From 43a491a8edaaa9b6a9c56c2784c9995f5d92ec5f Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 9 Sep 2024 16:36:47 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- docs/render/orphaned_nb.ipynb | 3 +- myst_nb/__init__.py | 1 + myst_nb/cli.py | 1 + myst_nb/core/config.py | 1 + myst_nb/core/execute/base.py | 1 + myst_nb/core/execute/cache.py | 1 + myst_nb/core/execute/direct.py | 1 + myst_nb/core/execute/inline.py | 1 + myst_nb/core/lexers.py | 1 + myst_nb/core/loggers.py | 1 + myst_nb/core/nb_to_tokens.py | 1 + myst_nb/core/read.py | 1 + myst_nb/core/render.py | 1 + myst_nb/core/utils.py | 1 + myst_nb/core/variables.py | 1 + myst_nb/docutils_.py | 1 + myst_nb/ext/eval/__init__.py | 7 +- myst_nb/ext/execution_tables.py | 1 + myst_nb/ext/glue/__init__.py | 1 + myst_nb/ext/glue/crossref.py | 1 + myst_nb/ext/glue/directives.py | 7 +- myst_nb/ext/glue/domain.py | 1 + myst_nb/ext/glue/roles.py | 1 + myst_nb/ext/glue/utils.py | 1 + myst_nb/ext/utils.py | 1 + myst_nb/sphinx_.py | 1 + myst_nb/sphinx_ext.py | 1 + myst_nb/warnings_.py | 1 + tests/notebooks/basic_failing.ipynb | 82 +++++----- tests/notebooks/basic_run.ipynb | 96 +++++------ tests/notebooks/basic_stderr.ipynb | 116 ++++++------- tests/notebooks/basic_unrun.ipynb | 84 +++++----- tests/notebooks/complex_outputs.ipynb | 33 ++-- tests/notebooks/complex_outputs_unrun.ipynb | 28 ++-- tests/notebooks/ipywidgets.ipynb | 28 ++-- tests/notebooks/merge_streams.ipynb | 153 +++++++++--------- tests/notebooks/metadata_figure.ipynb | 41 ++--- tests/notebooks/metadata_image.ipynb | 41 ++--- tests/notebooks/metadata_image_output.ipynb | 60 +++---- tests/notebooks/sleep_10.ipynb | 3 +- .../notebooks/sleep_10_metadata_timeout.ipynb | 5 +- tests/notebooks/unknown_mimetype.ipynb | 78 ++++----- tests/notebooks/with_glue.ipynb | 13 +- tests/test_cli.py | 1 + tests/test_codecell_file.py | 1 + .../test_codecell_file.ipynb | 2 +- .../test_codecell_file_warnings.ipynb | 2 +- tests/test_docutils.py | 1 + tests/test_eval.py | 1 + tests/test_execute.py | 1 + .../test_execute/test_allow_errors_auto.ipynb | 2 +- .../test_allow_errors_cache.ipynb | 2 +- .../test_basic_failing_auto.ipynb | 2 +- .../test_basic_failing_cache.ipynb | 2 +- .../test_basic_failing_inline.ipynb | 2 +- .../test_execute/test_basic_unrun_auto.ipynb | 2 +- .../test_execute/test_basic_unrun_cache.ipynb | 2 +- .../test_basic_unrun_inline.ipynb | 2 +- .../test_complex_outputs_unrun_auto.ipynb | 28 ++-- .../test_complex_outputs_unrun_cache.ipynb | 28 ++-- .../test_custom_convert_auto.ipynb | 5 +- .../test_custom_convert_cache.ipynb | 5 +- .../test_jupyter_cache_path.ipynb | 2 +- tests/test_execute/test_no_execute.ipynb | 2 +- tests/test_glue.py | 1 + tests/test_parser.py | 1 + tests/test_render_outputs.py | 1 + tests/test_text_based/test_basic_run.ipynb | 2 +- .../test_basic_run_exec_off.ipynb | 2 +- 69 files changed, 535 insertions(+), 470 deletions(-) diff --git a/docs/render/orphaned_nb.ipynb b/docs/render/orphaned_nb.ipynb index d9bc3d94..514ec020 100644 --- a/docs/render/orphaned_nb.ipynb +++ b/docs/render/orphaned_nb.ipynb @@ -33,8 +33,9 @@ ], "source": [ "from myst_nb import glue\n", + "\n", "glue(\"var_text\", \"My orphaned variable!\")\n", - "glue(\"var_float\", 1.0/3.0)" + "glue(\"var_float\", 1.0 / 3.0)" ] } ], diff --git a/myst_nb/__init__.py b/myst_nb/__init__.py index 05bec83f..b0af2c4e 100644 --- a/myst_nb/__init__.py +++ b/myst_nb/__init__.py @@ -1,4 +1,5 @@ """A docutils/sphinx parser for Jupyter Notebooks.""" + __version__ = "1.1.1" diff --git a/myst_nb/cli.py b/myst_nb/cli.py index 58637d03..a96aa260 100644 --- a/myst_nb/cli.py +++ b/myst_nb/cli.py @@ -1,4 +1,5 @@ """A basic CLI for quickstart of a myst_nb project.""" + from __future__ import annotations import argparse diff --git a/myst_nb/core/config.py b/myst_nb/core/config.py index 023cccac..c20ce144 100644 --- a/myst_nb/core/config.py +++ b/myst_nb/core/config.py @@ -1,4 +1,5 @@ """Configuration for myst-nb.""" + import dataclasses as dc from enum import Enum from typing import Any, Callable, Dict, Iterable, Literal, Optional, Sequence, Tuple diff --git a/myst_nb/core/execute/base.py b/myst_nb/core/execute/base.py index befb6d29..21570315 100644 --- a/myst_nb/core/execute/base.py +++ b/myst_nb/core/execute/base.py @@ -1,4 +1,5 @@ """Module for executing notebooks.""" + from __future__ import annotations from pathlib import Path diff --git a/myst_nb/core/execute/cache.py b/myst_nb/core/execute/cache.py index f7a26101..d3966b20 100644 --- a/myst_nb/core/execute/cache.py +++ b/myst_nb/core/execute/cache.py @@ -1,4 +1,5 @@ """Execute a notebook from the cache.""" + from __future__ import annotations from contextlib import nullcontext, suppress diff --git