We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
from seq2seq import SimpleSeq2Seq, Seq2Seq, AttentionSeq2Seq import os import csv import sys import logging import time input_dim=1 input_length=6 hidden_dim=10 output_length=6 output_dim=1 depth=4 models = [] model = Seq2Seq(output_dim=output_dim, hidden_dim=hidden_dim, output_length=output_length, input_shape=(input_length, input_dim)) #models += [Seq2Seq(output_dim=output_dim, hidden_dim=hidden_dim, output_length=output_length, input_shape=(input_length, input_dim), peek=True)] #models += [Seq2Seq(output_dim=output_dim, hidden_dim=hidden_dim, output_length=output_length, input_shape=(input_length, input_dim), depth=2)] #models += [Seq2Seq(output_dim=output_dim, hidden_dim=hidden_dim, output_length=output_length, input_shape=(input_length, input_dim), peek=True, depth=2)] model.compile(loss='mse', optimizer='sgd') y = [] x = [] with open('./Mark Six.csv', 'rt') as csvfile: reader = csv.DictReader(csvfile) count = 1 for row in reader: if count <= 1626: x = x + [[[int(row['Winning Number 1'].strip())],[int(row['2'].strip())],[int(row['3'].strip())],[int(row['4'].strip())],[int(row['5'].strip())],[int(row['6'].strip())]]] count = count + 1 with open('./Mark Six.csv', 'rt') as csvfile: reader = csv.DictReader(csvfile) count = 1 for row in reader: if count > 1 and count <= 1627: y = y + [[[int(row['Winning Number 1'].strip())],[int(row['2'].strip())],[int(row['3'].strip())],[int(row['4'].strip())],[int(row['5'].strip())],[int(row['6'].strip())]]] count = count + 1 model.fit(np.array(x), np.array(y), epochs=1) #model = Seq2Seq(output_dim=output_dim, hidden_dim=hidden_dim, output_length=output_length, input_shape=(input_length, input_dim), peek=True, depth=2, teacher_force=True) #model.compile(loss='mse', optimizer='sgd') #model.fit([np.array(x), np.array(y)], np.array(y), epochs=1) x_test = [] with open('./Mark Six.csv', 'rt') as csvfile: reader = csv.DictReader(csvfile) count = 1 for row in reader: if count > 1627-2: x_test = x_test + [[[int(row['Winning Number 1'].strip())],[int(row['2'].strip())],[int(row['3'].strip())],[int(row['4'].strip())],[int(row['5'].strip())],[int(row['6'].strip())]]] count = count + 1 y_test = [] with open('./Mark Six.csv', 'rt') as csvfile: reader = csv.DictReader(csvfile) count = 1 for row in reader: if count > 1627-2: y_test = y_test + [[[int(row['Winning Number 1'].strip())],[int(row['2'].strip())],[int(row['3'].strip())],[int(row['4'].strip())],[int(row['5'].strip())],[int(row['6'].strip())]]] count = count + 1 model.predict(np.array([x_test[3]]))
The text was updated successfully, but these errors were encountered:
No branches or pull requests
The text was updated successfully, but these errors were encountered: