This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
593 lines (487 loc) · 19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# References:
# https://github.com/google/flax/tree/main/examples/imagenet
import datetime
import time
import numpy as np
import math
import jax.profiler
import tensorflow_datasets as tfds
import tensorflow as tf
import ml_collections
from jax import random
import jax.numpy as jnp
import jax
from flax.training import train_state
from flax.training import common_utils
from clu import metric_writers
from absl import logging
import functools
import warnings
import t5x.checkpoints
import t5x.model_info
import t5x.rng
import t5x.partitioning
from t5x.train_state_initializer import create_train_state
import models_flip
import input_pipeline_laion
import input_pipeline_imagenet
from utils import logging_util
from utils import checkpoint_util as ckp
from utils import (
summary_util as summary_util,
) # must be after 'from clu import metric_writers'
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
try:
from jax.interpreters.sharded_jit import PartitionSpec
except ImportError:
from jax.interpreters.pxla import PartitionSpec
def prepare_tf_data(xs, batch_size):
"""Convert a input batch from tf Tensors to numpy arrays."""
def _prepare(x):
# Use _numpy() for zero-copy conversion between TF and NumPy.
x = x._numpy() # pylint: disable=protected-access
if x.shape[0] != batch_size:
pads = -np.ones((batch_size - x.shape[0],) + x.shape[1:], dtype=x.dtype)
x = np.concatenate([x, pads], axis=0)
# do not reshape into (local_devices, -1, ...)
return x.reshape((-1,) + x.shape[1:])
return jax.tree_map(_prepare, xs)
def build_dataloaders(config, partitioner):
batch_size = config.batch_size
data_layout = partitioner.get_data_layout(batch_size)
shard_id = data_layout.shard_id
num_shards = data_layout.num_shards
if batch_size % num_shards > 0:
raise ValueError("Batch size must be divisible by the number of devices")
local_batch_size = batch_size // num_shards
# ----------------------------------------
logging_util.verbose_on()
logging_util.sync_and_delay()
logging.info("shard_id: {}".format(shard_id))
logging_util.verbose_off()
# ----------------------------------------
image_size = config.image_size
input_dtype = tf.float32
# training set is LAION.
data_loader_train = input_pipeline_laion.create_split(
config.laion_path,
local_batch_size,
data_layout,
image_size=image_size,
train=True,
cache=False,
seed=config.seed_tf,
cfg=config,
)
data_loader_train = map(
functools.partial(prepare_tf_data, batch_size=local_batch_size),
data_loader_train,
)
# val set is imagenet
data_loader_val = input_pipeline_imagenet.create_split(
tfds.builder(config.eval_dataset),
local_batch_size,
data_layout,
image_size=image_size,
dtype=input_dtype,
train=False,
cache=config.cache,
seed=config.seed_tf,
aug=config.aug,
)
data_loader_val = map(
functools.partial(prepare_tf_data, batch_size=local_batch_size),
data_loader_val,
)
# ImageNet tags
from vocab.class_names import CLIP_IMAGENET_CLASS_NAMES
imagenet_templates = config.get("imagenet_templates", "short")
if imagenet_templates == "short":
from vocab.class_names import CLIP_IMAGENET_TEMPLATES_SHORT as templates
tag_batch_size = 8
elif imagenet_templates == "long":
from vocab.class_names import CLIP_IMAGENET_TEMPLATES_FULL as templates
tag_batch_size = 64
else:
raise NotImplementedError
tags = []
for c in CLIP_IMAGENET_CLASS_NAMES:
for t in templates:
tags.append(t(c))
print(f"length of templates: {len(templates)}")
data_loader_tags = input_pipeline_laion.create_tags_split(
tags,
tag_batch_size,
image_size=None,
train=False,
cache=False,
seed=config.seed_tf,
cfg=config,
)
data_loader_tags = map(
functools.partial(prepare_tf_data, batch_size=tag_batch_size),
data_loader_tags,
)
return data_loader_train, data_loader_val, data_loader_tags
def print_sanity_check(batch, shard_id):
"""A sanity check when model partitions > 8 and data must be shared across nodes"""
logging_util.sync_and_delay(delay=shard_id * 0.5)
logging_util.verbose_on()
str = "{}".format(batch["label"])
str = (str + " " * 60)[:60] + "..."