a/myst_nb/core/execute/direct.py b/myst_nb/core/execute/direct.py index a8e3e55f..e82624cb 100644 --- a/myst_nb/core/execute/direct.py +++ b/myst_nb/core/execute/direct.py @@ -1,4 +1,5 @@ """Execute a notebook directly.""" + from __future__ import annotations from contextlib import nullcontext diff --git a/myst_nb/core/execute/inline.py b/myst_nb/core/execute/inline.py index 13d20786..06078d04 100644 --- a/myst_nb/core/execute/inline.py +++ b/myst_nb/core/execute/inline.py @@ -1,4 +1,5 @@ """Execute a notebook inline.""" + from __future__ import annotations import asyncio diff --git a/myst_nb/core/lexers.py b/myst_nb/core/lexers.py index 2d4978b6..d49aa3a5 100644 --- a/myst_nb/core/lexers.py +++ b/myst_nb/core/lexers.py @@ -1,4 +1,5 @@ """Pygments lexers""" + from __future__ import annotations import re diff --git a/myst_nb/core/loggers.py b/myst_nb/core/loggers.py index d898d364..960d5be6 100644 --- a/myst_nb/core/loggers.py +++ b/myst_nb/core/loggers.py @@ -9,6 +9,7 @@ ``logger.warning("message", line=1, subtype="foo")`` """ + import logging from typing import Union diff --git a/myst_nb/core/nb_to_tokens.py b/myst_nb/core/nb_to_tokens.py index c8e48f03..8f4d17cb 100644 --- a/myst_nb/core/nb_to_tokens.py +++ b/myst_nb/core/nb_to_tokens.py @@ -1,4 +1,5 @@ """Module for parsing notebooks to Markdown-it tokens.""" + from __future__ import annotations from typing import Any diff --git a/myst_nb/core/read.py b/myst_nb/core/read.py index 6951f34a..9a8147ba 100644 --- a/myst_nb/core/read.py +++ b/myst_nb/core/read.py @@ -1,4 +1,5 @@ """Module for reading notebook formats from a string input.""" + from __future__ import annotations import dataclasses as dc diff --git a/myst_nb/core/render.py b/myst_nb/core/render.py index 14b82816..61347590 100644 --- a/myst_nb/core/render.py +++ b/myst_nb/core/render.py @@ -3,6 +3,7 @@ Note, this module purposely does not import any Sphinx modules at the top-level, in order for docutils-only use. """ + from __future__ import annotations from binascii import a2b_base64 diff --git a/myst_nb/core/utils.py b/myst_nb/core/utils.py index d1165712..12331541 100644 --- a/myst_nb/core/utils.py +++ b/myst_nb/core/utils.py @@ -1,4 +1,5 @@ """Shared utilities.""" + from __future__ import annotations import re diff --git a/myst_nb/core/variables.py b/myst_nb/core/variables.py index 0cfffa5f..13911b1a 100644 --- a/myst_nb/core/variables.py +++ b/myst_nb/core/variables.py @@ -1,4 +1,5 @@ """Utilities for rendering code output variables.""" + from __future__ import annotations from ast import literal_eval diff --git a/myst_nb/docutils_.py b/myst_nb/docutils_.py index e3585584..06f80968 100644 --- a/myst_nb/docutils_.py +++ b/myst_nb/docutils_.py @@ -1,4 +1,5 @@ """The docutils parser implementation for myst-nb.""" + from __future__ import annotations from dataclasses import dataclass, field diff --git a/myst_nb/ext/eval/__init__.py b/myst_nb/ext/eval/__init__.py index 52c04cd2..03769687 100644 --- a/myst_nb/ext/eval/__init__.py +++ b/myst_nb/ext/eval/__init__.py @@ -1,4 +1,5 @@ """Roles/directives for evaluating variables in the notebook.""" + from __future__ import annotations from functools import partial @@ -161,9 +162,9 @@ def run(self): render: dict[str, Any] = {} for key in ("alt", "height", "width", "scale", "class"): if key in self.options: - render.setdefault("image", {})[ - key.replace("classes", "class") - ] = self.options[key] + render.setdefault("image", {})[key.replace("classes", "class")] = ( + self.options[key] + ) mime_nodes = render_variable_outputs( data, self.document, self.line, self.source, render=render diff --git a/myst_nb/ext/execution_tables.py b/myst_nb/ext/execution_tables.py index 3c7c5204..63b67137 100644 --- a/myst_nb/ext/execution_tables.py +++ b/myst_nb/ext/execution_tables.py @@ -4,6 +4,7 @@ which is then replaced by a table of statistics in a post-transformation (once all the documents have been executed and these statistics are available). """ + from __future__ import annotations from datetime import datetime diff --git a/myst_nb/ext/glue/__init__.py b/myst_nb/ext/glue/__init__.py index 8f35284a..a96f3438 100644 --- a/myst_nb/ext/glue/__init__.py +++ b/myst_nb/ext/glue/__init__.py @@ -1,6 +1,7 @@ """Functionality for storing special data in notebook code cells, which can then be inserted into the document body. """ + from __future__ import annotations from typing import TYPE_CHECKING, Any diff --git a/myst_nb/ext/glue/crossref.py b/myst_nb/ext/glue/crossref.py index f2f0c76c..1cc8c455 100644 --- a/myst_nb/ext/glue/crossref.py +++ b/myst_nb/ext/glue/crossref.py @@ -3,6 +3,7 @@ Note, we restrict this to a only a subset of mime-types and data -> nodes transforms, since adding these nodes in a