Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sparseconvnet.SCN ImportError #225

Open
emepetres opened this issue Apr 5, 2022 · 1 comment
Open

sparseconvnet.SCN ImportError #225

emepetres opened this issue Apr 5, 2022 · 1 comment

Comments

@emepetres
Copy link

No matter what I try, I'm always getting the following error importing sparseconvnet:

[ImportError: SCN.cpython-39-x86_64-linux-gnu.so: undefined symbol: _ZNSt15__exception_ptr13exception_ptr10_M_releaseEv]()

If I import it from python interactive, the error doesn't appears immediately, but when any method/class is used.

My setup is:
Distro: Manjaro
Python: 3.9
Pytorch 1.10.2+cu113, torchvision 0.11.3+cu113

This is the complete stacktrace:

[File ~/source/SparseConvNet/sparseconvnet/__init__.py:9, in <module>
      ]()[7](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/__init__.py?line=6)[ forward_pass_multiplyAdd_count = 0
      ]()[8](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/__init__.py?line=7)[ forward_pass_hidden_states = 0
----> ]()[9](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/__init__.py?line=8)[ from .activations import Tanh, Sigmoid, ReLU, LeakyReLU, ELU, SELU, BatchNormELU
     ]()[10](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/__init__.py?line=9)[ from .averagePooling import AveragePooling
     ]()[11](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/__init__.py?line=10)[ from .batchNormalization import BatchNormalization, BatchNormReLU, BatchNormLeakyReLU, MeanOnlyBNLeakyReLU

File ~/source/SparseConvNet/sparseconvnet/activations.py:11, in <module>
      ]()[9](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/activations.py?line=8)[ from torch.autograd import Function
     ]()[10](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/activations.py?line=9)[ from torch.nn import Module, Parameter
---> ]()[11](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/activations.py?line=10)[ from .utils import *
     ]()[12](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/activations.py?line=11)[ from .sparseConvNetTensor import SparseConvNetTensor
     ]()[13](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/activations.py?line=12)[ from .batchNormalization import BatchNormalization

File ~/source/SparseConvNet/sparseconvnet/utils.py:9, in <module>
      ]()[7](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/utils.py?line=6)[ import torch, glob, os, numpy as np, math
      ]()[8](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/utils.py?line=7)[ from .sparseConvNetTensor import SparseConvNetTensor
----> ]()[9](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/utils.py?line=8)[ from .metadata import Metadata
     ]()[11](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/utils.py?line=10)[ def toLongTensor(dimension, x):
     ]()[12](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/utils.py?line=11)[     if hasattr(x, 'type') and x.type() == 'torch.LongTensor':

File ~/source/SparseConvNet/sparseconvnet/metadata.py:14, in <module>
      ]()[1](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=0)[ # Copyright 2016-present, Facebook, Inc.
      ]()[2](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=1)[ # All rights reserved.
      ]()[3](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=2)[ #
      ]()[4](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=3)[ # This source code is licensed under the BSD-style license found in the
      ]()[5](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=4)[ # LICENSE file in the root directory of this source tree.
      ]()[7](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=6)[ """
      ]()[8](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=7)[ Store Metadata relating to which spatial locations are active at each scale.
      ]()[9](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=8)[ Convolutions, submanifold convolutions and 'convolution reversing' deconvolutions
     ]()[10](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=9)[ all coexist within the same MetaData object as long as each spatial size
     ]()[11](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=10)[ only occurs once.
     ]()[12](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=11)[ """
---> ]()[14](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=13)[ import sparseconvnet.SCN
     ]()[16](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=15)[ def Metadata(dim):
     ]()[17](file:///home/jcarnero/source/SparseConvNet/sparseconvnet/metadata.py?line=16)[     return getattr(sparseconvnet.SCN, 'Metadata_%d'%dim)()]()
@BLUE-hub
Copy link

BLUE-hub commented May 5, 2023

ohh,my friend,have you solved it,I meet the same problem

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants