r = 0; r < OR; r++)
{
for (int c = 0; c < OC; c++)
{
float odata = 0;
int ofm_index = m*OR*OC + r*OC + c;
for (int n = 0; n < N; n++)
{
for(int kr = 0; kr < K; kr++)
{
for (int kc = 0; kc < K; kc++)
{
float ret;
int ic = c*S - P + kc;
int ir = r*S - P + kr;
int ifm_index = n*IR*IC + ir*IC + ic;
int wgt_index = m*N*K*K + n*K*K + kr*K + kc;
if( (ic<0) || (ir<0) || (ic>(IC-1)) || (ir>(IR-1)))
ret=0;
else
ret = ifm[ifm_index];
ret *= weight[wgt_index];
odata += ret;
}
}
}
ofm[ofm_index] = odata;
}
}
}
}
void generate(float* ifm, float* wgt)
{
for(int i = 0; i < N*IR*IC; i++)
{
ifm[i] = (float)i/3000.0;
}
for(int i = 0; i < N*M*K*K; i++)
{
wgt[i] = (float)i/3000.0;
}
}
void check(float* ofm_sw, float* ofm_hw)
{
int error = 0;
for(int i = 0; i < N*OR*OC; i++)
{
if (((ofm_sw[i] - ofm_hw[i]) > 0.01) || ((ofm_sw[i] - ofm_hw[i]) < -0.01))
error++;
}
if(error>0) printf("error count = %d\n", error);
else printf("correct!\n", error);
}
void change_ifm(float* ifm, IPACK* ifm_pack)
{
//This function change the ifm to the standard form:
/** LEN: #of input channels * #of elements for each row, Height: IR
* ROW ROW ROW .... ROW
* ROW ROW ROW .... ROW
**/
//Notice this part was implemented on PS, actually, in reality we don't need this part.
//Since the input feature map is the output of previous feature, which is already the standard form.
float ifm_temp[N][OR+2*P][OC+2*P];
for (int i = 0; i < N; i++)
{
for (int j = 0; j < OR+2*P; j++)
{
for (int k = 0; k < OC+2*P; k++)
{
ifm_temp[i][j][k] = 0;
}
}
}
for (int bc = P; bc < OC+P; bc++)
{
for (int br = P; br < OR+P; br++)
{
for (int bn = 0; bn < N; bn++)
{
int temp1 = bn * IR * IC + (br-P)*IC;
int i_index = temp1 + (bc-P);
ifm_temp[bn][br][bc] = ifm[i_index];
}
}
}
int count = 0;
for (int r = 0; r < OR+2*P; r++)
{
for (int c = 0; c < OR+2*P; c++)
{
ifm_pack[count].a0 = ifm_temp[0][r][c];
ifm_pack[count].a1 = ifm_temp[1][r][c];
ifm_pack[count].a2 = ifm_temp[2][r][c];
ifm_pack[count].a3 = ifm_temp[3][r][c];
ifm_pack[count].a4 = ifm_temp[4][r][c];
ifm_pack[count].a5 = ifm_temp[5][r][c];
ifm_pack[count].a6 = ifm_temp[6][r][c];
ifm_pack[count].a7 = ifm_temp[7][r][c];
ifm_pack[count].a8 = ifm_temp[8][r][c];
ifm_pack[count].a9 = ifm_temp[9][r][c];
ifm_pack[count].a10 = ifm_temp[10][r][c];
ifm_pack[count].a11 = ifm_temp[11][r][c];
ifm_pack[count].a12 = ifm_temp[12][r][c];
ifm_pack[count].a13 = ifm_temp[13][r][c];
ifm_pack[count].a14 = ifm_temp[14][r][c];
ifm_pack[count].a15 = ifm_temp[15][r][c];
count++;
}
}
}
void change_filter(float* wgt, FPACK* filter_pack)
{
int count = 0;
FIXDATA filter_buff[M][N][ROW_G][ROW_G];
for (int m = 0; m < M; m++)
{
for (int n = 0; n < N; n++)
{
for (int r = 0; r < ROW_G; r++)
{
for (int c = 0; c < ROW_G; c++)
{
filter_buff[m][n][r][c] = wgt[count];
count++;
}
}
}
}
count = 0;
for (int m = 0; m < M; m++)
{
for (int n = 0; n < N; n++)
{
filter_pack[count].f0 = filter_buff[m][n][0][0];
filter_pack[count].f1 = filter_buff[m][n][0][1];
filter_pack[count].f2 = filter_buff[m][n][0][2];
filter_pack[count].f3 = filter_buff[m][n][1][0];
filter_pack[count].f4 = filter_buff[m][n][1][1];
filter_pack[count].f5 = filter_buff[m][n][1][2];
filter_pack[count].f6 = filter_buff[m][n][2][0];
filter_pack[count].f7 = filter_buff[m][n][2][1];
filter_pack[count].f8 = filter_buff[m][n][2][2];
count++;
}
}
}
void load_cifm_data(IPACK* cifm, FIXDATA ifm_buff0[N][(IC+2*P)], FIXDATA ifm_buff1[N][(IC+2*P)], FIXDATA ifm_buff2[N][(IC+2*P)], int* cifm_counter)
{
/**
* Load the standard input feature maps from PS to PL using FIFO, implemented at PL.
* The ifm_buff is a cycle buffer, we put padding dirctly to the buffer. cifm_counter will
* trace the current position of loaded feature map.
**/
for (int j = 0; j < (IC+2*P); j++)
{
#pragma HLS PIPELINE
ifm_buff0[0][j] = cifm[*cifm_counter].a0;
ifm_buff0[1][j] = cifm[*cifm_counter].a1;
ifm_buff0[2][j] = cifm[*cifm_counter].a2;
ifm_buff0[3][j] = cifm[*cifm_counter].a3;
ifm_buff0[4][j] = cifm[*cifm_counter].a4;
ifm_buff0[5][j] = cifm[*cifm_counter].a5;
ifm_buff0[6][j] = cifm[*cifm_counter].a6;
ifm_buff0[7][j] = cifm[*cifm_counter].a7;
ifm_buff0[8][j] = cifm[*cifm_counter].a8;
ifm_buff0[9][j] = cifm[*cifm_counter].a9;
ifm_buff0[10][j] = cifm[*cifm_counter].a10;
ifm_buff0[11][j] = cifm[*cifm_counter].a11;
ifm_buff0[12][j] = cifm[*cifm_counter].a12;
ifm_buff0[13][j] = cifm[*cifm_counter].a13;
ifm_buff0[14][j] = cifm[*cifm_counter].a14;
ifm_buff0[15][j] = cifm[*cifm_counter].a15;
(*cifm_counter)++;
}
for (int j = 0; j < (IC+2*P); j++)
{
#pragma HLS PIPELINE
ifm_buff1[0][j] = cifm[*cifm_counter].a0;
ifm_buff1[1][j] = cifm[*cifm_counter].a1;
ifm_buff1[2][j] = cifm[*cifm_counter].a2;
ifm_buff1[3][j] = cifm[*cifm_counter].a3;
ifm_buff1[4][j] = cifm[*cifm_counter].a4;
ifm_buff1[5][j] = cifm[*cifm_counter].a5;
ifm_buff1[6][j] = cifm[*cifm_counter].a6;
ifm_buff1[7][j] = cifm[*cifm_counter].a7;
ifm_buff1[8][j] = cifm[*cifm_counter].a8;
ifm_buff1[9][j] = cifm[*cifm_counter].a9;
ifm_buff1[10][j] = cifm[*cifm_counter].a10;
ifm_buff1[11][j] = cifm[*cifm_counter].a11;
ifm_buff1[12][j] = cifm[*cifm_counter].a12;
ifm_buff1[13][j] = cifm[*cifm_counter].a13;
ifm_buff1[14][j] = cifm[*cifm_counter].a14;
ifm_buff1[15][j] = cifm[*cifm_counter].a15;
(*cifm_counter)++;
}
for (int j = 0; j < (IC+2*P); j++)
{
#pragma HLS PIPELINE
ifm_buff2[0][j] = cifm[*cifm_counter].a0;
ifm_buff2[1][j] = cifm[*cifm_counter].a1;
ifm_buff2[2][j] = cifm[*cifm_counter].a2;
ifm_buff2[3][j] = cifm[*cifm_counter].a3;
ifm_buff2[4][j] = cifm[*cifm_counter].a4;
ifm_buff2[5][j] = cifm[*cifm_counter].a5;
ifm_buff2[6][j] = cifm[*cifm_counter].a6;
ifm_buff2[7][j] = cifm[*cifm_counter].a7;
ifm_buff2[8][j] = cifm[*cifm_counter].a8;
ifm_buff2[9][j] = cifm[*cifm_counter].a9;
ifm_buff2[10][j] = cifm[*cifm_counter].a10;
ifm_buff2[11][j] = cifm[*cifm_counter].a11;
ifm_buff2[12][j] = cifm[*cifm_counter].a12;
ifm_buff2[13][j] = cifm[*cifm_counter].a13;
ifm_buff2[14][j] = cifm[*cifm_counter].a14;
ifm_buff2[15][j] = cifm[*cifm_counter].a15;
(*cifm_counter)++;
}
}
void write_row_ifm(IPACK* cifm, FIXDATA ifm_buff0[N][(IC+2*P)], int* cifm_counter, bool enable)
{
if (enable)
{
for (int j = 0; j < (IC+2*P); j++)
{
#pragma HLS PIPELINE
ifm_buff0[0][j] = cifm[*cifm_counter].a0;
ifm_buff0[1][j] = cifm[*cifm_counter].a1;
ifm_buff0[2][j] = cifm[*cifm_counter].a2;
ifm_buff0[3][j] = cifm[*cifm_counter].a3;
ifm_buff0[4][j] = cifm[*cifm_counter].a4;
ifm_buff0[5][j] = cifm[*cifm_counter].a5;
ifm_buff0[6][j] = cifm[*cifm_counter].a6;
ifm_buff0[7][j] = cifm[*cifm_counter].a7;
ifm_buff0[8][j] = cifm[*cifm_counter].a8;
ifm_buff0[9][j] = cifm[*cifm_counter].a9;
ifm_buff0[10][j] = cifm[*cifm_counter].a10;
ifm_buff0[11][j] = cifm[*cifm_counter].a11;
ifm_buff0[12][j] = cifm[*cifm_counter].a12;
ifm_buff0[13][j] = cifm[*cifm_counter].a13;
ifm_buff0[14][j] = cifm[*cifm_counter].a14;
ifm_buff0[15][j] = cifm[*cifm_counter].a15;
(*cifm_counter)++;
}
}
}
void load_filter_buffer(FPACK* wgt, FIXDATA filter_buff[M][N][ROW_G][ROW_G])
{
/**
* Load the transformed filter weight to filter buffer. Implemented at PS.
**/
int count = 0;
for (int m = 0; m < M; m++)
{
for (int n = 0; n < N; n++)
{
#pragma HLS PIPELINE
filter_buff[m][n][0][0] = wgt[count].f0;
filter_buff[m][n][0][1] = wgt[count].f1;
filter_buff[m][n][0][2] = wgt[count].f2;
filter_buff[m][n][1][0] = wgt[count].f3;
filter_buff[m][n][1][1] = wgt[count].f4;
filter_buff[m][n][1][2] = wgt[count].f5;
filter_buff[m][n][2][0] = wgt[count].f6;
filter_buff[m][n][2][1] = wgt[count].f7;
filter_buff[m][n][2][2] = wgt[count].f8;
count++;
}
}
}
void conv_write(FIXDATA filter_buff[M][N][ROW_G][ROW_G], FIXDATA ifm_buff0[N][(IC+2*P)], FIXDATA ifm_buff1[N][(IC+2*P)], FIXDATA ifm_buff2[N][(IC+2*P)], FIXDATA ofm_buff0[M][OC])
{
for (int col = 0; col < IC; col += w_m) //Column loop with stride w_m
{
#pragma HLS LOOP_TRIPCOUNT min=1 max=56
for (int ti = 0; ti < M; ti++) //Output channel loop
{
#pragma HLS PIPELINE
#pragma HLS LOOP_TRIPCOUNT min=1 max=16
#pragma HLS UNROLL FACTOR = 2
FIXDATA Y = 0;
for (int to = 0; to < N; to++)
{
#pragma HLS LOOP_TRIPCOUNT min=1 max=16
#pragma HLS UNROLL FACTOR = 16
FIXDATA mut000= ifm_buff0[to][col]*filter_buff[ti][to][0][0];
FIXDATA mut100= ifm_buff1[to][col]*filter_buff[ti][to][1][0];
FIXDATA mut200= ifm_buff2[to][col]*filter_buff[ti][to][2][0];
FIXDATA mut010= ifm_buff0[to][col+1]*filter_buff[ti][to][0][1];
FIXDATA mut110= ifm_buff1[to][col+1]*filter_buff[ti][to][1][1];
FIXDATA mut210= ifm_buff2[to][col+1]*filter_buff[ti][to][2][1];
FIXDATA mut020= ifm_buff0[to][col+2]*filter_buff[ti][to][0][2];
FIXDATA mut120= ifm_buff1[to][col+2]*filter_buff[ti][to][1][2];
FIXDATA mut220= ifm_buff2[to][col+2]*filter_buff[ti][to][2][2];
FIXDATA acc000= mut000+mut100;
FIXDATA acc010= mut200+mut010;
FIXDATA acc020= mut110+mut210;