post-transform will not apply any transforms to them. """ + from __future__ import annotations from functools import lru_cache diff --git a/myst_nb/ext/glue/directives.py b/myst_nb/ext/glue/directives.py index 4d42c15a..faf2ba76 100644 --- a/myst_nb/ext/glue/directives.py +++ b/myst_nb/ext/glue/directives.py @@ -3,6 +3,7 @@ We intentionally do no import sphinx in this module, in order to allow docutils-only use without sphinx installed. """ + from typing import TYPE_CHECKING, Any, Dict, List from docutils import nodes @@ -151,9 +152,9 @@ def run(self): render: Dict[str, Any] = {} for key in ("alt", "height", "width", "scale", "class"): if key in self.options: - render.setdefault("image", {})[ - key.replace("classes", "class") - ] = self.options[key] + render.setdefault("image", {})[key.replace("classes", "class")] = ( + self.options[key] + ) paste_nodes = render_variable_outputs( [data], self.document, self.line, self.source, render=render ) diff --git a/myst_nb/ext/glue/domain.py b/myst_nb/ext/glue/domain.py index e00d5239..c31a015b 100644 --- a/myst_nb/ext/glue/domain.py +++ b/myst_nb/ext/glue/domain.py @@ -2,6 +2,7 @@ This is required for any directive/role names using `:`. """ + from sphinx.domains import Domain from .directives import ( diff --git a/myst_nb/ext/glue/roles.py b/myst_nb/ext/glue/roles.py index ee8a5b20..f0f718eb 100644 --- a/myst_nb/ext/glue/roles.py +++ b/myst_nb/ext/glue/roles.py @@ -3,6 +3,7 @@ We intentionally do no import sphinx in this module, in order to allow docutils-only use without sphinx installed. """ + from __future__ import annotations from docutils import nodes diff --git a/myst_nb/ext/glue/utils.py b/myst_nb/ext/glue/utils.py index a61b373a..777fd2b0 100644 --- a/myst_nb/ext/glue/utils.py +++ b/myst_nb/ext/glue/utils.py @@ -3,6 +3,7 @@ We intentionally do no import sphinx in this module, in order to allow docutils-only use without sphinx installed. """ + from __future__ import annotations from functools import partial diff --git a/myst_nb/ext/utils.py b/myst_nb/ext/utils.py index d0076ed0..ea0bcb94 100644 --- a/myst_nb/ext/utils.py +++ b/myst_nb/ext/utils.py @@ -3,6 +3,7 @@ We intentionally do no import sphinx in this module, in order to allow docutils-only use without sphinx installed. """ + from __future__ import annotations from typing import Any diff --git a/myst_nb/sphinx_.py b/myst_nb/sphinx_.py index 4885d9ff..8c20e29e 100644 --- a/myst_nb/sphinx_.py +++ b/myst_nb/sphinx_.py @@ -1,4 +1,5 @@ """The sphinx parser implementation for myst-nb.""" + from __future__ import annotations from collections import defaultdict diff --git a/myst_nb/sphinx_ext.py b/myst_nb/sphinx_ext.py index 7ad07e37..a77cf194 100644 --- a/myst_nb/sphinx_ext.py +++ b/myst_nb/sphinx_ext.py @@ -1,4 +1,5 @@ """Setup for the myst-nb sphinx extension.""" + from __future__ import annotations import contextlib diff --git a/myst_nb/warnings_.py b/myst_nb/warnings_.py index de8e66ce..1c7e9fae 100644 --- a/myst_nb/warnings_.py +++ b/myst_nb/warnings_.py @@ -1,4 +1,5 @@ """Central handling of warnings for the myst-nb extension.""" + from __future__ import annotations from enum import Enum diff --git a/tests/notebooks/basic_failing.ipynb b/tests/notebooks/basic_failing.ipynb index 16df1283..267bdb53 100644 --- a/tests/notebooks/basic_failing.ipynb +++ b/tests/notebooks/basic_failing.ipynb @@ -1,44 +1,44 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# a title\n", - "\n", - "some text\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "source": [ - "raise Exception('oopsie!')" - ], - "outputs": [] - } - ], - "metadata": { - "test_name": "notebook1", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# a title\n", + "\n", + "some text\n" + ] }, - "nbformat": 4, - "nbformat_minor": 2 + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "raise Exception(\"oopsie!\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + }, + "test_name": "notebook1" + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/tests/notebooks/basic_run.ipynb b/tests/notebooks/basic_run.ipynb index 425552b0..9b4775a3 100644 --- a/tests/notebooks/basic_run.ipynb +++ b/tests/notebooks/basic_run.ipynb @@ -1,53 +1,53 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# a title\n", - "\n", - "some text\n" - ] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# a title\n", + "\n", + "some text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "source": [ - "a=1\n", - "print(a)" - ], - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n" - ] - } - ] - } - ], - "metadata": { - "test_name": "notebook1", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n" + ] } + ], + "source": [ + "a = 1\n", + "print(a)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" }, - "nbformat": 