You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
Hi,when I run the command sh ./train_minirts.sh --gpu 0,I got this problem.
`Warning: argument ValueMatcher/grad_clip_norm cannot be added. Skipped.
PID: 51523
========== Args ============
Loader: handicap_level=0,players="type=AI_NN,fs=50,args=backup/AI_SIMPLE|start/500|decay/0.99;type=AI_SIMPLE,fs=20",max_tick=30000,shuffle_player=False,num_frames_in_state=1,max_unit_cmd=1,seed=0,actor_only=False,model_no_spatial=False,save_replay_prefix=None,output_file=None,cmd_dumper_prefix=None,gpu=0,use_unit_action=False,disable_time_decay=False,use_prev_units=False,attach_complete_info=False,feature_type="ORIGINAL"
ContextArgs: num_games=1024,batchsize=128,game_multi=None,T=20,eval=False,wait_per_group=False,num_collectors=0,verbose_comm=False,verbose_collector=False,mcts_threads=0,mcts_rollout_per_thread=1,mcts_verbose=False,mcts_save_tree_filename="",mcts_verbose_time=False,mcts_use_prior=False,mcts_pseudo_games=0,mcts_pick_method="most_visited"
MoreLabels: additional_labels="id,last_terminal"
ActorCritic:
PolicyGradient: entropy_ratio=0.01,grad_clip_norm=None,min_prob=1e-06,ratio_clamp=10,policy_action_nodes="pi,a"
DiscountedReward: discount=0.99
ValueMatcher: grad_clip_norm=None,value_node="V"
Sampler: sample_policy="epsilon-greedy",greedy=False,epsilon=0.0,sample_nodes="pi,a"
ModelLoader: load=None,onload=None,omit_keys=None,arch="ccpccp;-,64,64,64,-"
ModelInterface: opt_method="adam",lr=0.001,adam_eps=0.001
Trainer: freq_update=1
Evaluator: keys_in_reply="V"
Stats: trainer_stats="winrate"
ModelSaver: record_dir="./record",save_prefix="save",save_dir="./",latest_symlink="latest"
SingleProcessRun: num_minibatch=5000,num_episode=10000,tqdm=True
========== End of Args ============
Options:
Map: 20 by 20
Handicap: 0
Max tick: 30000
Max #Unit Cmd: 1
Seed: 0
Shuffled: False
[name=][fs=50][type=AI_NN][FoW=True][#frames_in_state=1][args=backup/AI_SIMPLE|start/500|decay/0.99]
[name=][fs=20][type=AI_SIMPLE][FoW=True][#frames_in_state=1]
Output_prompt_filename: ""
Cmd_dumper_prefix: ""
Save_replay_prefix: ""
ContextOptions:
#Game: 1024
#Max_thread: 0
#Collectors: 0
T: 20
Wait per group: False
Maximal #moves (0 = no constraint): 0
#Threads: 0
#Rollout per thread: 1
Verbose: False, Verbose_time: False
Use prior: False
Persistent tree: False
#Pseudo game: 0
Pick method: most_visited
Use time decay: True
Save prev seen units: False
Attach complete info: False
ORIGINAL
Version: 6a769a02dc0ab11e5a7633c337b5d3ce0d0bf511_GIT_UNSTAGED
Num Actions: 9
Num unittype: 6
num planes: 22
#recv_thread = 4
Group 0:
Collector[0] Batchsize: 128 Info: [gid=0][T=1][name=""]
Collector[1] Batchsize: 128 Info: [gid=1][T=1][name=""]
Collector[2] Batchsize: 128 Info: [gid=2][T=1][name=""]
Collector[3] Batchsize: 128 Info: [gid=3][T=1][name=""]
Group 1:
Collector[4] Batchsize: 128 Info: [gid=4][T=20][name=""]
Collector[5] Batchsize: 128 Info: [gid=5][T=20][name=""]
Collector[6] Batchsize: 128 Info: [gid=6][T=20][name=""]
Collector[7] Batchsize: 128 Info: [gid=7][T=20][name=""]
Traceback (most recent call last):
File "train.py", line 23, in
model = env["model_loaders"][0].load_model(GC.params)
File "/home/victorleelk/ELF/rlpytorch/model_loader.py", line 95, in load_model
model.cuda(device_id=args.gpu)
TypeError: cuda() got an unexpected keyword argument 'device_id'
`
my basic software versions are as follows:
`
cudatoolkit 9.0 h13b8566_0
Hi,when I run the command
sh ./train_minirts.sh --gpu 0
,I got this problem.`Warning: argument ValueMatcher/grad_clip_norm cannot be added. Skipped.
