Skip to content

Latest commit

 

History

History
 
 

BERT

BERT Inference Using TensorRT

This subfolder of the BERT TensorFlow repository, tested and maintained by NVIDIA, provides scripts to perform high-performance inference using NVIDIA TensorRT.

Table Of Contents

Model overview

BERT, or Bidirectional Encoder Representations from Transformers, is a new method of pre-training language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding paper. NVIDIA's BERT is an optimized version of Google's official implementation, leveraging mixed precision arithmetic and Tensor Cores for faster inference times while maintaining target accuracy.

Other publicly available implementations of BERT include:

  1. NVIDIA PyTorch
  2. Hugging Face
  3. codertimo
  4. gluon-nlp
  5. Google's official implementation

Model architecture

BERT's model architecture is a multi-layer bidirectional Transformer encoder. Based on the model size, we have the following two default configurations of BERT:

Model Hidden layers Hidden unit size Attention heads Feed-forward filter size Max sequence length Parameters
BERT-Base 12 encoder 768 12 4 x 768 512 110M
BERT-Large 24 encoder 1024 16 4 x 1024 512 330M

Typically, the language model is followed by a few task-specific layers. The model used here includes layers for question answering.

TensorRT Inference Pipeline

BERT inference consists of three main stages: tokenization, the BERT model, and finally a projection of the tokenized prediction onto the original text. Since the tokenizer and projection of the final predictions are not nearly as compute-heavy as the model itself, we run them on the host. The BERT model is GPU-accelerated via TensorRT.

The tokenizer splits the input text into tokens that can be consumed by the model. For details on this process, see this tutorial.

To run the BERT model in TensorRT, we construct the model using TensorRT APIs and import the weights from a pre-trained TensorFlow checkpoint from NGC. Finally, a TensorRT engine is generated and serialized to the disk. The various inference scripts then load this engine for inference.

Lastly, the tokens predicted by the model are projected back to the original text to get a final result.

Version Info

The following software version configuration has been tested:

Software Version
Python 3.6.9
TensorRT 7.1.3.4
CUDA 11.0.171

Setup

The following section lists the requirements that you need to meet in order to run the BERT model.

Requirements

This demo BERT application can be run within the TensorRT Open Source build container. If running in a different environment, ensure you have the following packages installed.

Quick Start Guide

  1. Build and launch the TensorRT-OSS build container. On x86 with Ubuntu 18.04 for example:

    cd <TensorRT-OSS>
    ./docker/build.sh --file docker/ubuntu.Dockerfile --tag tensorrt-ubuntu --os 18.04 --cuda 11.0
    ./docker/launch.sh --tag tensorrt-ubuntu --gpus all --release $TRT_RELEASE --source $TRT_SOURCE

    Note: After this point, all commands should be run from within the container.

  2. Build the TensorRT Plugins library from source and install the TensorRT python bindings:

    cd $TRT_SOURCE
    export LD_LIBRARY_PATH=`pwd`/build/out:$LD_LIBRARY_PATH:/tensorrt/lib
    mkdir -p build && cd build
    cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=`pwd`/out
    make -j$(nproc)
    
    pip3 install /tensorrt/python/tensorrt-7.1*-cp36-none-linux_x86_64.whl

    Note: While the workflow and Performance Data presented here are based on plugin library built from source, the BERT sample is also expected to work with pre-compiled libraries shipped with TensorRT releases.

  3. Download the SQuAD dataset and BERT checkpoints:

    cd $TRT_SOURCE/demo/BERT

    Download SQuAD v1.1 training and dev dataset.

    bash scripts/download_squad.sh

    Download Tensorflow checkpoints for BERT large model with sequence length 128 and fp16 weights, fine-tuned for SQuAD v2.0.

    bash scripts/download_model.sh

Note: Since the datasets and checkpoints are stored in the directory mounted from the host, they do not need to be downloaded each time the container is launched.

  1. Build a TensorRT engine. To build an engine, run the builder.py script. For example:

    mkdir -p /workspace/TensorRT/demo/BERT/engines && python3 builder.py -m /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_128_v2/model.ckpt-8144 -o /workspace/TensorRT/demo/BERT/engines/bert_large_128.engine -b 1 -s 128 --fp16 -c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_128_v2

    This will build an engine with a maximum batch size of 1 (-b 1), and sequence length of 128 (-s 128) using mixed precision (--fp16) using the BERT Large V2 FP16 Sequence Length 128 checkpoint (-c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_128_v2).

  2. Run inference. Two options are provided for running the model.

    a. inference.py script This script accepts a passage and question and then runs the engine to generate an answer. For example:

    python3 inference.py -e /workspace/TensorRT/demo/BERT/engines/bert_large_128.engine -p "TensorRT is a high performance deep learning inference platform that delivers low latency and high throughput for apps such as recommenders, speech and image/video on NVIDIA GPUs. It includes parsers to import models, and plugins to support novel ops and layers before applying optimizations for inference. Today NVIDIA is open-sourcing parsers and plugins in TensorRT so that the deep learning community can customize and extend these components to take advantage of powerful TensorRT optimizations for your apps." -q "What is TensorRT?" -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_128_v2/vocab.txt

    b. inference.ipynb Jupyter Notebook The Jupyter Notebook includes a passage and various example questions and allows you to interactively make modifications and see the outcome. To launch the Jupyter Notebook from inside the container, run:

    jupyter notebook --ip 0.0.0.0 inference.ipynb

    Then, use your browser to open the link displayed. The link should look similar to: http://127.0.0.1:8888/?token=<TOKEN>

  3. Run inference with CUDA Graph support.

    A separate python inference_c.py script is provided to run inference with CUDA Graph support. This is necessary since CUDA Graph is only supported through CUDA C/C++ APIs, not pyCUDA. The inference_c.py script uses pybind11 to interface with C/C++ for CUDA graph capturing and launching. The cmdline interface is the same as inference.py except for an extra --enable-graph option.

    mkdir -p build
    cd build; cmake ..
    make; cd ..
    python3 inference_c.py -e /workspace/TensorRT/demo/BERT/engines/bert_large_128.engine --enable-graph -p "TensorRT is a high performance deep learning inference platform that delivers low latency and high throughput for apps such as recommenders, speech and image/video on NVIDIA GPUs. It includes parsers to import models, and plugins to support novel ops and layers before applying optimizations for inference. Today NVIDIA is open-sourcing parsers and plugins in TensorRT so that the deep learning community can customize and extend these components to take advantage of powerful TensorRT optimizations for your apps." -q "What is TensorRT?" -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_128_v2/vocab.txt

    A separate C/C++ inference benchmark executable perf (compiled from perf.cpp) is provided to run inference benchmarks with CUDA Graph. The cmdline interface is the same as perf.py except for an extra --enable_graph option.

    build/perf -e /workspace/TensorRT/demo/BERT/engines/bert_large_128.engine -b 1 -s 128 -w 100 -i 1000 --enable_graph

(Optional) Trying a different configuration

If you would like to run another configuration, you can manually download checkpoints using the included script. For example, run:

bash scripts/download_model.sh base

to download a BERT Base model instead of the default BERT Large model.

To view all available model options, run:

bash scripts/download_model.sh -h

Advanced

The following sections provide greater details on inference with TensorRT.

Scripts and sample code

In the root directory, the most important files are:

  • builder.py - Builds an engine for the specified BERT model
  • Dockerfile - Container which includes dependencies and model checkpoints to run BERT
  • inference.ipynb - Runs inference interactively
  • inference.py - Runs inference with a given passage and question
  • perf.py - Runs inference benchmarks

The scripts/ folder encapsulates all the one-click scripts required for running various supported functionalities, such as:

  • build.sh - Builds a Docker container that is ready to run BERT
  • launch.sh - Launches the container created by the build.sh script.
  • download_model.sh - Downloads pre-trained model checkpoints from NGC
  • inference_benchmark.sh - Runs an inference benchmark and prints results

Other folders included in the root directory are:

  • helpers - Contains helpers for tokenization of inputs

The infer_c/ folder contains all the necessary C/C++ files required for CUDA Graph support.

  • bert_infer.h - Defines necessary data structures for running BERT inference
  • infer_c.cpp - Defines C/C++ interface using pybind11 that can be plugged into inference_c.py
  • perf.cpp - Runs inference benchmarks. It is equivalent to perf.py, with an extra option --enable_graph to enable CUDA Graph support.

Command-line options

To view the available parameters for each script, you can use the help flag (-h).

TensorRT inference process

As mentioned in the Quick Start Guide, two options are provided for running inference:

  1. The inference.py script which accepts a passage and a question and then runs the engine to generate an answer. Alternatively, this script can be used to run inference on the Squad dataset.
  2. The inference.ipynb Jupyter Notebook which includes a passage and various example questions and allows you to interactively make modifications and see the outcome.

Accuracy

Evaluating PTQ (post-training quantization) Int8 Accuracy Using The SQuAD Dataset

  1. Download Tensorflow checkpoints for a BERT Large FP16 SQuAD v2 model with a sequence length of 384:

    bash scripts/download_model.sh large fp16 384 v2
  2. Build an engine:

    Turing and Ampere GPUs

    # QKVToContextPlugin and SkipLayerNormPlugin supported with INT8 I/O. To enable, use -imh and -iln builder flags respectively.
    mkdir -p /workspace/TensorRT/demo/BERT/engines && python3 builder.py -m /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/model.ckpt-8144 -o /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -b 1 -s 384 --int8 --fp16 --strict -c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2 --squad-json ./squad/train-v1.1.json -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt --calib-num 100 -iln -imh

    Xavier GPU

    # Only supports SkipLayerNormPlugin running with INT8 I/O. Use -iln builder flag to enable.
    mkdir -p /workspace/TensorRT/demo/BERT/engines && python3 builder.py -m /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/model.ckpt-8144 -o /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -b 1 -s 384 --int8 --fp16 --strict -c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2 --squad-json ./squad/train-v1.1.json -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt --calib-num 100 -iln 

    Volta GPU

    # No support for QKVToContextPlugin or SkipLayerNormPlugin running with INT8 I/O. Don't specify -imh or -iln in builder flags.
    mkdir -p /workspace/TensorRT/demo/BERT/engines && python3 builder.py -m /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/model.ckpt-8144 -o /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -b 1 -s 384 --int8 --fp16 --strict -c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2 --squad-json ./squad/train-v1.1.json -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt --calib-num 100

    This will build an engine with a maximum batch size of 1 (-b 1), calibration dataset squad (--squad-json ./squad/train-v1.1.json), calibration sentences number 100 (--calib-num 100), and sequence length of 384 (-s 384) using INT8 mixed precision computation where possible (--int8 --fp16 --strict).

  3. Run inference using the squad dataset, and evaluate the F1 score and exact match score:

    python3 inference.py -e /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -s 384 -sq ./squad/dev-v1.1.json -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt -o ./predictions.json
    python3 squad/evaluate-v1.1.py  squad/dev-v1.1.json  ./predictions.json 90

Evaluating QAT (quantization aware training) Int8 Accuracy Using The SQuAD Dataset

  1. Download checkpoint for BERT Large FP16 SQuAD v1.1 model with sequence length of 384:

    bash scripts/download_model.sh pyt v1_1
  2. Build an engine:

    Turing and Ampere GPUs

    # QKVToContextPlugin and SkipLayerNormPlugin supported with INT8 I/O. To enable, use -imh and -iln builder flags respectively.
    mkdir -p /workspace/TensorRT/demo/BERT/engines && python3 builder.py -o /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -b 1 -s 384 --int8 --fp16 --strict -c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2 -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt -x /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_pyt_onnx_large_qa_squad11_amp_fake_quant_v1/bert_large_v1_1_fake_quant.onnx -iln -imh

    Xavier GPU

    # Only supports SkipLayerNormPlugin running with INT8 I/O. Use -iln builder flag to enable.
    mkdir -p /workspace/TensorRT/demo/BERT/engines && python3 builder.py -o /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -b 1 -s 384 --int8 --fp16 --strict -c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2 -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt -x /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_pyt_onnx_large_qa_squad11_amp_fake_quant_v1/bert_large_v1_1_fake_quant.onnx -iln 

    Volta GPU

    # No support for QKVToContextPlugin or SkipLayerNormPlugin running with INT8 I/O. Don't specify -imh or -iln in builder flags.
    mkdir -p /workspace/TensorRT/demo/BERT/engines && python3 builder.py -o /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -b 1 -s 384 --int8 --fp16 --strict -c /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2 -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt -x /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_pyt_onnx_large_qa_squad11_amp_fake_quant_v1/bert_large_v1_1_fake_quant.onnx 

    This will build and engine with a maximum batch size of 1 (-b 1) and sequence length of 384 (-s 384) using INT8 mixed precision computation where possible (--int8 --fp16 --strict).

  3. Run inference using the squad dataset, and evaluate the F1 score and exact match score:

    python3 inference.py -e /workspace/TensorRT/demo/BERT/engines/bert_large_384_int8mix.engine -s 384 -sq ./squad/dev-v1.1.json -v /workspace/TensorRT/demo/BERT/models/fine-tuned/bert_tf_v2_large_fp16_384_v2/vocab.txt -o ./predictions.json
    python3 squad/evaluate-v1.1.py  squad/dev-v1.1.json  ./predictions.json 90

Performance

Benchmarking

The following section shows how to run benchmarks measuring the model performance in inference modes.

TensorRT inference benchmark

The inference benchmark is performed on a single GPU by the inference_benchmark.sh script, which takes the following steps for each set of model parameters:

  1. Downloads checkpoints and builds a TensorRT engine if it does not already exist.

  2. Runs 100 warm-up iteration then runs inference for 1000 to 2000 iterations for each batch size specified in the script, selecting the profile best for each size.

Note: The time measurements do not include the time required to copy inputs to the device and copy outputs to the host.

To run the inference benchmark script, run:

bash scripts/inference_benchmark.sh --gpu <arch>

Options for <arch> are: 'Volta', 'Xavier', 'Turing', 'Ampere'

Note: Some of the configurations in the benchmark script require 16GB of GPU memory. On GPUs with smaller amounts of memory, parts of the benchmark may fail to run.

Also note that BERT Large engines, especially using mixed precision with large batch sizes and sequence lengths may take a couple hours to build.

Results

The following sections provide details on how we achieved our performance and inference.

Inference performance: NVIDIA A100 (40GB)

Our results were obtained by running the scripts/inference_benchmark.sh --gpu Ampere script in the container generated by the TensorRT OSS Dockerfile on NVIDIA A100 with (1x A100 40G) GPUs.

BERT Base
Sequence Length Batch Size INT8 Latency (ms) FP16 Latency (ms)
95th Percentile 99th Percentile Average 95th Percentile 99th Percentile Average
128 1 0.77 0.77 0.77 0.78 0.80 0.78
128 2 0.76 0.77 0.76 0.92 0.93 0.92
128 4 0.93 1.18 0.93 1.19 1.51 1.19
128 8 1.19 1.20 1.19 1.78 1.78 1.77
128 12 1.57 1.57 1.56 2.07 2.08 2.05
128 16 1.88 1.89 1.88 2.54 2.60 2.52
128 24 2.65 2.65 2.64 3.65 3.70 3.61
128 32 3.21 3.22 3.21 4.71 4.74 4.67
128 64 5.69 5.70 5.64 8.87 8.96 8.81
128 128 10.84 10.85 10.70 17.61 17.62 17.44
384 1 1.34 1.35 1.34 1.46 1.46 1.45
384 2 1.56 1.79 1.56 1.85 1.85 1.84
384 4 2.02 2.03 2.02 2.46 2.46 2.45
384 8 2.94 2.95 2.94 3.91 3.92 3.86
384 12 4.07 4.07 4.06 5.54 5.55 5.47
384 16 5.22 5.23 5.21 7.78 7.79 7.69
384 24 7.42 7.42 7.37 10.75 10.76 10.63
384 32 9.92 9.93 9.77 14.58 14.73 14.52
384 64 18.74 18.78 18.61 28.66 28.70 28.39
384 128 36.40 36.42 36.05 55.36 55.90 55.21
BERT Large
Sequence Length Batch Size INT8 Latency (ms) FP16 Latency (ms)
95th Percentile 99th Percentile Average 95th Percentile 99th Percentile Average
128 1 1.60 1.61 1.60 1.87 1.88 1.87
128 2 1.94 1.95 1.94 2.36 2.37 2.35
128 4 2.45 2.46 2.44 3.36 3.37 3.36
128 8 3.82 3.83 3.79 4.98 5.00 4.95
128 12 4.22 4.23 4.22 6.45 6.46 6.38
128 16 5.75 5.75 5.74 8.50 8.53 8.43
128 24 7.10 7.11 7.04 11.47 11.49 11.31
128 32 9.61 9.61 9.51 15.49 15.50 15.25
128 64 17.25 17.25 17.11 29.43 29.73 29.29
128 128 33.25 33.58 33.05 56.98 57.17 56.68
384 1 3.00 3.01 2.99 3.52 3.53 3.51
384 2 3.71 3.72 3.71 4.97 4.99 4.97
384 4 5.08 5.09 5.08 7.01 7.01 6.92
384 8 9.04 9.05 9.04 12.71 12.72 12.67
384 12 11.65 11.71 11.57 18.24 18.25 18.04
384 16 15.63 15.63 15.49 24.24 24.28 23.94
384 24 22.57 22.61 22.36 35.77 35.78 35.38
384 32 29.66 29.66 29.33 47.09 47.11 46.81
384 64 57.20 57.34 56.93 92.12 92.49 91.61
384 128 112.00 112.42 111.24 180.61 181.02 179.56

