-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering.py
125 lines (92 loc) · 3.48 KB
/
clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import lpips
import nibabel as nib
import numpy as np
import torch
from skimage.metrics import structural_similarity as ssim
from sklearn import cluster
from sklearn.cluster import KMeans, SpectralClustering
from pathlib import Path
from abc import ABC, abstractmethod
cwd = os.getcwd()
class Clustering(ABC):
def __init__(self):
pass
def compute_total_slices(self):
self.img = nib.load(self.path)
self.img = self.img.get_fdata()
self.nth_slice = self.img.shape[-1]
self.total_slices = np.arange(self.nth_slice).tolist()
def spectral_clustering(self):
clustering = SpectralClustering(
n_clusters=self.n_clusters,
assign_labels="discretize",
random_state=0,
affinity="precomputed",
).fit(self.vol)
n_classes = []
for num in range(self.n_clusters):
k = [
i for i, j in enumerate(clustering.labels_) if j == num
] # returns the slice_index for the slice belonging to jth class
n_classes.append(
k
) # populate 'n_classes=[]' with which slice index belongs to which class
return n_classes
@abstractmethod
def return_samples(self):
pass
class PerceptualSimilarity(Clustering):
'''based on https://github.com/richzhang/PerceptualSimilarity'''
def __init__(
self, path, n_clusters
):
super().__init__()
self.path = path
self.n_clusters = n_clusters
def return_samples(self) -> 'list of lists, containing clusters':
loss_fn_alex = lpips.LPIPS(net="alex")
loss_fn_alex.cuda()
super().compute_total_slices()
def perc_sim(img1, img2):
x, y = img1.shape
img1, img2 = torch.from_numpy(img1), torch.from_numpy(img2)
img1, img2 = img1.float(), img2.float()
img1, img2 = img1.expand(3, x, y), img2.expand(3, x, y)
img1, img2 = img1.cuda(), img2.cuda()
per_score = loss_fn_alex(img1, img2)
per_score = per_score.tolist()
per_score = np.concatenate(
np.concatenate(np.concatenate(per_score))
)
perscore = np.ndarray.item(per_score)
per_score = round(perscore, 3)
return per_score
self.vol = []
for slice in self.total_slices:
val = []
for i in range(self.img.shape[-1]):
score = perc_sim(self.img[:, :, slice], self.img[:, :, i])
val.append(score)
self.vol.append(val)
return super().spectral_clustering()
class SSIM(Clustering):
def __init__(
self, path, n_clusters
):
super().__init__()
self.path = path
self.n_clusters = n_clusters
def return_samples(self):
super().compute_total_slices()
self.vol = []
for slice in self.total_slices:
val = [] # Results for SSIM
for i in range(self.img.shape[-1]): # i runs for entire volume size (155)
k = ssim(
self.img[:, :, slice], self.img[:, :, i]
) # Perform SSIM between each slice and rest of the slices, example slice=1, i=1 SSIM between slice 1 and 1
k = round(k, 3) # round the SSIM to 3 places
val.append(k) # append val with kth SSIM
self.vol.append(val)
return super().spectral_clustering()