FIXDATA acc030= mut020+mut120;
FIXDATA acc040= acc000+acc010;
FIXDATA acc050= acc020+acc030;
FIXDATA acc060= acc040+acc050;
Y += (acc060+mut220);
}
ofm_buff0[ti][col] = Y;
}
}
}
void conv_read(OPACK* cofm, FIXDATA ofm_buff0[M][OC], int* cofm_counter, bool enable)
{
if (enable)
{
for (int j = 0; j < OC; j++)
{
#pragma HLS PIPELINE
cofm[(*cofm_counter)].b0 = ofm_buff0[0][j];
cofm[(*cofm_counter)].b1 = ofm_buff0[1][j];
cofm[(*cofm_counter)].b2 = ofm_buff0[2][j];
cofm[(*cofm_counter)].b3 = ofm_buff0[3][j];
cofm[(*cofm_counter)].b4 = ofm_buff0[4][j];
cofm[(*cofm_counter)].b5 = ofm_buff0[5][j];
cofm[(*cofm_counter)].b6 = ofm_buff0[6][j];
cofm[(*cofm_counter)].b7 = ofm_buff0[7][j];
cofm[(*cofm_counter)].b8 = ofm_buff0[8][j];
cofm[(*cofm_counter)].b9 = ofm_buff0[9][j];
cofm[(*cofm_counter)].b10 = ofm_buff0[10][j];
cofm[(*cofm_counter)].b11 = ofm_buff0[11][j];
cofm[(*cofm_counter)].b12 = ofm_buff0[12][j];
cofm[(*cofm_counter)].b13 = ofm_buff0[13][j];
cofm[(*cofm_counter)].b14 = ofm_buff0[14][j];
cofm[(*cofm_counter)].b15 = ofm_buff0[15][j];
(*cofm_counter)++;
}
}
}
#pragma SDS data zero_copy(cifm[0:(IR+2*P)*(IC+2*P)], cofm[0:OR*OC], tran_wgt[0:N*M])
#pragma SDS data access_pattern(cifm: SEQUENTIAL, cofm: SEQUENTIAL, tran_wgt:SEQUENTIAL)
void convolution_hw(IPACK* cifm, OPACK* cofm, FPACK* tran_wgt)
{
/**
* In the first part, input feature maps, transformed weight maps will be loaded
* from PS to PL using AXI interface (FIFO).
**/
#pragma HLS data_pack variable=cifm struct_level
#pragma HLS data_pack variable=cofm struct_level
#pragma HLS data_pack variable=tran_wgt struct_level
//Define ifm, ofm, wgt buffer and the partition way.
FIXDATA ifm_buff0[N][IC+2*P];
#pragma HLS ARRAY_PARTITION variable=ifm_buff0 dim=1 complete
FIXDATA ifm_buff1[N][IC+2*P];
#pragma HLS ARRAY_PARTITION variable=ifm_buff1 dim=1 complete
FIXDATA ifm_buff2[N][IC+2*P];
#pragma HLS ARRAY_PARTITION variable=ifm_buff2 dim=1 complete
FIXDATA ifm_buff3[N][IC+2*P];
#pragma HLS ARRAY_PARTITION variable=ifm_buff3 dim=1 complete
FIXDATA filter_buff[M][N][ROW_G][ROW_G];
//#pragma HLS ARRAY_PARTITION variable=filter_buff dim=1 factor=4
#pragma HLS ARRAY_PARTITION variable=filter_buff dim=2 complete
#pragma HLS ARRAY_PARTITION variable=filter_buff dim=3 complete
#pragma HLS ARRAY_PARTITION variable=filter_buff dim=4 complete
FIXDATA ofm_buff0[M][OC];
FIXDATA ofm_buff1[M][OC];
#pragma HLS ARRAY_PARTITION variable=ofm_buff0 dim=1 factor=16
#pragma HLS ARRAY_PARTITION variable=ofm_buff1 dim=1 factor=16
int cifm_counter = 0;
int cofm_counter = 0;
//These variable represent readable lines of line buffer.
