You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
`
from seq2seq import SimpleSeq2Seq, Seq2Seq, AttentionSeq2Seq
import numpy as np
input_length = 5
input_dim = 3
output_length = 3
output_dim = 4
samples = 100
hidden_dim = 24
x = np.random.random((samples, input_length, input_dim))
y = np.random.random((samples, output_length, output_dim))
model = SimpleSeq2Seq(input_shape=(5, 3), hidden_dim=10, output_length=3, output_dim=4, depth=(4, 5))
model.compile(loss='mse', optimizer='sgd')
model.fit(x, y, nb_epoch=10)
` And the error is:
Traceback (most recent call last):
File "", line 1, in
model.fit(x, y, nb_epoch=10)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\engine\training.py", line 1213, in fit
self._make_train_function()
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\engine\training.py", line 316, in _make_train_function
loss=self.total_loss)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\optimizers.py", line 259, in get_updates
grads = self.get_gradients(loss, params)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\optimizers.py", line 93, in get_gradients
raise ValueError('An operation has None for gradient. '
ValueError: An operation has None for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
So, what should I do to solve it.
Thanks for any help.
The text was updated successfully, but these errors were encountered:
I meet a problem about gradient!!!
the code is :
`
from seq2seq import SimpleSeq2Seq, Seq2Seq, AttentionSeq2Seq
import numpy as np
input_length = 5
input_dim = 3
output_length = 3
output_dim = 4
samples = 100
hidden_dim = 24
x = np.random.random((samples, input_length, input_dim))
y = np.random.random((samples, output_length, output_dim))
model = SimpleSeq2Seq(input_shape=(5, 3), hidden_dim=10, output_length=3, output_dim=4, depth=(4, 5))
model.compile(loss='mse', optimizer='sgd')
model.fit(x, y, nb_epoch=10)
`
And the error is:
Traceback (most recent call last):
File "", line 1, in
model.fit(x, y, nb_epoch=10)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\engine\training.py", line 1213, in fit
self._make_train_function()
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\engine\training.py", line 316, in _make_train_function
loss=self.total_loss)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\optimizers.py", line 259, in get_updates
grads = self.get_gradients(loss, params)
File "E:\Anaconda\envs\tf2\lib\site-packages\keras\optimizers.py", line 93, in get_gradients
raise ValueError('An operation has
None
for gradient. 'ValueError: An operation has
None
for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.So, what should I do to solve it.
Thanks for any help.
The text was updated successfully, but these errors were encountered: