Skip to content
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.

Latest commit

 

History

History
56 lines (40 loc) · 1.95 KB

README.md

File metadata and controls

56 lines (40 loc) · 1.95 KB

SEAL training

Preprocessing

We assume you have downloaded in the $DATASET folder the following DPR files:

  • $DATASET/train.json [link]
  • $DATASET/dev.json [link]

You will now need to run scripts/training/make_supervised_dpr_dataset.py to create training and validation examples:

for FILE in train dev ; do

    python scripts/training/make_supervised_dpr_dataset.py \
        $DATASET/nq-$FILE.json $DATASET/$FILE \
        --target title \
        --mark_target \
        --mark_silver \
        --n_samples 3 \
        --mode a
    
    python scripts/training/make_supervised_dpr_dataset.py \
        $DATASET/nq-$FILE.json $DATASET/$FILE \
        --target span \
        --mark_target \
        --mark_silver \
        --n_samples 10 \
        --mode a

done

scripts/training also contains an analogous preprocessing scripts that takes care of KILT files.

If you want to add unsupervised examples by sampling spans from the retrieval corpus download DPR's preprocessed chunks and run the following:

python scripts/training/make_unsupervised_dataset.py \
    $DATASET/psgs_w100.tsv $DATASET/unsupervised \
    --format dpr --num_samples 3 --num_title_samples 1 --full_doc_n 1 --mark_pretraining

cat $DATASET/unsupervised.source >> $DATASET/train.source
cat $DATASET/unsupervised.target >> $DATASET/train.target

The final step is running fairseq-preprocess. We have prepared an easy to use script in scripts/training/preprocess_fairseq.sh. The instructions can be found inside of it.

Training

Check out scripts/training/preprocess!


License

SEAL is licensed under the CC-BY-NC 4.0 license. The text of the license can be found here.