short unsigned int t0, t1, t2;
//These varibale represent writable lines of line buffer.
short unsigned int s1;
short unsigned int rotate_counter = 0;
/**Load data from PS. Here we can use dataflow pragma since filter weight and cifm can be load simutaneously.
* load_filter_buffer may be one bottleneck of this design since we load all data from PS, actually, one can
* load part of filter data by using bath method which beyond of this design's scope.
**/
load_cifm_data(cifm, ifm_buff1, ifm_buff2, ifm_buff3, &cifm_counter);
load_filter_buffer(tran_wgt, filter_buff);
/**
* In the second part, caculating convolution using winograde method with line buffer for data reuse.
**/
//Define flag of ofm buffer, when flag = 0, writing to buffer1 and read from buffer2.
//#pragma HLS DATAFLOW
for (int row = 0; row < IR; row += w_m) //Row loop with stride w_m
{
#pragma HLS LOOP_TRIPCOUNT min=1 max=16
//In this subpart we need to define where is the legal line buffer, and rotate the line of line buffer.
if (rotate_counter == 0)
{
write_row_ifm(cifm, ifm_buff0, &cifm_counter, 1);
conv_write(filter_buff, ifm_buff1, ifm_buff2, ifm_buff3, ofm_buff0);
conv_read(cofm, ofm_buff1, &cofm_counter, row!=0);
// t0 = 1;
// t1 = 2;
// t2 = 3;
// s1 = 0;
} else if (rotate_counter == 1)
{
write_row_ifm(cifm, ifm_buff1, &cifm_counter, 1);
conv_write(filter_buff, ifm_buff2, ifm_buff3, ifm_buff0, ofm_buff1);
conv_read(cofm, ofm_buff0, &cofm_counter, 1);
// t0 = 2;
// t1 = 3;
// t2 = 0;
// s1 = 1;
} else if (rotate_counter == 2)
{
write_row_ifm(cifm, ifm_buff2, &cifm_counter, 1);
conv_write(filter_buff, ifm_buff3, ifm_buff0, ifm_buff1, ofm_buff0);
conv_read(cofm, ofm_buff1, &cofm_counter, 1);
// t0 = 3;
// t1 = 0;
// t2 = 1;
// s1 = 2;
} else if (rotate_counter == 3)
{
write_row_ifm(cifm, ifm_buff3, &cifm_counter, row!=IR-1);
conv_write(filter_buff, ifm_buff0, ifm_buff1, ifm_buff2, ofm_buff1);
conv_read(cofm, ofm_buff0, &cofm_counter, 1);
// t0 = 0;
// t1 = 1;
// t2 = 2;
// s1 = 3;
}
rotate_counter += 1;
if (rotate_counter == 4)
{
rotate_counter = 0;
}
}
conv_read(cofm, ofm_buff1, &cofm_counter, 1);
}
void chang_cofm(OPACK* ofm_pack, float* ofm)
{
int count = 0;
FIXDATA ofm_temp[M][OR][OC];
int counter = 0;
for (int r = 0; r < OR; r++)
{
for (int c = 0; c < OC; c++)
{
ofm_temp[0][r][c] = ofm_pack[counter].b0;
ofm_temp[1][r][c] = ofm_pack[counter].b1;
ofm_temp[2][r][c] = ofm_pack[counter].b2;
ofm_temp[3][r][c] = ofm_pack[counter].b3;
ofm_temp[4][r][c] = ofm_pack[counter].b4;
ofm_temp[5][r][c] = ofm_pack[counter].b5;
ofm_temp[6][r][c] = ofm_pack[counter].b6;
ofm_temp[7][r][c] = ofm_pack[counter].b7;
ofm_temp[8][r][c] = ofm_pack[counter].b8;
ofm_temp[9][r][c] = ofm_pack[counter].b9;
