forked from giserh/ConvLSTM-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_lstm_data.py
68 lines (57 loc) · 2.68 KB
/
generate_lstm_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
class generate_sin_datas(object):
def __init__(self, batch_size=128, n_input=1000):
self.batch_size = batch_size
self.n_input = n_input
def next_batch(self):
datas = np.ndarray(shape=(self.batch_size, self.n_input))
datas[:,0] = 10 * np.random.rand(self.batch_size)
for i, val in enumerate(datas[:,0]):
datas[i,:] = np.sin(np.linspace(val, val+100, self.n_input, dtype=np.float32))
x = datas[:,0:-1]
y = datas[:,-1]
return x, y
def generate_movies(batch_size=10,shape=[80,80], n_frames=15):
row, col = shape
noisy_movies = np.zeros((batch_size, n_frames, row, col, 1), dtype=np.float)
shifted_movies = np.zeros((batch_size, n_frames, row, col, 1),
dtype=np.float)
for i in range(batch_size):
# Add 3 to 7 moving squares
n = np.random.randint(3, 8)
for j in range(n):
# Initial position
xstart = np.random.randint(20, 60)
ystart = np.random.randint(20, 60)
# Direction of motion
directionx = np.random.randint(0, 3) - 1
directiony = np.random.randint(0, 3) - 1
# Size of the square
w = np.random.randint(2, 4)
for t in range(n_frames):
x_shift = xstart + directionx * t
y_shift = ystart + directiony * t
noisy_movies[i, t, x_shift - w: x_shift + w,
y_shift - w: y_shift + w, 0] += 1
# Make it more robust by adding noise.
# The idea is that if during inference,
# the value of the pixel is not exactly one,
# we need to train the network to be robust and still
# consider it as a pixel belonging to a square.
if np.random.randint(0, 2):
noise_f = (-1)**np.random.randint(0, 2)
noisy_movies[i, t,
x_shift - w - 1: x_shift + w + 1,
y_shift - w - 1: y_shift + w + 1,
0] += noise_f * 0.1
# Shift the ground truth by 1
x_shift = xstart + directionx * (t + 1)
y_shift = ystart + directiony * (t + 1)
shifted_movies[i, t, x_shift - w: x_shift + w,
y_shift - w: y_shift + w, 0] += 1
# Cut to a 40x40 window
noisy_movies = noisy_movies[::, ::, 20:60, 20:60, ::]
shifted_movies = shifted_movies[::, ::, 20:60, 20:60, ::]
noisy_movies[noisy_movies >= 1] = 1
shifted_movies[shifted_movies >= 1] = 1
return noisy_movies, shifted_movies