4, - "nbformat_minor": 2 + "test_name": "notebook1" + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/tests/notebooks/basic_stderr.ipynb b/tests/notebooks/basic_stderr.ipynb index 8e96a3e4..917c0000 100644 --- a/tests/notebooks/basic_stderr.ipynb +++ b/tests/notebooks/basic_stderr.ipynb @@ -1,61 +1,67 @@ { - "cells": [ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "source": [ - "import sys\n", - "print('hallo', file=sys.stderr)" - ], - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "hallo\n" - ] - } - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {"tags": ["remove-stderr"]}, - "source": [ - "import sys\n", - "print('hallo', file=sys.stderr)" - ], - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "hallo\n" - ] - } - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "hallo\n" + ] } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" + ], + "source": [ + "import sys\n", + "\n", + "print(\"hallo\", file=sys.stderr)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [ + "remove-stderr" + ] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "hallo\n" + ] } + ], + "source": [ + "import sys\n", + "\n", + "print(\"hallo\", file=sys.stderr)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 2 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/tests/notebooks/basic_unrun.ipynb b/tests/notebooks/basic_unrun.ipynb index 7aae7db3..d30db534 100644 --- a/tests/notebooks/basic_unrun.ipynb +++ b/tests/notebooks/basic_unrun.ipynb @@ -1,45 +1,45 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# a title\n", - "\n", - "some text\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "source": [ - "a=1\n", - "print(a)" - ], - "outputs": [] - } - ], - "metadata": { - "test_name": "notebook1", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# a title\n", + "\n", + "some text\n" + ] }, - "nbformat": 4, - "nbformat_minor": 2 + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "a = 1\n", + "print(a)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + }, + "test_name": "notebook1" + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/tests/notebooks/complex_outputs.ipynb b/tests/notebooks/complex_outputs.ipynb index ce0e7781..e247871d 100644 --- a/tests/notebooks/complex_outputs.ipynb +++ b/tests/notebooks/complex_outputs.ipynb @@ -14,6 +14,7 @@ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import sympy as sym\n", + "\n", "sym.init_printing(use_latex=True)\n", "import numpy as np\n", "from IPython.display import Image, Latex" @@ -221,7 +222,7 @@ } ], "source": [ - "Image('example.jpg',height=400)" + "Image(\"example.jpg\", height=400)" ] }, { @@ -281,8 +282,8 @@ }, "metadata": { "image/png": { - "width": 432, - "height": 288 + "height": 288, + "width": 432 }, "needs_background": "light" }, @@ -290,9 +291,8 @@ } ], "source": [ - "plt.scatter(np.random.rand(10), np.random.rand(10), \n", - " label='data label')\n", - "plt.ylabel(r'a y label with latex $\\alpha$')\n", + "plt.scatter(np.random.rand(10), np.random.rand(10), label=\"data label\")\n", + "plt.ylabel(r\"a y label with latex $\\alpha$\")\n", "plt.legend();" ] }, @@ -416,10 +416,10 @@ } ], "source": [ - "df = pd.DataFrame(np.random.rand(3,4),columns=['a','b','c','d'])\n", - "df.a = [r'$\\delta$','x','y']\n", - "df.b = ['l','m','n']\n", - "df.set_index(['a','b'])\n", + "df = pd.DataFrame(np.random.rand(3, 4), columns=[\"a\", \"b\", \"c\", \"d\"])\n", + "df.a = [r\"$\\delta$\", \"x\", \"y\"]\n", + "df.b = [\"l\", \"m\", \"n\"]\n", + "df.set_index([\"a\", \"b\"])\n", "df.round(3)" ] }, @@ -456,7 +456,7 @@ } ], "source": [ - "Latex('$$ a = b+c $$')" + "Latex(\"$$ a = b+c $$\")" ] }, { @@ -507,10 +507,10 @@ } ], "source": [ - "y = sym.Function('y')\n", - "n = sym.symbols(r'\\alpha')\n", - "f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)\n", - "sym.rsolve(f,y(n),[1,4])" + "y = sym.Function(\"y\")\n", + "n = sym.symbols(r\"\\alpha\")\n", + "f = y(n) - 2 * y(n - 1 / sym.pi) - 5 * y(n - 2)\n", + "sym.rsolve(f, y(n), [1, 4])" ] }, { @@ -533,7 +533,8 @@ ], "source": [ "from IPython.display import display, Markdown\n", - "display(Markdown('**_some_ markdown**'))" + "\n", + "display(Markdown(\"**_some_ markdown**\"))" ] } ], diff --git a/tests/notebooks/complex_outputs_unrun.ipynb b/tests/notebooks/complex_outputs_unrun.ipynb index ad3612c6..77c3d768 100644 --- a/tests/notebooks/complex_outputs_unrun.ipynb +++ b/tests/notebooks/complex_outputs_unrun.ipynb @@ -11,12 +11,12 @@ }, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import sympy as sym\n", + "\n", "sym.init_printing(use_latex=True)\n", "import numpy as np\n", - "from IPython.display import Image, Latex" + "from IPython.display import Latex" ] }, { @@ -253,11 +253,11 @@ }, "outputs": [], "source": [ - "np.random.seed(0) \n", - "df = pd.DataFrame(np.random.rand(3,4),columns=['a','b','c','d'])\n", - "df.a = [r'$\\delta$','x','y']\n", - "df.b = ['l','m','n']\n", - "df.set_index(['a','b'])\n", + "np.random.seed(0)\n", + "df = pd.DataFrame(np.random.rand(3, 4), columns=[\"a\", \"b\", \"c\", \"d\"])\n", + "df.a = [r\"$\\delta$\", \"x\", \"y\"]\n", + "df.b = [\"l\", \"m\", \"n\"]\n", + "df.set_index([\"a\", \"b\"])\n", "df.round(3)" ] }, @@ -280,7 +280,7 @@ }, "outputs": [], "source": [ - "Latex('$$ a = b+c $$')" + "Latex(\"$$ a = b+c $$\")" ] }, { @@ -314,10 +314,10 @@ }, "outputs": [], "source": [ - "y = sym.Function('y')\n", - "n = sym.symbols(r'\\alpha')\n", - "f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)\n", - "sym.rsolve(f,y(n),[1,4])" + "y = sym.Function(\"y\")\n", + "n = sym.symbols(r\"\\alpha\")\n", + "f = y(n) - 2 * y(n - 1 / sym.pi) - 5 * y(n - 2)\n", + "sym.rsolve(f, y(n), [1, 4])" ] }, { @@ -336,6 +336,7 @@ "outputs": [], "source": [ "import ipywidgets as widgets\n", + "\n", "widgets.Layout(model_id=\"1337h4x0R\")" ] }, @@ -346,7 +347,8 @@ "outputs": [], "source": [ "from IPython.display import display, Markdown\n", - "display(Markdown('**_some_ markdown**'))" + "\n", + "display(Markdown(\"**_some_ markdown**\"))" ] } ], diff --git a/tests/notebooks/ipywidgets.ipynb b/tests/notebooks/ipywidgets.ipynb index 72f91053..cf494b45 100644 --- a/tests/notebooks/ipywidgets.ipynb +++ b/tests/notebooks/ipywidgets.ipynb @@ -11,12 +11,12 @@ }, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import sympy as sym\n", + "\n", "sym.init_printing(use_latex=True)\n", "import numpy as np\n", - "from IPython.display import Image, Latex" + "from IPython.display import Latex" ] }, { @@ -340,11 +340,11 @@ } ], "source": [ - "np.random.seed(0) \n", - "df = pd.DataFrame(np.random.rand(3,4),columns=['a','b','c','d'])\n", - "df.a = [r'$\\delta$','x','y']\n", - "df.b = ['l','m','n']\n", - "df.set_index(['a','b'])\n", + "np.random.seed(0)\n", + "df = pd.DataFrame(np.random.rand(3, 4), columns=[\"a\", \"b\", \"c\", \"d\"])\n", + "df.a = [r\"$\\delta$\", \"x\", \"y\"]\n", + "df.b = [\"l\", \"m\", \"n\"]\n", + "df.set_index([\"a\", \"b\"])\n", "df.round(3)" ] }, @@ -381,7 +381,7 @@ } ], "source": [ - "Latex('$$ a = b+c $$')" + "Latex(\"$$ a = b+c $$\")" ] }, { @@ -436,10 +436,10 @@ } ], "source": [ - "y = sym.Function('y')\n", - "n = sym.symbols(r'\\alpha')\n", - "f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)\n", - "sym.rsolve(f,y(n),[1,4])" + "y = sym.Function(\"y\")\n", + "n = sym.symbols(r\"\\alpha\")\n", + "f = y(n) - 2 * y(n - 1 / sym.pi) - 5 * y(n - 2)\n", + "sym.rsolve(f, y(n), [1, 4])" ] }, { @@ -473,6 +473,7 @@ ], "source": [ "import ipywidgets as widgets\n", + "\n", "widgets.Layout(model_id=\"1337h4x0R\")" ] }, @@ -496,7 +497,8 @@ ], "source": [ "from IPython.display import display, Markdown\n", - "display(Markdown('**_some_ markdown**'))" + "\n", + "display(Markdown(\"**_some_ markdown**\"))" ] } ], diff --git a/tests/notebooks/merge_streams.ipynb b/tests/notebooks/merge_streams.ipynb index dc86d908..109a9e48 100644 --- a/tests/notebooks/merge_streams.ipynb +++ b/tests/notebooks/merge_streams.ipynb @@ -1,82 +1,83 @@ { - "cells": [ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "source": [ - "import sys\n", - "print('stdout1', file=sys.stdout)\n", - "print('stdout2', file=sys.stdout)\n", - "print('stderr1', file=sys.stderr)\n", - "print('stderr2', file=sys.stderr)\n", - "print('stdout3', file=sys.stdout)\n", - "print('stderr3', file=sys.stderr)\n", - "1" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "stdout1\n", - "stdout2\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "stderr1\n", - "stderr2\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "stdout3\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "stderr3\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "1" - ] - }, - "metadata": {}, - "execution_count": 1 - } - ], - "metadata": {} - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" + "name": "stdout", + "output_type": "stream", + "text": [ + "stdout1\n", + "stdout2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "stderr1\n", + "stderr2\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stdout3\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "stderr3\n" + ] }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" } + ], + "source": [ + "import sys\n", + "\n", + "print(\"stdout1\", file=sys.stdout)\n", + "print(\"stdout2\", file=sys.stdout)\n", + "print(\"stderr1\", file=sys.stderr)\n", + "print(\"stderr2\", file=sys.stderr)\n", + "print(\"stdout3\", file=sys.stdout)\n", + "print(\"stderr3\", file=sys.stderr)\n", + "1" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 2 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/tests/notebooks/metadata_figure.ipynb b/tests/notebooks/metadata_figure.ipynb index 6bc0b783..1a4528a9 100644 --- a/tests/notebooks/metadata_figure.ipynb +++ b/tests/notebooks/metadata_figure.ipynb @@ -20,17 +20,18 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFeCAYAAAEEVt2UAAAgAElEQVR4nOydd5wV1dnHv2fuvdsbyy5t6YIVO9jBV8WyoMYkGI3GxBb1jSVGE7uwYC8xsb0asWtM1FiIYAVBwUoRK0gRcNml7C67bLl7y8x53j/mzty5ZSmyC4vuj89y75055Snnec5zzpw5B7rQOaCrKvyyaKRYyysk/OZQAWh8KF86qj6jowr+IVBW8BDRJrrmrebME5YqADF1h9XXuZjvf+ccTI0qPSVfdNRoerJExLQ6rL5OxTzYmtYrn5DWVwZbYlrknDrD11F1dTrmfQfOVWJqxLSQYOvNGX0P77h23xnxXTgsi5c2d5ijc9DpNA/QY06U3P4ZTP5v5bAdTct2hdYyeMO3rbLs0GXyqf/TDtV+p9P8xicbli/tq/nvlAKsDvT00AmZD/QPUJD7PRbw6pqB/K6yssMk4O+ogn8ItNYlX4VCBBCO6bGaoP3PeKqD6utUmq+7pa4mkLeKOXU9eXN9X3Tsn+iOMX3VIaX+QFRGItKUsQyN5v2X8llyaIAa06RWa94aOLDdae00zIuIMau52aoxTfYsqaTFanWaPa20Mo5x7U5rp7H5zxpaXuvZrZJewPSa3tRaFtkvbmDYpd/Zjd/SGL72tdJOo/n5LS1Sa1n0K1hNmDBBWnm2sj812qLGsqi1LL4eOrRd6e00zC9ikaxsLKPGNOlx0TryXqhLaPZBgpzHee1Kb7u2o4EDqS8q8n1mmuZW5dPaHrsMKFhNr7818+WDJby2Zheer9yTSHflev1oa7Q9ye0YzQcCgTuuvz56lQg88wyhxYsj2RkZGW2mXxgMRoNa+4vyvkejbX2rVp6s3IVa06TWsthoWSjgm113bTeaO6zZh0Ih+vTpM+SyyzYs9V6fNo3QnDnh7MzMTPfaN3wjdU39qbVMakyTC0pK0FqjlE2eiGAYBn/jb/yJP2FZlnsPwDCMH8TLNjOfmemfcu215sk/NP/HH6PvOrza8N+4EYC1M9dy5JFH2sR5mHdQV1dH9+7dE8pQSlFVVUXfvn13nA8Lh8NceSVSUWH/TZqEnHIKMvpw5NPnEOszRM9FZC4i8+y/9x9FPg8G5d3GRlFKiYiI1lpERM466yxRSonW2r12yy23iNZa3njjDenXr597XUSkrKxsq0JBZZomfv+2d/dZWVn/8qnQ6c2zQUjTpByyVOyr2Gne/wxuetzH1W/Xc0xenp1EKVfrb7/9NkopRo8ejYgk3AN48803Of74493flmWpLeXHyMrKvqmiAjnkENW6tQz3798/qzAPMecirXMSGReJ8/vxohjTyuXfloeCEXvBxeMs7jy2wGXMaebTpk0jGo0SiURcodifUDMHioqKSO5Z/H5/05bSb8ycOX0iwAknSJbTXHNycn61qUwiwov3Iitf/r61fiYYZTcz+dUcJLnRxQRwyDGTkvLH7+ccDj//MxTkJ9r2ddddl1Bf4ieUZEH99AbG9DwRny8+x6mUytlS5pXWmkmTjDZt5YYbzORmJHpuUiFlk2yNV493VS9ia0gEKJvE5Eef4vfly+0MheWQdyiqejwvTrcvjTsGODA+V+ltAd7fSin+foPi8p/HylZ2S5o2D8ZcoMnKyjoqEonMaouf/meWff39P6v2AjBi3UR6NMHNN/ulogI57zysbvmIzLOZsgmKMYjgNnJP0xZA9bwCBQwYMNhNr/IOAWDym566DLt7TLZp72/n8/JTPFXFqh07HJhvsCnG97tsd8nNydlz9/OGSKzKVIbxNEtiFvTYYxgbZsZt2dVqzHEp15N5IICvEIDj9nzHvW87POGCG+DVGKkvvg0Zi+It1tFyMm66NE1v5qEjOj+FCgCef2yo9CjLpqRPNspQ7H7BLr9JZT4faI4z7UDPizezGO2uExPgsYdvjctMYs5NASi+X7suyeHZTSDghz4lzjXwCchC5QY4IpLw9+xdihvOxu0x3DocOpRdhmEYyx26h10xqMd3b+wp/452o7RvNt17ZpJfFCC/IPOZuDFHgRCJ/VSs7RotMck6jOM0d1Aqj1nTKjj3JHGvTZoWF4JhjGfGDDBa4eX7ocgHSuCbT8az8SOYOiNelwgoC9RnPkIKsg8EQ8F9VysuHif85ihP/cmC9lwbUN578F775su6sEH3PllcslhR0idAca8sDJ8ia32Ydd+3esbzgdgfQKOnJMCy4hW5lcYEgG7mf/aPERETUE31YZT2+dA1jaOPtvPc59r4eLrlwp797PR3PQ1/PiteHwJZgJ5r06Ecx6cSktiXFKxszeIPn+wJhsIwYK/jFFNGKX7xAWTl+TEMyMzx4fcbGIbCiPmeeLNvjP01JVYSa6Fx7ThEOE2P+DVH8w9UnMAWQcE/XoVLT7d/vhDz/OKpT3nqFUANB2M4/G7Z4Zy9/Ai0MZxJ60bQe3AufQbn0nuQ/fmHqhx6D87ln8MiPJFXibagpipIy8YokbBGGbGZHBFQBR6iHKen4p9n/BX+9WePADySd8rw/v7wvaEcdmTCmAaAe+6Ghlmxov19eOeli1B9xgPw/O0uzyn1O1/1PPuLMeIDAJ7GbiFuDzQ8XoTWlnH1JydEjb7djaKw5pu59YRbLZo3Rinukan9AD4faKeLbQRysMXiNH8Ddt8dckZCy+w4geIw7QjAJVJ4886lTJoGCz6DV/5vEoYSpHoCE070RH89LoQYQ6dfD7vt5gmAvFr3SFs5rW4e9B8Lq6bGFVIwMs44gGH4NOADuHfx+f6vrLpo3ZpWwq0WXzz4rU8BnHmmsoYOlUTPH4kJwHAKgvHjUd26dcuoe7c+jBknxonVvQQmXCubZFNUPT4e1yuQPvZ1qR4fk1768rwtILklICAG+A5MZLwtHHjFnjLvr18rpZTN2gsvGLNSUmXYjCsFFRWo8ePtguvr6yPG/ihjBNqh0TVRjy9wSYndnPzoUwn8pAjMw6Ty5PUGVO69pDx/eOTCwJYwDjD/nm+UEz8YAHfffdevkxM5TE+Y0GahPmMEKuuwjCuPudhDpPPnECrw8j8r+P2Y5V5ZxOoQpr5YEReeEwTF8hrDYzc8QUyCx1fw+MJHff/4xz+2bt7Mqc+uTJg40a5aKdgEw5tESUnJibW1ta8F50KWt2k6DHgElOAgnYDJe0/FvxsjoPZDKA7YaS+4HR5/1WjWWuf/EDpTUFGRPizcFoTDYbKyss5QSgkgg8uQB8cjoU+R0BdI6yfI2lnIF/9F/nUPcsQBiGHYf8AarXWHPk77QRreWkyYgKQJ09OiomL70AQdzPzEiYjWMGeOMmfMkKGRSGRlIBBwTQzsZv3uu4dnzp79QaQjadnhyM7OdidMDMO4f0fTs92Qk5Mz5qSTVMcutfgxQEQ61bqBDodec7cARN7fXwCaHu9midUxbqBTSVZl9Meq/Lsh0dgEsiVG/S3d/tERdXUqxkWiSPVTFmZsZtbSFI9vubAj6upUjBslZyoxLcQ0aX62Z4cuMu500FrTOmWgND1Z0u7RZaeGiPiro1FZGFi4xU9Yfgg6VVMHWH/t+hmF70cINwzN29G0bFesi0Zl4/MbZWHeQtHWT+QtChHxg/DvY6I09oM5vjkdZuedivEl64OfmWfXkLnIZOas3rxYPaTD6tpuQ8ItQU00KjOam9mzW6W7qmpj5sYDTwmfsqC96+o0GhcRuKkBS4SZNb354p5uaDT+sH9+R9TXaVZTbqwOH7L60yb2Lw4RJsyLa3oz91e7UWNZMKD96+s0TX3tn9bKvIpsak2TvbuvdJt6kCBNRtPUs/RZJ7VnfZ2mqdffW8/gwiospZi+vh9TqgcjaATB0MaJ7V1fp2nqtY39KM37noOLqwkSZO7Nufyzci97ybhlQTs7+E7R1L9WX7daB2VmLX2rhBrTYv+SZSlrZpsym6ovDl9c1l51tltTtyyLG29EjjrqqK0v8+ScrMAnUfYoqsZCeHPdQF6u3o0XvtwTSwkajRE2+rQXrdABGrcsi5tv9okI+P1wxx35ZU1NTdWbyrOwpUVqtKZv/mpChAgS5KNbC/n0NwXuellTpPOvlQ2FQmRmZiZMKYP9cPKhh3rvtmbNmiXOtX332pd/ff0vqWzsS61l0e/kNUw99EnuuOMOwO7fP/vsM14+8GVKKf34zj53HlJVVeWWWV5eTs+ePX1PPfXUVgX228z4DTcg27LYsvc+LzHqF3siCKOKR1NTV+UuHHKWjTnfDcPANE0Mw0hZVubz+bSIbPELwu2q8ezsrFuuuirkrvKLRGDGOzD6ALjyHOgWeyYG9rO0SBQW7xOkVTT+M9ZzwKsDU1ZEv/LKK5xyyiluHV999RXDhg0jNzeXhoYGAoGAK6h7771XXX755e3J0qYRk7zUzI4v+tWeBcAJf3Pj90MfIX84