ofm_temp[10][r][c] = ofm_pack[counter].b10;
ofm_temp[11][r][c] = ofm_pack[counter].b11;
ofm_temp[12][r][c] = ofm_pack[counter].b12;
ofm_temp[13][r][c] = ofm_pack[counter].b13;
ofm_temp[14][r][c] = ofm_pack[counter].b14;
ofm_temp[15][r][c] = ofm_pack[counter].b15;
counter++;
}
}
counter = 0;
for (int i = 0; i < M; i++)
{
for (int j = 0; j < OR; j++)
{
for (int k = 0; k < OC; k++)
{
ofm[counter] = ofm_temp[i][j][k];
counter++;
}
}
}
}
void test_data_gen(float* ifm, float* wgt)
{
printf("\nDebug: set ifm\n");
int counter = 1;
for (int bn = 0; bn < N; bn++)
{
for (int br = 0; br < OR; br++)
{
for (int bc = 0; bc < OC; bc++)
{
int temp1 = bn*IR * IC + br*IC;
int i_index = temp1 + bc;
ifm[i_index] = counter;
counter++;
}
}
}
for (int i = 0; i < N*IR*IC; i++)
{
printf("%1f,", ifm[i]);
}
printf("\nDebug: set wgt\n");
counter = 0;
for (int wm = 0; wm < M; wm++)
{
for (int wn = 0; wn < N; wn++)
{
for (int wk1 = 0; wk1 < K; wk1++)
{
for (int wk2 = 0; wk2 < K; wk2++)
{
int temp1 = wm*N * K * K + wn*K*K;
int temp2 = wk1*K + wk2;
int w_index = temp1 + temp2;
wgt[w_index] = counter;
counter++;
}
}
}
}
for (int i = 0; i < N*M*K*K; i++)
{
printf("%1f,", wgt[i]);
}
}
void printf_result(float* ofm, float* ofm_hw)
{
printf("\nDebug: ofm result:\n");
for (int i = 0; i < M*OR*OC; i++)
{
printf("[%1f, %1f]", ofm[i], ofm_hw[i]);
}
}
int main()
{
float* ifm=(float*)sds_alloc(N*IR*IC*sizeof(float));
FIXDATA* cifm=(FIXDATA*)sds_alloc(N*(IR+2*P)*(IC+2*P)*sizeof(FIXDATA));
float* ofm_sw=(float*)sds_alloc(M*OR*OC*sizeof(float));
float* ofm_hw=(float*)sds_alloc(M*OR*OC*sizeof(float));
FIXDATA* cofm=(FIXDATA*)sds_alloc(M*OR*OC*sizeof(FIXDATA));
float* wgt =(float*)sds_alloc(N*M*K*K*sizeof(float));
IPACK *ifm_pack = (IPACK *)(sds_alloc(sizeof(IPACK) * (IR+2*P)*(IC+2*P)));
FPACK *filter_pack = (FPACK *)(sds_alloc(sizeof(FPACK) * M*N));
OPACK *ofm_pack = (OPACK *)(sds_alloc(sizeof(OPACK) * (IR)*(IC)));
timeval start,end;
//test_data_gen(ifm, wgt);
printf("\nThis is EE216\n");
generate(ifm,wgt);
gettimeofday(&start, NULL);
convolution_sw(ifm,ofm_sw,wgt);
gettimeofday(&end, NULL);
printf("\nconvolution_sw %lu us\n",(end.tv_sec-start.tv_sec)*1000000+(end.tv_usec-start.tv_usec));
//First change ifm to standard input feature map ifm->cifm
change_ifm(ifm, ifm_pack);
change_filter(wgt, filter_pack);
//Calculating the convolution and return cofm in standard form.
gettimeofday(&start, NULL);
convolution_hw(ifm_pack,ofm_pack,filter_pack);
gettimeofday(&end, NULL);
printf("\nconvolution_hw %lu us\n",(end.tv_sec-start.tv_sec)*1000000+(end.tv_usec-start.tv_usec));
//Change the convolution result to required form. cofm->ofm_hw
chang_cofm(ofm_pack, ofm_hw);
//Finally, check if the data is right;
check(ofm_sw,ofm_hw);
return 0;
}