forked from ruotianluo/self-critical.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_utils.py
287 lines (245 loc) · 12.4 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from json import encoder
import random
import string
import time
import os
import sys
import misc.utils as utils
# load coco-caption if available
try:
sys.path.append("coco-caption")
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
except:
print('Warning: coco-caption not available')
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['the']
def count_bad(sen):
sen = sen.split(' ')
if sen[-1] in bad_endings:
return 1
else:
return 0
def getCOCO(dataset):
if 'coco' in dataset:
annFile = 'coco-caption/annotations/captions_val2014.json'
elif 'flickr30k' in dataset or 'f30k' in dataset:
annFile = 'data/f30k_captions4eval.json'
return COCO(annFile)
def language_eval(dataset, preds, preds_n, eval_kwargs, split):
model_id = eval_kwargs['id']
eval_oracle = eval_kwargs.get('eval_oracle', 0)
# create output dictionary
out = {}
if len(preds_n) > 0:
# vocab size and novel sentences
if 'coco' in dataset:
dataset_file = 'data/dataset_coco.json'
elif 'flickr30k' in dataset or 'f30k' in dataset:
dataset_file = 'data/dataset_flickr30k.json'
training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']])
generated_sentences = set([_['caption'] for _ in preds_n])
novels = generated_sentences - training_sentences
out['novel_sentences'] = float(len(novels)) / len(preds_n)
tmp = [_.split() for _ in generated_sentences]
words = []
for _ in tmp:
words += _
out['vocab_size'] = len(set(words))
# encoder.FLOAT_REPR = lambda o: format(o, '.3f')
cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json')
coco = getCOCO(dataset)
valids = coco.getImgIds()
# filter results to only those in MSCOCO validation set
preds_filt = [p for p in preds if p['image_id'] in valids]
mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt)
mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt)
print('using %d/%d predictions' % (len(preds_filt), len(preds)))
json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...
cocoRes = coco.loadRes(cache_path)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
for metric, score in cocoEval.eval.items():
out[metric] = score
# Add mean perplexity
out['perplexity'] = mean_perplexity
out['entropy'] = mean_entropy
imgToEval = cocoEval.imgToEval
for k in list(imgToEval.values())[0]['SPICE'].keys():
if k != 'All':
out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()])
out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean()
for p in preds_filt:
image_id, caption = p['image_id'], p['caption']
imgToEval[image_id]['caption'] = caption
if len(preds_n) > 0:
import eval_multi
cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json')
spice_n = eval_multi.eval_spice_n(dataset, preds_n, model_id, split)
out.update(spice_n['overall'])
div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split)
out.update(div_stats['overall'])
if eval_oracle:
oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split)
out.update(oracle['overall'])
else:
oracle = None
self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split)
out.update(self_cider['overall'])
with open(cache_path_n, 'w') as outfile:
json.dump({'spice_n': spice_n, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile)
out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt))
outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
with open(outfile_path, 'w') as outfile:
json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)
return out
def eval_split(model, crit, loader, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
verbose_beam = eval_kwargs.get('verbose_beam', 1)
verbose_loss = eval_kwargs.get('verbose_loss', 1)
num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
split = eval_kwargs.get('split', 'val')
lang_eval = eval_kwargs.get('language_eval', 0)
dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration
# Make sure in the evaluation mode
model.eval()
loader.reset_iterator(split)
n = 0
loss = 0
loss_sum = 0
loss_evals = 1e-8
predictions = []
n_predictions = [] # when sample_n > 1
while True:
data = loader.get_batch(split)
n = n + len(data['infos'])
if data.get('labels', None) is not None and verbose_loss:
# forward the model to get loss
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']]
tmp = [_.cuda() if _ is not None else _ for _ in tmp]
fc_feats, att_feats, labels, masks, att_masks = tmp
with torch.no_grad():
loss = crit(model(fc_feats, att_feats, labels, att_masks), labels[:,1:], masks[:,1:]).item()
loss_sum = loss_sum + loss
loss_evals = loss_evals + 1
# forward the model to also get generated samples for each image
# Only leave one feature for each image, in case duplicate sample
tmp = [data['fc_feats'],
data['att_feats'],
data['att_masks']]
tmp = [_.cuda() if _ is not None else _ for _ in tmp]
fc_feats, att_feats, att_masks = tmp
with torch.no_grad():
tmp_eval_kwargs = eval_kwargs.copy()
tmp_eval_kwargs.update({'sample_n': 1})
seq, seq_logprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
seq = seq.data
entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).float().sum(1)+1)
perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).float().sum(1)+1)
# Print beam search
if beam_size > 1 and verbose_beam:
for i in range(loader.batch_size):
print('\n'.join([utils.decode_sequence(loader.get_vocab(), _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]]))
print('--' * 10)
sents = utils.decode_sequence(loader.get_vocab(), seq)
for k, sent in enumerate(sents):
entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()}
if eval_kwargs.get('dump_path', 0) == 1:
entry['file_name'] = data['infos'][k]['file_path']
predictions.append(entry)
if eval_kwargs.get('dump_images', 0) == 1:
# dump the raw image to vis/ folder
cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross
print(cmd)
os.system(cmd)
if verbose:
print('image %s: %s' %(entry['image_id'], entry['caption']))
if sample_n > 1:
eval_split_n(model, n_predictions, loader, [fc_feats, att_feats, att_masks, data], eval_kwargs)
ix0 = data['bounds']['it_pos_now']
ix1 = data['bounds']['it_max']
if num_images != -1:
ix1 = min(ix1, num_images)
else:
num_images = ix1
for i in range(n - ix1):
predictions.pop()
if verbose:
print('evaluating validation preformance... %d/%d (%f)' %(ix0 - 1, ix1, loss))
if num_images >= 0 and n >= num_images:
break
lang_stats = None
if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]:
n_predictions = sorted(n_predictions, key=lambda x: x['perplexity'])
if not os.path.isdir('eval_results'):
os.mkdir('eval_results')
torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth'))
if lang_eval == 1:
lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split)
# Switch back to training mode
model.train()
return loss_sum/loss_evals, predictions, lang_stats
# Only run when sample_n > 0
def eval_split_n(model, n_predictions, loader, input_data, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
sample_n_method = eval_kwargs.get('sample_n_method', 'sample')
fc_feats, att_feats, att_masks, data = input_data
tmp_eval_kwargs = eval_kwargs.copy()
if sample_n_method == 'bs':
# case 1 sample_n == beam size
tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax
with torch.no_grad():
model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
for k in range(loader.batch_size):
_sents = utils.decode_sequence(loader.get_vocab(), torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)]))
for sent in _sents:
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
n_predictions.append(entry)
# case 2 sample / gumbel / topk sampling/ nucleus sampling
elif sample_n_method == 'sample' or \
sample_n_method == 'gumbel' or \
sample_n_method.startswith('top'):
tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample
with torch.no_grad():
_seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
_sents = utils.decode_sequence(loader.get_vocab(), _seq)
_perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).float().sum(1)+1)
for k, sent in enumerate(_sents):
entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()}
n_predictions.append(entry)
elif sample_n_method == 'dbs':
# Use diverse beam search
tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax
with torch.no_grad():
model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
for k in range(loader.batch_size):
_sents = utils.decode_sequence(loader.get_vocab(), torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)]))
for sent in _sents:
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
n_predictions.append(entry)
else:
tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax
with torch.no_grad():
_seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
_sents = utils.decode_sequence(loader.get_vocab(), _seq)
for k, sent in enumerate(_sents):
entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent}
n_predictions.append(entry)
if verbose:
for entry in sorted(n_predictions[-loader.batch_size * sample_n:], key=lambda x: x['image_id']):
print('image %s: %s' %(entry['image_id'], entry['caption']))