forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunctionalStorageImpl.h
208 lines (184 loc) · 7.52 KB
/
FunctionalStorageImpl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#pragma once
#include <ATen/Tensor.h>
#include <utility>
namespace at::functionalization {
// See Note [Functionalization Pass In Core]
// ViewMeta is a class used by the functionalization pass to navigate between
// a base tensor and a view tensor.
// For example, if I call `b = a.view1(...)`
// the functionalization pass will generate and store a ViewMeta on b that looks
// like:
//
// ViewMeta(
// [<captures>](const Tensor& base, int64_t mutated_view_idx) {
// return base.view1(...);
// },
// [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
// int64_t mutated_view_idx) -> at::Tensor {
// return at::functionalization::impl::view1_inverse(base, mutated_view,
// ...);
// }
//
// The forward_fn lambda describes how to replay view1 on a tensor.
//
// The reverse_fn lambda describes how, given a tensor that is already a view,
// how to get the corresponding base tensor. See Note [Functionalization Pass:
// View Inverses] for details.
struct ViewMeta {
ViewMeta(
std::function<Tensor(const Tensor&, int64_t)> forward,
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
bool has_symbolic_inputs,
bool is_multi_output = false,
bool is_as_strided = false,
int64_t out_idx = 0)
: forward_fn(std::move(forward)),
reverse_fn(std::move(reverse)),
out_index(out_idx),
is_multi_output(is_multi_output),
is_as_strided(is_as_strided),
has_symbolic_inputs(has_symbolic_inputs) {}
std::function<Tensor(const Tensor&, int64_t)> forward_fn;
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
// See Note [out_idx in ViewMeta]
int64_t out_index;
// Tells us if this is a multi-output view
bool is_multi_output;
bool is_as_strided;
// Tells us if this view operation has any symbolic inputs
bool has_symbolic_inputs;
// Returns a copy of the current ViewMeta, if out_idx matches the current
// out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
// functions, but a new out index.
ViewMeta to_out_idx(int64_t out_idx);
};
// FunctionalStorageImpl is a subclass of StorageImpl used by the
// functionalization pass. It has no underlying data (similar to meta storage).
// It also knows how to reflect mutations to tensors in the absence of a valid
// data pointer.
//
// A storage represents the state shared by (potentially multiple) views of the
// same tensor. For example, in the following code:
//
// b = a.view1(...)
// c = b.view2(...)
// b.add_(1)
// --> storage.add_update(b, {view1_meta})
//
// The call to add_(1) will result in a call to alias.add_update(b,
// {view1_meta}), queueing up the mutation from b onto the alias. Later, suppose
// c is used in an expression (e.g. you try to print c, or pass it to an
// operator). Doing so will involve "syncing" c. First we apply any pending
// updates to the alias, and then we regenerate c by replaying its views off of
// the updated alias. E.g:
//
// print(str(c))
// --> c.sync_()
// --> alias.apply_updates() // after this, the alias will be updated to
// reflect the mutation to b
struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
public:
struct Update {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
const at::Tensor new_val;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
const std::vector<ViewMeta> view_metas;
};
explicit FunctionalStorageImpl(const Tensor& value);
void add_update(
const Tensor& updated_val,
const std::vector<ViewMeta>& view_metas);
bool apply_updates();
const Tensor& base() {
return base_;
}
size_t generation() const {
return generation_;
}
void freeze() {
frozen_ = true;
}
c10::SymInt get_storage_size(bool before) {
if (before) {
return original_storage_size_;
} else {
return curr_storage_size_;
}
}
~FunctionalStorageImpl() override = default;
void mark_mutation() {
mutation_counter_++;
}
void mark_mutation_during_no_grad_or_inference_mode() {
mutation_counter_during_no_grad_or_inference_mode_++;
}
void mark_mutation_hidden_from_autograd() {
mutation_counter_hidden_from_autograd_++;
}
bool are_all_mutations_under_no_grad_or_inference_mode() const {
auto non_autograd_mutations =
mutation_counter_during_no_grad_or_inference_mode_ +
mutation_counter_hidden_from_autograd_;
// The <= is because both counters will technically be incremented, if we
// perform e.g. a triton kernel mutation under no_grad
return mutation_counter_ <= non_autograd_mutations;
}
bool are_all_mutations_hidden_from_autograd() const {
// mutations under no_grad / inference_mode are technically not hidden from
// autograd - they change the version counter
return mutation_counter_ <= mutation_counter_hidden_from_autograd_;
}
void mark_inductor_storage_resize(c10::SymInt new_size) {
inductor_storage_resized_ = true;
curr_storage_size_ = std::move(new_size);
}
bool was_inductor_storage_resized() {
return inductor_storage_resized_;
}
private:
// NB: base_ should always point to a tensor BELOW the current
// functionalization layer. This is mainly to avoid reference cycles. e.g.
// given `b = a.view(...)` Both a.storage_ and b.storage_ are a
// FunctionStorageImpl containing an Walualias, with contains a Tensor
// `base_`. In this case (where a and b are FunctionalTensorWrapper's), base_
// should point not to a, but to a's unwrapped value, a.value_` See Note
// [Functionalization: Walualias Removal] for a diagram that shows this
// visually.
at::Tensor base_;
std::vector<Update> updates_;
// generation_ gets incremented every time a mutation is queued onto the
// alias. It is used to determine if a given tensor is "up to date", or if it
// needs to be regenerated from the alias.
size_t generation_ = 0;
// If frozen, no more mutations are allowed on this storage. Once frozen, a
// storage cannot be unfrozen.
bool frozen_ = false;
// These mutation counters are bumped on the storage
// whenever a FunctionalTensorWrapper experiences a mutation.
// When the mutation is under no_grad, or comes from a triton kernel, we also
// bump the corresponding during_no_grad or hidden_from_autograd counters. Why
// do we need to detect these two situations separately from "normal" input
// mutations? (1) "normal" input mutations can mutate autograd metadata like
// .grad_fn,
// in which case they need to be replayed outside of the compiled graph
// (2) "no_grad" input mutations are generally safe to keep in the graph (and
// compile),
// but they bump the tensor's VC, so we need to mark_dirty() on the inputs
// in torch.compile
// (3) mutations that are fully hidden from autograd (e.g. from a triton
// kernel)
// do not mutate any autograd state, and be fully kept in the graph
// When we detect that an input was mutated, we need to be able to tell if:
// (1) all of the mutations were from triton kernels
// (2) all of the mutations were under no_grad
uint64_t mutation_counter_during_no_grad_or_inference_mode_ = 0;
uint64_t mutation_counter_ = 0;
uint64_t mutation_counter_hidden_from_autograd_ = 0;
// Used to tell if:
// (1) There were any storage resizes on a graph input
// (2) The original/curr storage size tell us if these resizes result in a nop
bool inductor_storage_resized_ = false;
c10::SymInt original_storage_size_;
c10::SymInt curr_storage_size_;
};
} // namespace at::functionalization