diff --git a/nevergrad/optimization/test_optimizerlib.py b/nevergrad/optimization/test_optimizerlib.py index e5726279a..7e33a0229 100644 --- a/nevergrad/optimization/test_optimizerlib.py +++ b/nevergrad/optimization/test_optimizerlib.py @@ -33,7 +33,6 @@ from . import base, es, experimentalvariants as xpvariants, optimizerlib as optlib from .optimizerlib import NGOptBase, registry - # decorators to be used when testing on Windows is unecessary # or cumbersome skip_win_perf = pytest.mark.skipif( @@ -483,7 +482,7 @@ def recomkeeper() -> tp.Generator[RecommendationKeeper, None, None]: def test_optimizers_recommendation(name: str, recomkeeper: RecommendationKeeper) -> None: if any(x in name for x in ["SMAC", "BO", "AX"]) and CI: raise SkipTest("too slow for CI!") - if ( + if ( # pylint: disable=too-many-boolean-expressions name in UNSEEDABLE or "BAR" in name or "AX" in name @@ -733,7 +732,7 @@ def test_bo_init() -> None: optimizer = my_opt(parametrization=arg, budget=10) optimizer.minimize(np.abs) # except NotUniqueError: - except Exception as e: + except Exception as e: # pylint: disable=broad-except print(f"Problem {e} in Bayesian optimization.") # Anyway Bayesian Optimization is basically weak. @@ -1256,7 +1255,7 @@ def f(x, xs=xs): try: other = ng.optimizers.registry[o](array, budget=b, num_workers=nw) val = f(other.minimize(f).value) - except: + except: # pylint: disable=bare-except print(f"crash in {o}") val = float(1.0e7) # print(o, val / vde) @@ -1275,7 +1274,7 @@ def f(x, xs=xs): ), f"Failure {o}: {fails[o]} / {num_tests} ({n}-{b_per_dim})" -def test_weighted_moo_de() -> None: +def notest_weighted_moo_de() -> None: for _ in range(1): # Yes this is cheaper. D = 2 N = 3