logging.info("shard: {}, label: {}".format(shard_id, str))
logging_util.sync_and_delay(delay=shard_id * 0.5)
str = "{}".format(np.array(batch["image"][:, 0, 0, 0]))
str = (str + " " * 60)[:60] + "..."
logging.info("shard: {}, image: {}".format(shard_id, str))
logging_util.verbose_off()
return
def train_step(state, batch, model, rng):
"""Perform a single training step."""
dropout_rng = jax.random.fold_in(rng, state.step)
def loss_fn(params):
"""loss function used for training."""
mutable = [k for k in state.flax_mutables]
outcome = model.apply(
{"params": params, **state.flax_mutables},
inputs=batch,
mutable=mutable,
rngs=dict(dropout=dropout_rng),
train=True,
)
(loss, artifacts), new_mutables = outcome
return loss, (new_mutables, artifacts)
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
aux, grads = grad_fn(state.params)
new_mutables, artifacts = aux[1]
metrics = {**artifacts}
# only for metric logging
lr = state._optimizer.optimizer_def.metric_learning_rate_fn(state.step)
metrics["learning_rate"] = lr
new_state = state.apply_gradient(
grads, learning_rate=None, flax_mutables=new_mutables # TODO: not used in adamw
)
return new_state, metrics
def eval_step(state, batch, encoded_tags, model, rng):
variables = {"params": state.params, **state.flax_mutables}
dropout_rng = jax.random.fold_in(rng, state.step)
outcome = model.apply(
variables,
batch,
train=False,
mutable=False,
rngs=dict(dropout=dropout_rng),
encode_txt=False,
)
_, artifacts = outcome
z_img = artifacts["z_img"]
labels = batch["label"]
z_txt = encoded_tags
logits = jnp.einsum("nc,mc->nm", z_img, z_txt)
pred_labels = jnp.argmax(logits, -1)
accuracy = jnp.float32(pred_labels == labels)
metrics = {"test_acc1": accuracy, "label": labels}
metrics = jax.tree_map(
lambda x: jnp.reshape(
x,
[
-1,
],
),
metrics,
)
return metrics
def eval_tags_step(state, batch, model, rng):
variables = {"params": state.params, **state.flax_mutables}
dropout_rng = jax.random.fold_in(rng, state.step)
outcome = model.apply(
variables,
batch,
train=False,
mutable=False,
rngs=dict(dropout=dropout_rng),
encode_img=False,
)
_, artifacts = outcome
z_txt = artifacts["z_txt"]
return z_txt
def train_and_evaluate(
config: ml_collections.ConfigDict, workdir: str
) -> train_state.TrainState:
"""Execute model training and evaluation loop.
Args:
config: Hyperparameter configuration for training and evaluation.
workdir: Directory where the tensorboard summaries are written to.
Returns:
Final TrainState.
"""
# ------------------------------------
# Set random seeds
# ------------------------------------
tf.random.set_seed(config.seed_tf + jax.process_index())
t5x.rng.set_hardware_rng_ops()
rng = random.PRNGKey(config.seed_jax)
# ------------------------------------
writer = metric_writers.create_default_writer(
logdir=workdir, just_logging=jax.process_index() != 0
)
# ------------------------------------
# Create partitioner
# ------------------------------------
partitioner = t5x.partitioning.PjitPartitioner(**config.partitioning)
partitioner._logical_axis_rules += (("_null0", None),)
partitioner._logical_axis_rules += (("_null1", None),)
partitioner._logical_axis_rules += (("_null2", None),)
partitioner._logical_axis_rules += (("classes", None),)
# ------------------------------------
# Create data loader
# ------------------------------------
data_loader_train, data_loader_val, data_loader_tags = build_dataloaders(
config, partitioner
)
batched_tags = [d for d in data_loader_tags] # 1000x80 or 1000x7
steps_per_epoch = config.samples_per_epoch // config.batch_size # for lr schedule
# ------------------------------------
# Create model
# ------------------------------------
model = models_flip.FLIP(config=config.model)
init_batch = next(data_loader_train)
p_init_fn, state_axes, state_shape = create_train_state(
config, model, steps_per_epoch, partitioner, init_batch=init_batch
)
rng_init, rng = jax.random.split(rng)
t5x.model_info.log_model_info(None, state_shape, partitioner)
# ------------------------------------
# Create checkpointer
# ------------------------------------
checkpointer = t5x.checkpoints.Checkpointer(
train_state=state_shape,
partitioner=partitioner,
checkpoints_dir=workdir,
)
if config.resume_dir != "":
state = ckp.restore_checkpoint(checkpointer, path=config.resume_dir)
elif config.pretrain_dir != "":
# raise NotImplementedError
logging.info("Initializing train_state...")
state = p_init_fn(rng_init)
logging.info("Initializing train_state done.")
logging.info("load pretrain")
path = config.pretrain_dir
step = t5x.checkpoints.latest_step(path)
path_chkpt = (
path if step is None else t5x.checkpoints.get_checkpoint_dir(path, step)
)
state = checkpointer.restore(
path=path_chkpt,
fallback_state=state.state_dict(),
state_transformation_fns=[ckp.remove_optimizer_state, ckp.remove_pos_embed],
)
else:
logging.info("Initializing train_state...")
state = p_init_fn(rng_init)
logging.info("Initializing train_state done.")
t5x.model_info.log_state_info(state)
# step_offset > 0 if restarting from checkpoint
step_offset = int(state.step)
logging.info("step_offset: {}".format(step_offset))
# ------------------------------------------
# Create partitioned eval_tags_step
eval_step_fn = functools.partial(eval_tags_step, model=model, rng=rng)
eval_axes = PartitionSpec("data", None)
partitioned_eval_tags_step = partitioner.partition(
eval_step_fn,
in_axis_resources=(state_axes, partitioner.data_partition_spec),
out_axis_resources=eval_axes,
)
# ------------------------------------------
# ------------------------------------------
# Create partitioned train_step
train_step_fn = functools.partial(train_step, model=model, rng=rng)
partitioned_train_step = partitioner.partition(
train_step_fn,
in_axis_resources=(state_axes, partitioner.data_partition_spec),
out_axis_resources=(state_axes, None),
donate_argnums=(0,),
)
# ------------------------------------------
# ------------------------------------------
# Create partitioned eval_step
eval_step_fn = functools.partial(eval_step, model=model, rng=rng)
eval_axes = None
partitioned_eval_step = partitioner.partition(
eval_step_fn,
in_axis_resources=(state_axes, partitioner.data_partition_spec, None),
out_axis_resources=eval_axes,
)
# ------------------------------------------
# ------------------------------------------
if config.eval_only:
logging.info("Eval only...")
summary = run_eval(
state,
batched_tags,
partitioned_eval_tags_step,
data_loader_val,
partitioned_eval_step,
config,
)
values = [f"{k}: {v:.6f}" for k, v in sorted(summary.items())]
logging.info("eval: %s", ", ".join(values))
return
# ------------------------------------------
train_metrics = []
logging.info("Work dir: {}".format(workdir))
train_metrics_last_t = time.time()
logging.info("Initial compilation, this might take some minutes...")
epoch_offset = (step_offset + 1) // steps_per_epoch
step = epoch_offset * steps_per_epoch
data_layout = partitioner.get_data_layout(config.batch_size)
shard_id = data_layout.shard_id
for epoch in range(epoch_offset, int(config.num_epochs)):
# ------------------------------------------------------------
# train one epoch (one "virtual" epoch)
# ------------------------------------------------------------
for i in range(steps_per_epoch):
batch = next(data_loader_train)
state, metrics = partitioned_train_step(state, batch)
if epoch == epoch_offset and i == 0 and partitioner._num_partitions > 8:
print_sanity_check(batch, shard_id)
# normalize to IN1K epoch anyway
epoch_1000x = int(step * config.batch_size / 1281167 * 1000)
if epoch == epoch_offset and i == 0:
logging.info("Initial compilation completed.")
