-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathexport.py
174 lines (145 loc) · 4.9 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
import subprocess
import torch
from onnx import load_model, save_model
from onnxruntime.tools.symbolic_shape_infer import SymbolicShapeInference
from depth_anything.dpt import DPT_DINOv2
from depth_anything.util.transform import load_image
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
choices=["s", "b", "l"],
required=False,
help="Model size variant. Available options: 's', 'b', 'l'.",
)
parser.add_argument(
"--output",
type=str,
default=None,
required=False,
help="Path to save the ONNX model.",
)
parser.add_argument(
"--precision",
type=str,
default="float32",
required=False,
help="Precision for the model. Available options: 'float32', 'float16'.",
)
parser.add_argument(
"--slim",
action="store_true",
help="Whether to slim the model using ONNXSlim.",
)
parser.add_argument(
"--export-all",
action="store_true",
help="Whether to export all models. With all precisions and with slimming, if enabled.",
)
parser.add_argument(
"--opset",
type=int,
default=19,
required=False,
help="ONNX opset version.",
)
return parser.parse_args()
def load_depth_anything(model, device, precision="float32"):
# Load model params
if model == "s":
depth_anything = DPT_DINOv2(
encoder="vits", features=64, out_channels=[48, 96, 192, 384]
)
elif model == "b":
depth_anything = DPT_DINOv2(
encoder="vitb", features=128, out_channels=[96, 192, 384, 768]
)
else: # model == "l"
depth_anything = DPT_DINOv2(
encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024]
)
depth_anything.to(device).load_state_dict(
torch.hub.load_state_dict_from_url(
f"https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vit{model}14.pth",
map_location="cpu",
),
strict=True,
)
depth_anything.eval()
if precision == "float16":
return depth_anything.half()
else:
return depth_anything
def export_onnx(
depth_anything,
image,
output: str,
opset: int = 19,
):
torch.onnx.export(
depth_anything,
image,
output,
input_names=["image"],
output_names=["depth"],
opset_version=opset,
dynamic_axes={
"image": {2: "height", 3: "width"},
"depth": {2: "height", 3: "width"},
},
)
save_model(
SymbolicShapeInference.infer_shapes(load_model(output), auto_merge=True),
output,
)
def slim_model(model: str):
output = model.replace(".onnx", "_slim.onnx")
try:
subprocess.run(["python", "-m", "onnxslim", model, output], stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
except Exception as e:
print(f"Failed to slim model: {e}")
return
def main(
model: str,
output: str = None,
export_all: bool = False,
slim: bool = False,
precision: str = "float32",
opset: int = 19,
):
# Device for tracing (use whichever has enough free memory)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Sample image for tracing (dimensions don't matter)
image, _ = load_image("assets/sacre_coeur1.jpg")
image = torch.from_numpy(image).to(device)
# Export all models with all precision, quick and dirty
if export_all:
print("Exporting all models with all precisions... This may take a while.")
for model in ["s", "b", "l"]:
for precision in ["float32", "float16"]:
print(f"Exporting model: {model} with precision: {precision}")
output = f"weights/depth_anything_vit{model}14_{precision}.onnx"
image = image.float() if precision == "float32" else image.half()
depth_anything = load_depth_anything(model, device, precision)
depth_anything = export_onnx(depth_anything, image, output, opset)
if slim:
slim_model(output)
print(f"Exported model: {model} with precision: {precision}")
print("All models exported.")
elif model is not None:
# Handle args
if output is None:
output = f"weights/depth_anything_vit{model}14_{precision}.onnx"
if precision == "float16":
image = image.half()
depth_anything = load_depth_anything(model, device, precision)
depth_anything = export_onnx(depth_anything, image, output, opset)
if slim:
slim_model(output)
else:
print("No model specified.")
if __name__ == "__main__":
args = parse_args()
main(**vars(args))