PID: 51523
========== Args ============
Loader: handicap_level=0,players="type=AI_NN,fs=50,args=backup/AI_SIMPLE|start/500|decay/0.99;type=AI_SIMPLE,fs=20",max_tick=30000,shuffle_player=False,num_frames_in_state=1,max_unit_cmd=1,seed=0,actor_only=False,model_no_spatial=False,save_replay_prefix=None,output_file=None,cmd_dumper_prefix=None,gpu=0,use_unit_action=False,disable_time_decay=False,use_prev_units=False,attach_complete_info=False,feature_type="ORIGINAL"
ContextArgs: num_games=1024,batchsize=128,game_multi=None,T=20,eval=False,wait_per_group=False,num_collectors=0,verbose_comm=False,verbose_collector=False,mcts_threads=0,mcts_rollout_per_thread=1,mcts_verbose=False,mcts_save_tree_filename="",mcts_verbose_time=False,mcts_use_prior=False,mcts_pseudo_games=0,mcts_pick_method="most_visited"
MoreLabels: additional_labels="id,last_terminal"
ActorCritic:
PolicyGradient: entropy_ratio=0.01,grad_clip_norm=None,min_prob=1e-06,ratio_clamp=10,policy_action_nodes="pi,a"
DiscountedReward: discount=0.99
ValueMatcher: grad_clip_norm=None,value_node="V"
Sampler: sample_policy="epsilon-greedy",greedy=False,epsilon=0.0,sample_nodes="pi,a"
ModelLoader: load=None,onload=None,omit_keys=None,arch="ccpccp;-,64,64,64,-"
ModelInterface: opt_method="adam",lr=0.001,adam_eps=0.001
Trainer: freq_update=1
Evaluator: keys_in_reply="V"
Stats: trainer_stats="winrate"
ModelSaver: record_dir="./record",save_prefix="save",save_dir="./",latest_symlink="latest"
SingleProcessRun: num_minibatch=5000,num_episode=10000,tqdm=True
========== End of Args ============
Options:
Map: 20 by 20
Handicap: 0
Max tick: 30000
Max #Unit Cmd: 1
Seed: 0
Shuffled: False
[name=][fs=50][type=AI_NN][FoW=True][#frames_in_state=1][args=backup/AI_SIMPLE|start/500|decay/0.99]
[name=][fs=20][type=AI_SIMPLE][FoW=True][#frames_in_state=1]
Output_prompt_filename: ""
Cmd_dumper_prefix: ""
Save_replay_prefix: ""
ContextOptions:
#Game: 1024
#Max_thread: 0
#Collectors: 0
T: 20
Wait per group: False
Maximal #moves (0 = no constraint): 0
#Threads: 0
#Rollout per thread: 1
Verbose: False, Verbose_time: False
Use prior: False
Persistent tree: False
#Pseudo game: 0
Pick method: most_visited
Use time decay: True
Save prev seen units: False
Attach complete info: False
ORIGINAL
Version: 6a769a02dc0ab11e5a7633c337b5d3ce0d0bf511_GIT_UNSTAGED
Num Actions: 9
Num unittype: 6
num planes: 22
#recv_thread = 4
Group 0:
Collector[0] Batchsize: 128 Info: [gid=0][T=1][name=""]
Collector[1] Batchsize: 128 Info: [gid=1][T=1][name=""]
Collector[2] Batchsize: 128 Info: [gid=2][T=1][name=""]
Collector[3] Batchsize: 128 Info: [gid=3][T=1][name=""]
Group 1:
Collector[4] Batchsize: 128 Info: [gid=4][T=20][name=""]
Collector[5] Batchsize: 128 Info: [gid=5][T=20][name=""]
Collector[6] Batchsize: 128 Info: [gid=6][T=20][name=""]
Collector[7] Batchsize: 128 Info: [gid=7][T=20][name=""]
Traceback (most recent call last):
File "train.py", line 23, in
model = env["model_loaders"][0].load_model(GC.params)
File "/home/victorleelk/ELF/rlpytorch/model_loader.py", line 95, in load_model
model.cuda(device_id=args.gpu)
TypeError: cuda() got an unexpected keyword argument 'device_id'
`
my basic software versions are as follows:
`
cudatoolkit 9.0 h13b8566_0
cudnn 7.1.2 cuda9.0_0
python 3.6.7 h0371630_0
pytorch 0.4.1 py36_cuda9.0.176_cudnn7.1.2_1 soumith
torchvision 0.2.1 py36_0
`
what is the problem?how can I solve it?Thanks!
The text was updated successfully, but these errors were encountered: