Skip to content

Latest commit

 

History

History
146 lines (69 loc) · 3.23 KB

README.md

File metadata and controls

146 lines (69 loc) · 3.23 KB

LANDASAT_8_9

extractlandsat.py Extract landsats files from tar extension. renamelandsat.py This script helps users of rename the landsat image and focus on the date of the image, and save all the images names as csv file. landsatinices.py Calculate most of the spectral indices. It's worthwhile that all the scripts have help in order to guid the users.

To get the benefits of those scripts the following are the right steps.

1- rename granular using the renamelandsat.py

2- extract Landsat files from tar format extractlandsat.py

3- Landsat indices make most of the calculations landsatindices.py

"Example"

root_path = 'D:/Chapter/landsat/LC08__L2SP_169036_20150402'

dirpath = 'D:/Chapter/landsat/'

band4 = LandSatEightNine(root_path, 4)

band5 = LandSatEightNine(root_path, 5)

band6 = LandSatEightNine(root_path, 6)

band3 = LandSatEightNine(root_path, 3)

ndvi = NDVI(band5.band, band4.band)

output_file_ndvi = dirpath + 'ndvi_9_test.tif'

write_raster(ndvi, band4.band_crs, band4.band_transform, output_file_ndvi)

plot_plot(output_file_ndvi, 'NDVI', 'RdYlGn')

dbi = DBI(band6.band, band3.band, ndvi)

output_file_dbi = dirpath + 'dbi_9_test.tif'

write_raster(dbi, band4.band_crs, band4.band_transform, output_file_dbi)

plot_plot(output_file_dbi, 'DBI' , 'RdYlGn')

savi=SAVI(band4.band, band5.band)

output_file_savi = dirpath + 'savi.tif'

write_raster(savi, band4.band_crs, band4.band_transform, output_file_savi)

plot_plot(output_file_savi, 'SAVI' , 'cividis')

msavi2 = MSAVI2(band5.band, band4.band)

output_file_msavi2 = dirpath + 'msavi2_9_test.tif'

write_raster(msavi2, band4.band_crs, band4.band_transform, output_file_msavi2)

plot_plot(output_file_msavi2, 'MSAVI2' , 'cividis')

ndmi = NDMI(band5.band, band6.band)

output_file_ndmi = dirpath + 'ndmi_9_test.tif'

write_raster(ndmi, band4.band_crs, band4.band_transform, output_file_ndmi)

plot_plot(output_file_ndmi, 'NDMI' , 'RdYlBu')

mndwi = MNDWI(band3.band, band6.band)

output_file_mndwi = dirpath + 'mndwi_9_test.tif'

write_raster(mndwi, band3.band_crs, band3.band_transform, output_file_mndwi)

plot_plot(output_file_mndwi, 'MNDWI' , 'RdYlBu')

bai = BAI(band4.band, band5.band)

output_file_bai = dirpath + 'bai_9_test.tif'

write_raster(bai, band3.band_crs, band3.band_transform, output_file_bai)

plot_plot(output_file_bai, 'BAI' , 'PiYG')

nbri = NBRI(band5.band, band6.band)

output_file_nbri = dirpath + 'nbri_9_test.tif'

write_raster(nbri, band3.band_crs, band3.band_transform, output_file_nbri)

plot_plot(output_file_nbri, 'NBRI' , 'PiYG')

ndbi = NDBI(band6.band, band5.band, ndvi)

output_file_ndbi = dirpath + 'ndbi_9_test.tif'

write_raster(ndbi, band3.band_crs, band3.band_transform, output_file_nbri)

plot_plot(output_file_nbri, 'NBRI' , 'terrain')

B4 = normalizer(root_path, 4)

B3 = normalizer(root_path, 3)

B2 = normalizer(root_path, 2)

B4.plotnormalized()

B3.plotnormalized()

B2.plotnormalized()

b4 = B4.Normalizedband

b3 = B3.Normalizedband

b2 = B2.Normalizedband

color_composite(b4, b3, b2, ' Natural Color 4 3 2', cmap='terrain')

equalized_color_composite(b4, b3, b2, ' Natural Color 4 3 2', cmap='terrain')

print(band4.band_name)

print(band4.band_transform)

print(band4.raster_img)

print(band4.band_crs)

print(band4.band_shape)

print(band4.band_profile)