Inference performance: NVIDIA T4 (16GB)

Our results were obtained by running the scripts/inference_benchmark.sh --gpu Turing script in the container generated by the TensorRT OSS Dockerfile on NVIDIA T4 with (1x T4 16G) GPUs.

BERT Base
Sequence Length Batch Size INT8 Latency (ms) FP16 Latency (ms)
95th Percentile 99th Percentile Average 95th Percentile 99th Percentile Average
128 1 1.67 1.67 1.66 1.82 1.96 1.76
128 2 1.94 1.95 1.89 2.58 2.67 2.50
128 4 2.73 2.80 2.64 4.30 4.34 4.17
128 8 4.93 4.96 4.81 8.85 9.74 8.36
128 12 6.85 7.05 6.70 12.83 13.19 12.34
128 16 9.65 9.89 9.43 17.70 18.27 17.01
128 24 15.04 15.70 14.68 27.00 27.87 26.50
128 32 20.55 21.01 19.88 34.51 34.81 33.83
128 64 40.48 41.29 39.87 67.84 68.57 67.03
128 128 82.17 82.53 80.95 132.78 133.23 131.64
384 1 2.75 2.78 2.67 3.73 3.79 3.63
384 2 4.22 4.38 4.09 6.68 7.27 6.53
384 4 7.87 8.07 7.75 13.22 13.50 12.83
384 8 16.07 16.13 15.77 28.01 28.72 27.48
384 12 23.87 24.15 23.53 40.96 41.51 39.39
384 16 31.87 32.25 30.99 51.56 51.83 51.00
384 24 48.14 48.33 47.22 82.06 82.56 80.13
384 32 64.07 64.48 63.19 102.64 103.33 101.20
384 64 129.58 130.37 125.79 215.79 216.38 213.87
384 128 258.69 259.74 245.91 414.96 415.57 413.16
BERT Large
Sequence Length Batch Size INT8 Latency (ms) FP16 Latency (ms)
95th Percentile 99th Percentile Average 95th Percentile 99th Percentile Average
128 1 4.20 4.35 4.10 5.05 5.21 4.91
128 2 5.41 5.70 5.30 7.99 8.31 7.79
128 4 8.48 8.68 8.32 14.87 15.28 14.44
128 8 15.20 15.22 14.91 29.66 30.20 28.97
128 12 23.54 23.72 23.21 45.48 45.90 44.91
128 16 31.04 31.38 30.46 62.06 62.61 60.27
128 24 48.00 48.59 47.44 84.17 84.50 83.43
128 32 64.41 64.77 63.54 113.60 113.98 112.32
128 64 128.03 128.45 126.36 223.89 224.83 220.75
128 128 246.96 247.80 245.00 441.52 442.26 439.65
384 1 7.88 8.06 7.73 11.84 12.11 11.51
384 2 13.00 13.18 12.80 23.59 24.13 23.12
384 4 25.14 25.32 24.70 46.66 46.69 45.81
384 8 50.14 50.65 49.41 86.74 87.47 85.40
384 12 72.92 73.01 71.86 127.10 127.44 125.66
384 16 97.00 97.26 95.47 169.41 169.93 167.55
384 24 149.70 150.28 148.00 258.26 258.88 255.79
384 32 192.74 193.85 190.59 339.87 340.55 337.86
384 64 385.85 387.66 383.62 692.10 692.88 689.73
384 128 780.95 781.81 778.82 1367.61 1368.85 1365.16

