-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcertify_mhead.py
135 lines (106 loc) · 5.07 KB
/
certify_mhead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import print_function
import torch
import numpy as np
import pandas as pd
import os
import sys
import time
import argparse
import datetime
from utils import setup_seed
from utils import get_datasets, get_model_mhead
from utils import Logger
from utils import AverageMeter, accuracy
from core_mhead import Smooth
# ======== fix data type ========
torch.set_default_tensor_type(torch.FloatTensor)
# ======== options ==============
parser = argparse.ArgumentParser(description='Certify m-head ensemble')
# -------- file param. --------------
parser.add_argument('--data_dir',type=str,default='./data/CIFAR10/',help='data directory')
parser.add_argument('--logs_dir',type=str,default='./logs/',help='logs directory')
parser.add_argument('--dataset',type=str,default='CIFAR10',help='data set name')
parser.add_argument('--model_path',type=str,default='./save/CIFAR10-VGG.pth',help='saved model path')
# -------- certify --------
parser.add_argument('--noise_sd',default=0.0,type=float,help="standard deviation of Gaussian noise")
parser.add_argument('--batch_size',type=int,default=128,help='batch size for sampling noises')
parser.add_argument("--skip", type=int, default=1, help="how many examples to skip")
parser.add_argument("--max", type=int, default=-1, help="stop after this many examples")
parser.add_argument("--N0", type=int, default=100)
parser.add_argument("--N", type=int, default=100000, help="number of samples to use")
parser.add_argument("--alpha", type=float, default=0.001, help="failure probability")
# -------- mhead --------
parser.add_argument('--arch',type=str,default='vgg16',help='model architecture')
parser.add_argument('--num_heads',type=int,default=10,help='number of orthogonal paths')
args = parser.parse_args()
# ======== log writer init. ========
datanoise='noise-'+str(args.noise_sd)
hyperparam=os.path.split(os.path.split(args.model_path)[-2])[-1]
if not os.path.exists(os.path.join(args.logs_dir,args.dataset,args.arch,datanoise,'certify-mhead')):
os.makedirs(os.path.join(args.logs_dir,args.dataset,args.arch,datanoise,'certify-mhead'))
args.logs_path = os.path.join(args.logs_dir,args.dataset,args.arch,datanoise,'certify-mhead',hyperparam+'-certify-skip-%d.log'%(args.skip))
# -------- main function
def main():
# ======== fix random seed ========
setup_seed(666)
# ======== get data set =============
trainloader, testloader = get_datasets(args)
print('-------- DATA INFOMATION --------')
print('---- dataset: '+args.dataset)
# ======== load network ========
checkpoint = torch.load(args.model_path, map_location=torch.device("cpu"))
net = get_model_mhead(args).cuda()
net.load_state_dict(checkpoint['state_dict'])
print('-------- MODEL INFORMATION --------')
print('---- arch.: '+args.arch)
print('---- num_heads: '+str(args.num_heads))
print('---- saved path : '+args.model_path)
smoothed_classifier = Smooth(net, args.num_classes, args.noise_sd)
f = open(args.logs_path, 'w')
print("idx\tlabel\tpredict\tradius\tcorrect\ttime", file=f, flush=True)
for i in range(len(testloader.dataset)):
if i % args.skip != 0:
continue
if i == args.max:
break
(x, label) = testloader.dataset[i]
before_time = time.time()
x = x.cuda()
prediction, radius = smoothed_classifier.certify(x, args.N0, args.N, args.alpha, args.batch_size)
after_time = time.time()
correct = int(prediction == label)
time_elapsed = str(datetime.timedelta(seconds=(after_time - before_time)))
print("{}\t{}\t{}\t{:.3}\t{}\t{}".format(
i, label, prediction, radius, correct, time_elapsed), file=f, flush=True)
f.close()
# ======== get ACR results ========
ApproAcc = ApproximateAccuracy(args.logs_path)
if args.dataset == 'CIFAR10':
radii = np.arange(0,2.75,0.25)
elif args.dataset == 'ImageNet':
radii = np.arange(0,4.0,0.5)
certified = ApproAcc.at_radii(radii)*100
f = open(args.logs_path.replace(".log", "-ACR.log"), 'w')
print('\n-------- Log-path: {}'.format(args.logs_path), file=f, flush=True)
print('\n-------- ACR = %.3f '%ApproAcc.acr(), file=f, flush=True)
for idx, radius in enumerate(radii):
print('-------- At radius = %.2f achieving certified radius %.1f'%(radius, certified[idx]), file=f, flush=True)
f.close()
return
class Accuracy(object):
def at_radii(self, radii: np.ndarray):
raise NotImplementedError()
class ApproximateAccuracy(Accuracy):
def __init__(self, data_file_path: str):
self.data_file_path = data_file_path
def at_radii(self, radii: np.ndarray) -> np.ndarray:
df = pd.read_csv(self.data_file_path, delimiter="\t")
return np.array([self.at_radius(df, radius) for radius in radii])
def at_radius(self, df: pd.DataFrame, radius: float):
return (df["correct"] & (df["radius"] >= radius)).mean()
def acr(self):
df = pd.read_csv(self.data_file_path, delimiter="\t")
return (df["correct"] * df["radius"]).mean()
# ======== startpoint
if __name__ == '__main__':
main()