diff --git a/crypten/common/util.py b/crypten/common/util.py index 652f3d6a..2dafdb65 100644 --- a/crypten/common/util.py +++ b/crypten/common/util.py @@ -49,7 +49,7 @@ def chebyshev_series(func, width, terms): n_range = torch.arange(start=0, end=terms).float() x = width * torch.cos((n_range + 0.5) * np.pi / terms) y = func(x) - cos_term = torch.cos(torch.ger(n_range, n_range + 0.5) * np.pi / terms) + cos_term = torch.cos(torch.outer(n_range, n_range + 0.5) * np.pi / terms) coeffs = (2 / terms) * torch.sum(y * cos_term, axis=1) return coeffs diff --git a/examples/bandits/plain_contextual_bandits.py b/examples/bandits/plain_contextual_bandits.py index 7ecc858b..0dd4ea35 100644 --- a/examples/bandits/plain_contextual_bandits.py +++ b/examples/bandits/plain_contextual_bandits.py @@ -81,7 +81,7 @@ def online_learner( # update linear least squares accumulators (using Sherman–Morrison formula): A_inv_context = A_inv[selected_arm, :, :].mv(context) - numerator = torch.ger(A_inv_context, A_inv_context) + numerator = torch.outer(A_inv_context, A_inv_context) denominator = A_inv_context.dot(context).add(1.0) A_inv[selected_arm, :, :].sub_(numerator.div_(denominator)) b[selected_arm, :].add_(context.mul(reward)) diff --git a/test/test_arithmetic.py b/test/test_arithmetic.py index b229fb6b..fb47eb9c 100644 --- a/test/test_arithmetic.py +++ b/test/test_arithmetic.py @@ -345,7 +345,7 @@ def test_dot_ger(self): tensor1 = get_random_test_tensor(is_float=True).squeeze() tensor2 = get_random_test_tensor(is_float=True).squeeze() dot_reference = tensor1.dot(tensor2) - ger_reference = torch.ger(tensor1, tensor2) + ger_reference = torch.outer(tensor1, tensor2) tensor2 = tensor_type(tensor2) diff --git a/test/test_mpc.py b/test/test_mpc.py index 689acaa8..9b38a1e5 100644 --- a/test/test_mpc.py +++ b/test/test_mpc.py @@ -366,7 +366,7 @@ def test_dot_ger(self): tensor1 = self._get_random_test_tensor(is_float=True).squeeze() tensor2 = self._get_random_test_tensor(is_float=True).squeeze() dot_reference = tensor1.dot(tensor2) - ger_reference = torch.ger(tensor1, tensor2) + ger_reference = torch.outer(tensor1, tensor2) tensor2 = tensor_type(tensor2)