-
Notifications
You must be signed in to change notification settings - Fork 177
/
Training.py
166 lines (139 loc) · 7.17 KB
/
Training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from sacred import Experiment
from Config import config_ingredient
import tensorflow as tf
import numpy as np
import os
import Datasets
import Utils
import Models.UnetSpectrogramSeparator
import Models.UnetAudioSeparator
import Test
import Evaluate
import functools
from tensorflow.contrib.signal.python.ops import window_ops
ex = Experiment('Waveunet Training', ingredients=[config_ingredient])
@ex.config
# Executed for training, sets the seed value to the Sacred config so that Sacred fixes the Python and Numpy RNG to the same state everytime.
def set_seed():
seed = 1337
@config_ingredient.capture
def train(model_config, experiment_id, load_model=None):
# Determine input and output shapes
disc_input_shape = [model_config["batch_size"], model_config["num_frames"], 0] # Shape of input
if model_config["network"] == "unet":
separator_class = Models.UnetAudioSeparator.UnetAudioSeparator(model_config)
elif model_config["network"] == "unet_spectrogram":
separator_class = Models.UnetSpectrogramSeparator.UnetSpectrogramSeparator(model_config)
else:
raise NotImplementedError
sep_input_shape, sep_output_shape = separator_class.get_padding(np.array(disc_input_shape))
separator_func = separator_class.get_output
# Placeholders and input normalisation
dataset = Datasets.get_dataset(model_config, sep_input_shape, sep_output_shape, partition="train")
iterator = dataset.make_one_shot_iterator()
batch = iterator.get_next()
print("Training...")
# BUILD MODELS
# Separator
separator_sources = separator_func(batch["mix"], True, not model_config["raw_audio_loss"], reuse=False) # Sources are output in order [acc, voice] for voice separation, [bass, drums, other, vocals] for multi-instrument separation
# Supervised objective: MSE for raw audio, MAE for magnitude space (Jansson U-Net)
separator_loss = 0
for key in model_config["source_names"]:
real_source = batch[key]
sep_source = separator_sources[key]
if model_config["network"] == "unet_spectrogram" and not model_config["raw_audio_loss"]:
window = functools.partial(window_ops.hann_window, periodic=True)
stfts = tf.contrib.signal.stft(tf.squeeze(real_source, 2), frame_length=1024, frame_step=768,
fft_length=1024, window_fn=window)
real_mag = tf.abs(stfts)
separator_loss += tf.reduce_mean(tf.abs(real_mag - sep_source))
else:
separator_loss += tf.reduce_mean(tf.square(real_source - sep_source))
separator_loss = separator_loss / float(model_config["num_sources"]) # Normalise by number of sources
# TRAINING CONTROL VARIABLES
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False, dtype=tf.int64)
increment_global_step = tf.assign(global_step, global_step + 1)
# Set up optimizers
separator_vars = Utils.getTrainableVariables("separator")
print("Sep_Vars: " + str(Utils.getNumParams(separator_vars)))
print("Num of variables" + str(len(tf.global_variables())))
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
with tf.variable_scope("separator_solver"):
separator_solver = tf.train.AdamOptimizer(learning_rate=model_config["init_sup_sep_lr"]).minimize(separator_loss, var_list=separator_vars)
# SUMMARIES
tf.summary.scalar("sep_loss", separator_loss, collections=["sup"])
sup_summaries = tf.summary.merge_all(key='sup')
# Start session and queue input threads
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(model_config["log_dir"] + os.path.sep + str(experiment_id),graph=sess.graph)
# CHECKPOINTING
# Load pretrained model to continue training, if we are supposed to
if load_model != None:
restorer = tf.train.Saver(tf.global_variables(), write_version=tf.train.SaverDef.V2)
print("Num of variables" + str(len(tf.global_variables())))
restorer.restore(sess, load_model)
print('Pre-trained model restored from file ' + load_model)
saver = tf.train.Saver(tf.global_variables(), write_version=tf.train.SaverDef.V2)
# Start training loop
_global_step = sess.run(global_step)
_init_step = _global_step
for _ in range(model_config["epoch_it"]):
# TRAIN SEPARATOR
_, _sup_summaries = sess.run([separator_solver, sup_summaries])
writer.add_summary(_sup_summaries, global_step=_global_step)
# Increment step counter, check if maximum iterations per epoch is achieved and stop in that case
_global_step = sess.run(increment_global_step)
# Epoch finished - Save model
print("Finished epoch!")
save_path = saver.save(sess, model_config["model_base_dir"] + os.path.sep + str(experiment_id) + os.path.sep + str(experiment_id), global_step=int(_global_step))
# Close session, clear computational graph
writer.flush()
writer.close()
sess.close()
tf.reset_default_graph()
return save_path
@config_ingredient.capture
def optimise(model_config, experiment_id):
epoch = 0
best_loss = 10000
model_path = None
best_model_path = None
for i in range(2):
worse_epochs = 0
if i==1:
print("Finished first round of training, now entering fine-tuning stage")
model_config["batch_size"] *= 2
model_config["init_sup_sep_lr"] = 1e-5
while worse_epochs < model_config["worse_epochs"]: # Early stopping on validation set after a few epochs
print("EPOCH: " + str(epoch))
model_path = train(load_model=model_path)
curr_loss = Test.test(model_config, model_folder=str(experiment_id), partition="valid", load_model=model_path)
epoch += 1
if curr_loss < best_loss:
worse_epochs = 0
print("Performance on validation set improved from " + str(best_loss) + " to " + str(curr_loss))
best_model_path = model_path
best_loss = curr_loss
else:
worse_epochs += 1
print("Performance on validation set worsened to " + str(curr_loss))
print("TRAINING FINISHED - TESTING WITH BEST MODEL " + best_model_path)
test_loss = Test.test(model_config, model_folder=str(experiment_id), partition="test", load_model=best_model_path)
return best_model_path, test_loss
@ex.automain
def run(cfg):
model_config = cfg["model_config"]
print("SCRIPT START")
# Create subfolders if they do not exist to save results
for dir in [model_config["model_base_dir"], model_config["log_dir"]]:
if not os.path.exists(dir):
os.makedirs(dir)
# Optimize in a supervised fashion until validation loss worsens
sup_model_path, sup_loss = optimise()
print("Supervised training finished! Saved model at " + sup_model_path + ". Performance: " + str(sup_loss))
# Evaluate trained model on MUSDB
Evaluate.produce_musdb_source_estimates(model_config, sup_model_path, model_config["musdb_path"], model_config["estimates_path"])