# log the time after compilation
start_time = time.time()
if config.get("log_every_steps"):
train_metrics.append(metrics)
if (step + 1) % config.log_every_steps == 0:
# Wait until computations are done before exiting
jax.random.normal(jax.random.PRNGKey(0), ()).block_until_ready()
train_metrics = common_utils.get_metrics(
jax.tree_map(lambda x: jnp.reshape(x, (-1,)), train_metrics)
)
summary = {
f"train_{k}": float(v)
for k, v in jax.tree_map(
lambda x: x.mean(), train_metrics
).items()
}
summary["steps_per_second"] = config.log_every_steps / (
time.time() - train_metrics_last_t
)
# to make it consistent with PyTorch log
summary["loss"] = summary["train_loss"] # add extra name
summary["lr"] = summary.pop("train_learning_rate") # rename
# step for tensorboard
summary["step_tensorboard"] = epoch_1000x
writer.write_scalars(step + 1, summary)
train_metrics = []
train_metrics_last_t = time.time()
step += 1
# ------------------------------------------------------------
# finished one epoch: eval
# ------------------------------------------------------------
vis_every_epochs = config.vis_every_epochs
if (epoch + 1) % vis_every_epochs == 0 or epoch == epoch_offset:
summary = run_eval(
state,
batched_tags,
partitioned_eval_tags_step,
data_loader_val,
partitioned_eval_step,
config,
)
values = [f"{k}: {v:.6f}" for k, v in sorted(summary.items())]
logging.info("eval epoch: %d, %s", epoch, ", ".join(values))
# to make it consistent with PyTorch log
summary[
"step_tensorboard"
] = epoch # step for tensorboard (no need to minus 1)
writer.write_scalars(step + 1, summary)
writer.flush()
# ------------------------------------------------------------
# finished one epoch: save
# ------------------------------------------------------------
if (
(epoch + 1) % config.save_every_epochs == 0
or epoch + 1 == int(config.num_epochs)
or epoch == epoch_offset
):
logging.info("Saving checkpoint: {}".format(workdir))
checkpointer.save(state)
# Wait until computations are done before exiting
jax.random.normal(jax.random.PRNGKey(0), ()).block_until_ready()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logging.info("Elapsed time: {}".format(total_time_str))
jax.random.normal(jax.random.PRNGKey(0), ()).block_until_ready()
return state
def compute_encoded_tags(
state,
batched_tags,
partitioned_eval_tags_step,
):
# Encoding tags: no data-parallism across nodes
logging.info("Encoding tags...")
encoded_tags = []
for i, tags_batch in enumerate(batched_tags):
z_txt = partitioned_eval_tags_step(state, tags_batch)
encoded_tags.append(z_txt)
if i % 100 == 0:
logging.info("{} / {}".format(i, len(batched_tags)))
encoded_tags = jnp.concatenate(encoded_tags, axis=0) # type: DeviceArray
# ----------------
# average multiple templates
encoded_tags = encoded_tags.reshape(
[1000, -1, encoded_tags.shape[-1]]
) # [1000, 7, 512]
encoded_tags = encoded_tags.mean(axis=1)
encoded_tags /= jnp.linalg.norm(encoded_tags, axis=-1, keepdims=True) + 1e-8
assert encoded_tags.shape[0] == 1000
# ----------------
logging.info("Encoding tags done: {}".format(encoded_tags.shape))
return encoded_tags
def run_eval(
state,
batched_tags,
partitioned_eval_tags_step,
data_loader_val,
partitioned_eval_step,
config,
):
tic = time.time()
encoded_tags = compute_encoded_tags(state, batched_tags, partitioned_eval_tags_step)
steps_per_eval = math.ceil(50000 / config.batch_size)
eval_metrics = []
for i in range(steps_per_eval):
eval_batch = next(data_loader_val)
metrics = partitioned_eval_step(state, eval_batch, encoded_tags)
eval_metrics.append(metrics)
if config.eval_only and i % 10 == 0:
logging.info(
"{} / {}, shape: {}".format(
i, steps_per_eval, eval_batch["image"].shape
)
)
eval_metrics = jax.device_get(eval_metrics)
eval_metrics = jax.tree_map(lambda *args: np.concatenate(args), *eval_metrics)
valid = np.where(eval_metrics["label"] >= 0)
eval_metrics.pop("label")
eval_metrics = jax.tree_util.tree_map(lambda x: x[valid], eval_metrics)
toc = time.time() - tic
logging.info(
"Eval time: {}, {} steps, {} samples".format(
str(datetime.timedelta(seconds=int(toc))),
steps_per_eval,
len(eval_metrics["test_acc1"]),
)
)
summary = jax.tree_map(lambda x: x.mean(), eval_metrics)
return summary