Inference performance: NVIDIA V100 (16GB)

Our results were obtained by running the scripts/inference_benchmark.sh --gpu Volta script in the container generated by the TensorRT OSS Dockerfile on NVIDIA V100 with (1x V100 16G) GPUs.

BERT Base
Sequence Length Batch Size INT8 Latency (ms) FP16 Latency (ms)
95th Percentile 99th Percentile Average 95th Percentile 99th Percentile Average
128 1 1.39 1.39 1.39 1.23 1.23 1.23
128 2 1.76 1.76 1.75 1.49 1.49 1.48
128 4 2.35 2.36 2.34 2.12 2.13 2.11
128 8 3.69 3.7 3.65 3.35 3.36 3.32
128 12 4.79 4.83 4.75 4.65 4.67 4.61
128 16 6.7 6.72 6.64 6.3 6.35 6.25
128 24 8.95 8.96 8.9 8.68 8.71 8.6
128 32 14.74 14.77 14.59 14.16 14.18 14.06
128 64 24.12 24.14 23.98 22.57 22.63 22.47
128 128 45.59 45.65 45.53 43.45 43.51 43.25
384 1 2.17 2.18 2.16 1.98 1.98 1.97
384 2 3.4 3.42 3.38 3.11 3.11 3.08
384 4 5.61 5.62 5.57 5.5 5.52 5.46
384 8 10.58 10.63 10.49 10.26 10.29 10.17
384 12 16.55 16.57 16.43 15.8 15.83 15.69
384 16 21.15 21.19 21.04 20.09 20.12 19.94
384 24 30.95 31 30.77 29.44 29.51 29.24
384 32 47.94 48.03 47.66 47.97 48.05 47.56
384 64 81.8 81.91 81.62 76.84 77.05 76.4
384 128 159.87 160.06 159.47 151.4 151.61 150.85
BERT Large
Sequence Length Batch Size INT8 Latency (ms) FP16 Latency (ms)
95th Percentile 99th Percentile Average 95th Percentile 99th Percentile Average
128 1 3.43 3.44 3.42 3.06 3.07 3.05
128 2 4.35 4.37 4.33 3.79 3.8 3.79
128 4 6.8 6.83 6.74 6.02 6.05 5.98
128 8 11 11.07 10.93 10.57 10.62 10.47
128 12 16.28 16.31 16.15 15.06 15.1 14.96
128 16 20.33 20.44 20.13 20.47 20.51 20.25
128 24 30.63 30.66 30.33 28.65 28.8 28.48
128 32 45.28 45.35 45.09 46.88 47.02 46.43
128 64 75.33 75.57 74.82 71.88 71.97 71.47
128 128 148.1 148.31 147.59 140.81 140.97 140.35
384 1 6.16 6.17 6.12 5.7 5.72 5.66
384 2 10.25 10.27 10.18 9.46 9.49 9.37
384 4 18.44 18.5 18.27 17.22 17.28 17.09
384 8 34.67 34.71 34.41 32.71 32.79 32.45
384 12 49.04 49.13 48.79 47.53 47.77 47.27
384 16 67.08 67.21 66.75 62.86 63.01 62.76
384 24 94.22 94.39 94.04 92.08 92.2 91.86
384 32 148.96 149.11 148.59 147.7 147.84 147.23
384 64 245.91 246.09 244.67 240.16 240.43 239.07