FVnENwIkLPSNiUimTZsmv/jFL9x7V111lXvvgQcekJqaGjdPr169tng0pyoqbLo/+uiYwNtvz9jaR7Gi59uPft0VkU7BsVVMqudVsO7ONgQGyyrh5Znwl79b7oJArTU+n49p06a5acvLy+1ylYL5CjUcpk6dilKK8vJyrzlsUStWyU9OLQtuummzJpC4PLTPRKieECuRxBUOZRNBGaiqG93FAk9Oy+DssRF3JVXYgsyDEpeFKqVcxh2mnXsyP07ekJ/BskrtzbdFjKf0uT6f/Ri5ogIpKzNWee/17dsXPT+JaWVX+PwMX+KqBneloL3Ey7u87JwLbrDzDQffQfDfmXDmmWfGGRNBa015eXkK01rr+IIEYNmrwHwDn89HOBzeJLN7/n733Xc/d0gegJGyetmD3/9O9/esjj6g8tXV4u2glAJlFCLAmNOvSRSGh1jvKh9XH70nMvFC8Pvs9MN6/CuBweQ/Bz6fL77wIGZeSoGeK2RlZbXJyz4X7yr+DFkEqqns130uN1K6okbP91D8a8t7wfnexT2OVqXXlSDCG/++Pb5Q0OO5JbZMOLEB2gl2GwgPXm2Xdd1vaJNwp9t68sknkXnx8t2iYqutZF7iUlCX9rcHfl1alkNp32zyugXIy879m/Hhh0kmUYC9Js4RQCNUVODarMQU6Kx/VTGuThvtLJkEKZvkpkMUas0Ed7WkFJwIKB5/4hkUsG5DvNzQh5GU9a+2ABWGYXD2sHPcxYfOp7MG1llOYn6iB3vZOey6YRLIzN2zpE8WpX2yKSzJcBRnPFVRoX/rLvj1LnOKSfaUQ2AfT3EJ/qvPJHu9ewwTnwRKPNJugaeegL/dAKePBKP3RDtn1XgGnATfr4UXbreJPnV0vO6Rv4cPPoP+/bqx8uX6mAASFe1dl+u9PuKfe4BSlPTJwjDAMBR9h+bh9xtULm1i1eIm1Icfzs55++2RLQm5HW3HCm2pgzsviRWcvCYtpi3HqQnxxb+bwoQT7TcdJl0EA3rbGU89NmkJnEcJ3kVEyd9P/WAfgpYfZSiUglcODCOtUc6q6mavd/UpCoozyMg0WPVtE6sWNWEccsjhQaLYzdv5c9ZsxSr4/FsvNSRQ59DmrIEDWPLVfptlXAQeuHEwH38Jp11LwmooN03smiNs/0F2T2CMgLOXH44V3Y9I7RAK+hXSZ3AufQbl0mdwHpds7M4fo70pLMnkmSEtFHbPYGNdmA3rw4SCFtGItutJ6Mu9D2482u2RC//7s8RlXd41r27wUnopBEqY9MiEFGYjEbj+FMgxYmn7TCJaNZ4p0+HpafDfv6U25wRBxOrpPxYq13muxxyeKOAArQzDQET404KDR/nMovcCBnz5QR2WKWysi1C/Lpw0A+Ms9HUcnAJygWZY74N3v4aj9iKhWXvXrgGoQAmWMnjtBTjpV1D9NTz894mgFKp6vOvkiBUf6DORU4+dwC1P2prU8zxxQFIzd/D9tFhLUKB03NH1OKFk39paOzSJdYHvO6X85rnDZNHceloaTQpKMtJo3EFjTAAx3HNPQffGxsYNJEdtDjye1eUKUL2uR1QGjz/+OOeesCrRM/aeZOfzrIP1luVe8rSoBEtzutbhoLWt6U1h78sHrfJLVt/P7l3ka3tAGWP6b38rHLBx48bvPR28UsOFnt2VrHs7tUv1/lAKMOx3VM8tXxXnWYH4+qAUzPl4Lkf0jzHk4SpZE8m/nfTOku7NMQ3w5d9XDHC+t8n47bdnHRkKhd6HjSn3Ys1IxSoV61N7ksEh0AliJOaZ1JoJKepSPS8C4PD+r3kyejQtMPMrOHrvxIGPN43hWce+tUhp6n/9a/6ZTU1Nz21tQeFwmMzMTGvkfhjvTU6txY30sAXz8CvFXPTzDSnNN9l3/P42+M9bUD/T/i1+8O0HIrKl45G2MWECkp+fN37zKbcORx11FD6fbw0xX3TyaGThK0jr10hoAdLwAbLiHeSD55A7/4R0y4+vb+3Ro8dB7U2PF9soss3DMNRV48fLHVuS9s47c64PBoO3djRN0IGMFxQU9LjiisZ1SsF99+U8V11df6Y9AZkwVcb77xvmu+/qQNsldQw6XONeOL7EMOCGGzbf/fwoMGECMnTokILNp+zCDodojf56uABYS68S88sLJfT2rqK1PTUp5s656vwnYGc/DLLy4iNoeE2UsoNPCdega2ZDuOkBw7BDv+anelkbH8yT+tsLjtuRtG4tupTeFkov+BAjE7EszLn7W7Lx61O1pckYs/KPAOGP/uwXyzIwLfIv+nz6jiZ3a7BdO/SdDbLoiOd1RP9KgkF0KIIORTCKR5dFvn3xIzGlv30tqrtdEe6wbY07Al1K3wJEZ+8tOhRBYorXrVH7syXSWPSnYOGOpq8LHYTFja33t77UR1r+XSo6+tPasvsnCdEyuPmtZqmORuX7cFieaNiwiYevnR9d7n0zEJGMykgk3P0DEwSsVovvDvLxjgrqv5SW7lR9uYOu6H0zWHvlui+zDIOGIwLMX9vMyhNXYvVYzMjS5casjFlv7Wj6fgi6LH0TEEv6Nr/TXKkbNW8cq6m3LIJaExQhqDXNhvCX1kJf/4G5O1Un36X0NiAixupo1PIDjT1XoOs1JiZRolSfHOC9R0potTRBrZncu4/y+XceT9+l9DZQfWH13/JPzL/8gyOFDTEL73XbRnrfXU806Z+JyVjG7jSy3GkI3Z7QWnIa32xuqfvzeiLf2PPrX7xUSPWogO3aLSvm4oUWsRj4RA2D/rHixvOqxt28g0nfInQpPQ2WN4dko7JYY5qE6i32HLjOde3OZ5Qoy8dl8fYDZYRDdiN4Y8BAn89Qnb5/71J6ErTWeSuGrWiKfBOhriKP1X/McwO3oAhH9lpGxDJT3Lvz/QzO6PQy7fQEbm981hKUoNYU51e61zQa04jw+royglY8encjedOiMcsg8F0LLS3RxZ8cv+8eO5CFzaJL6R5UX1KdVxs0mxru7eYq1FoSZfeD1qa1avt3hJWjs5l+XV+qBmTSouCrgYOVvxOvDul0Sg8EAu+sXbvm2O7dSzafuJ2xiEUisUV6CviqvnfCuDwogvo2zGGjlrXZCJxrF3FRp5Otg05LGNhvsBQUGO9dcYWMcq5NnmysDoWK9l63bl1DINB+a8s+/3rjKAb63zOfbSbnwg3udY0mSpQVF2fx+Y3dCErcrbfoVFcfja2AC7dGVy/fZ89+7UZgO6JTKz0dDMM4uaJCT9FpYmSfD55/ntCaNcW7VVev+d57LNDmsIhFEmoZQItHqWW/qCFrRqtrwQBjGUsttQApbwTfM/hJfK0WGWtaCCnNH6OXKcNvoLUmJyfnb+Fw+HLvm8ZKKbKysl5uaWn55fZcLLhDlD54sCHHHCPk5orOysLIykp6ncPzBoQX27rQGWDmTCILFxYetWHDhg+d406W91hxSWR9yN151CpTLPm6F0Gtueess1j/+edUVlYmrmNNoCtR+W+99RZjysdwO7dzpXllwrEqDpKVLyLsvffeLFq0aIHW+sBt57RtdCpLHzRoYN8ePVatKi9v/00+nfeA/H5obobly2HJEqishF+d9UcOKS9n6H77U9xrA4IwnelkT87m/PPP95SR/iCR5OveBuD3+2lsbCQ3NzchXfJRNN68q1evZvDgwbNM0zyqXYXg1NcRhbYHTNMkLy+vVyQS+VZrXZDhh4dvgt8di/s6LuC+uJXASPKbX8417y0FrWF45xN49g248eI6WkZnEtSaXwweTP369W0quC1X7D1IKfmoHcuy0lp8UVER9fX1m6qn3XWkSkv5/LTT2Oexx7L3bm1t/aq9K9gcotEoeXl5/wyHw2eMGQlT/xYjjNTXlxLeFPRcg/g7m8nveqnE7G7ZYO80UFUDM+fBvG/s73fPXM5Hz37EGWecESs3bpne98K7d+/O008/ncJPwvYIMTjbKHjhbJnglDtmzJgUl29ZFn6//5fAy5sU4lZCAcMrKkj3Kh4PPBCYs3Zt68j2OKTOQc+ePfuvW7du1f9NgItO9Fhs8Vm880E1o/ewj+pRkkbpMYpTmn4f+zSw4Krx5Dg7mKjEF4djWVMU3xCGLAMamqC6Bi66FT75KnH7B4hbsWPljtIcOPfHjh2b8Bq5txz3bUzsBjrwJKhcp5g6daqrdCetpz73pJH2ggqFQtx+e9YWLf8RgYUL0XvvfX3g5ptv2eI5ZsMw6vfdVRcteDaN53Uu9JmEICgUUjU+wXK9yby0QOx+n4kOOzQsH09hdvw9v3jLCUDZjTz3xCTOON5+WeHy+8AKwz3X2Ec/zZoMlg9GnmWluHCvyz755JO58MILExrEkUceSV5e+s1ZRYSMgEH04zRdkYcfYwS8+OKLjBs3zs1nGMYGoHuaLD8Ybb+iuykIYOG+7unzwZ135k5qaGic4LixsrKy4urqqjrr01hFKjEiT3DDAqpsklv0ku++Z7esR+OK3oTV4+8PPc6zf4jw1bffMiz/uYQ0SkDKbrGJFuGV/77JKQd9hO9Ae++DX11jfwKcegyoEfEzf5Mj7LbQ1n2lFH379qXy1So3lkjmx9sVOadQGcMhPz+fhoYGlS4W2Bx2P29o/K1ngagVCX731Kpcp76Ut+pcWNgLqtI1Te/L60moqACZG2vVXhNN9q3OvZJzkIyBqNiNRctXsUfWY4lv/HqyJgisbFL8iijeeHU85QclegYBVNlEQLnXcweP56mJsKYGFi6F4w+10+7SDw7czX3XO6VP9yI5Gk/3PTs7m+CcECpZvl4PlibIdHg2RiRIbLMY9Nv+Nb3KCkoMwz5YKxK2CLVYmKYmEDD4/MFFygCoq2ujzNiGN+5+FI3EJe58NgGxTXw+/xwuPS5+UBzEW67EmEj+Q4CMgbEi7W1Vdo8p3GVVefp+57unc3QmTh9+6AHKD/a8Hh77U2QAjiXa6YMhWyjvzoOR+8WL+y72nEXmwbr3DNfNb0rh3vuO9dxxxx0MG6ponROKK9LDQwIcOtOkkXmQlYls7nTy6Mf7hK35w2W3fUtKSvpkUdo3h9KybEp6Z9OtRybZuX7MiOagv+xtq2TAAFadcw79N1lqBFe5KRYLSA48/ywseiHpujc9qW4egJi1vvjy65x68CcpVZeeAP1KfZx3djnnnn0w2VU32mX6B0LpOTz2+DOcV74s3lUkR/B9bkJcbyCwZgK/vAp+fRxk+OHSu+Cvf4rXt+cQ2GtAokc5+c8w9T2YNWsWo0aNSnH7oVCIvLw8DKWJfJzk3NJFkNLGCEWRlg9nwwWtNX1O7TWusLDgxbyiAAXdMmINxt5hpkffbDKzfWRk+TCjmpbGKE0bomzcEGFjbRgzKi4JJ1dUMCVF2s2AJrVlpumQDB+cfjQMKU3lMXkrjmQm03bYSZHbLW/Ej7jcWmgNmZlQXQ3rK+GF2OYDani8T3/+No83ERh3bCLJaXtzj2KSh5PphooOUrqoNOlCojj+tWG2B4l5gSkjo+RmZ2DVt1C+IJeCbhkx76Bi24gpikozyM71U1iSQbDJpKEmTENtmIaaCA21YVqbLbu+UChk3H57VqpITSCYRFk6TmL33n8fZjyUlCypM/a23pTy2uhlBKD3RG5+bALp5ty3Bt1y4bKj4ooyRtinWZ6WpPgD9oTBvT19bBt0eYdgXmX+32tw/V+htNi+uLzK/vRlKHYfW8Yux/Xhhd2bUIYPq6GZs2p6unV7FR3b5MR1/U/23sATG7KZHc3B51fcUlhHiY7yv8HeKKXIzDaIhDSZOT6sqNCyMUrjhggNdbalh1utODubjeCTDpZN4TrG+MR77H4o3RDLK8A2h27p4CuBHpciCm6aPCHtvPzmIAJffAElfnjk6lh9ZZN4ZPKTXDjhO/59K/zvbfb57efHto469VgSLNjlI6n7SmfV3lHH2D/BG3Ps6394839cpe6qwlzkq+fDVh+vZPVIsFrHzW+qAYgWbjNqkIjFgiaL5/P7UFsdorE+QiDDQGsh3GoRbDJpro/S1BClR9/sLVB6srIF+1jfcBLHzvd8uOMO+HYq9C30XJc4I0KavA6SywNwThsVoTkc5p6n0+9NohQ8/rjiyQd/z5E9H0nY58spy2Wl518QIx+lYN2GDfRo/TvGCPifA2HhEmhphZXToLczQk7jpZItPaWOJPYBWkzIPyR+/9jD4a1709fR63hoDuX2bGlpWZ+WYW89Itzw+XEbfYa/4IsP6tiwLmTvHRjRhIImrc0moMgv9g9y6bv6aiQ721OK4+zTDRG9J6l7h2zNQGx+IraZ6qODyjh/+askKD5FEt5rLhfxW5RNYvKjj3N++cp4IJiBHVwCZO4OJWe4DSMCZKyZkNDAEvpeQGLH2brVOtt5Ob/FMwrwkOTGKB4Ft1mHSmVtU3XkHgHNs+0uZ/To0YHp06f/oINRAY6s2EdQsHZVK/6AIifPzyXlV/p+N/o87bI0bBj148ZRtNnSkvZV8+Lhh3v2W7t23ep093w+39LMgDWkeXY8gt+Uu3cE645h01iRiz4TwTMGl+rxadtRvHBiIwanrtiOX948QuLej0kKTI6utwbp6nu/3ZUAACAASURBVDBGgN/vP8o0zVlbWdxWw51U//prrh03joc2lRhwFW4Y8PDDvfevrl6zMH5zXfo8gGVZQ4OWzZxpmgQCgVYRybI+ByOa2r+7FuW91qZ07RsLPv+KA0tfaHM47KLnFYneJqbwhDwqsVF6y1TDY8eUb6qOTcBbhzEccnNzy6ClenNj8faCW/9TTz1prFhx9iYHRbfemnFSJBKZ2hGEiAg+n+81rfWJ/XrBsmkQSKd8B211nGk+EyxTQJVNQkT4dOYEDt7NU5Ynn2vlKtGqvWkmPQUVD0BwLmSrpDo8n153IED+SGhpJQR4O9TtBld0lmVx002+BPHedJPvj5Zl3bf9yUqEaZqUlZUdsGHDhjei0WgJYBy0F9x9DRwxDHtoqVKtTjxfXOFD4ojDueTtX5P6Wu+wUzSQA0++ApfdCsFWO6HP53vzqKOOGvvhhx+e4Pf7/9rY2LhrrCE3BAKBm1paWu7z+Xyd4kWIBDllZfnvDYXMP+4oYrYVhYUZr1x+eeSU9lhW5cXateh//7twaEPDxu/at+Qdg3YWz/ZFdnb2qGuuaX2vrXG7CEQi6DffVMbJJ8sWrbF76CG1uKoqukd7riHobNjplO7zMX/YsH3Omz9/wUJlu9U205qmyc03+9M2ifp6ePXV/gcuXbpsQUZGRofR2xmx0yl9C9F3wgQqnWDqn/8M1H77bahnZ+lTu9COyMjIuD8rK/ME64c+melCF7wQHTW0NjvvC2pbgR8FEx0F+XKfK7Q2sT4qK9I10yxz1j5W6PUhP+BxT+dCl9LbgF76M4v8w/6qAKyIIZFaRGt8ZT93X6Brmlwk9XdnPbHjqPxh6FJ6G1DdTjMIf4d8uf/59PhdA41fgNYE9r3LBNChekQLRkCdvYNJ3Wp0Kb0t+PIQMYGcfxhDbtcSWgs67tlbntnzGtGC6J3P23cpvQ1IZDXKyEW0NgAktD7xGYAvfBuikW1dyrMD0KX0trBx2gNkDEK0YH60vyXhWu1YesvUYzLQYlt+xD9nB1O61ehSehtQQ/57qegISgtoDMzwStGWffrlhi/CojWihaKrGo/c0bRuLbqU3gaU4YO6//a0latBGCxaE3y+TFwr14Ly+Xc6/96l9E3AGFG9nkjD73ECNi04Fo4WCi/euFNOY++URG9vRN7sPUZbOdN0KIK0RrBCEQrOr++S3Y8ZIpK3uv4bCb7YV5bu9XLXxP5PAc1hc9SaSERWh8Oy7MBlos2drhtPQFefvhlorY3WO+tn+prt99Y2vt+b//x56b2bz9mFnRYiUtQ4pVGaZzTLuqqQrAyH5R91dTvfNJwHXZa+Gaxriozx5RoopchdZFL4Ygtlfj8zP6vbaddTdUWgm4DW2lgejVgFho/c98I0v9VM7dO1hJvChEOh0GH68B2yhHlbsdO21u2Egjx73wa+O8yH/+QNRINRLCzEfqNvp0SXe98EGp9rHJ3/XoSICN+EQ8xYVcqM7/rgrJaf2WPmqE2X0DnRpfQ2oLUmsiTyPAZEbq+nWWtEKcw8xdS1A3ilehDTn+j/3o6m84egS+ltQCmV4xuXZ1h1FuY9DRxesg4RQYugAa0UdftmYnY9Wv3xoGZN+CDZI0DDFyF0g0aL8D+l1Rzf83v89bGnbUpxzuLvZ+xoWrcWXdF7GogIKz5rtnKHZRpzW1sxnm1mwMUNaTfzjxLlBE7YqeTYZenpkVH8jWXUr48SEqHm19m8X9cT8fwD3O/a2rlcfJfS00CHdC+j0MA/cg0lf21CsN+UmbG+jNdrB2AYOqEBTPFN2bijad4a7FRuaXthSX3rmuJHWnrVXFcT24ZFmFHTwz7Kw3N8RwtC5jdB9rmjkj9MP2ankeVOQ+j2gtbaWGOa1upolPzcVe71KFHMrChTvu9Hq6Vp0ZpW5xwXrRk2taHb7Zfs17ADSd9idCk9CaKloCoa2bg4HKZZhN2KqhAhJYjTRoRXXh9A1bBMWk1Ns9a8N3jwTiHPrmnYJFSfVX12dFkE653uiAgL6nphrTLZZ//qhH7c0oryE5YnNISdZaamK5BLQuS7yL2hBSH6F6xGsHdJbe1nMLOmjK/uK06J3L3/ni17dtP763YSdCk9CY2/zkaitmr3KFpDr/ua7egdqDotj2lrBvPSuqFES1Xq8K1KVm2q7M6CnaIP2l4QET4NBsW4s4G8iY3u9ShR5v2nG1UjM2hJPmdVa5p8QiRoYlSHeO9/hnV6mXZ6ArcnFja2LA8ZMjgoQqjWYuCgagBMTCJE7M9ck3+v2sU+PtsZunmO5TQ+qTtqwZkHz9qxnGwaXUr3YBGLpKG5n23Bln0m+t4l1USt1PNUnWnYUHeT2Zf1YsEvu7MxWxExYPGgIZ1arp2auO0JK2KxJGOJAKxuLKPVsWARWtAcVryCyCYO1fU2hHMi5yh/RucdGHWqQM6yLIqLi3fInjGL+iza1QnMygpWE/jajE2/CmiYvn4Ab64dTKSPkRK1Awmf/+j7j9HbnYGtQKe09H79+g654ILVS+fPV/qdd7LPbGxs+vcPObFoa/BZSzCambvS7xweZB8XBrPretpW7wRusf67Bc2gh9dxwM0rCInl9vmOxV/CJZ1SttBJle6gV69eOWecsbalILYJ8bffKl5/Pf/SuroND7T35n6ftwQlKkJu3iq8YokSxVRR3ljbL/UY7TRHaTvbwH6+yy4qsB1PSt4adGqlO1i1apVx9dUDrN13j18TgcpKpZ9+2ndza2vrhG05S11bwpfhVonElNl9n2r8K+wnacn9dyQ7ygvf7Eqzz2P5saCvVWtX6b3m1Bz+7rmHf7jNzHcAdgqlOzBNk5Ej/dHjj0+dPhaBdesUTzwR+L+mpuaLt2YXyG+yvxmjf5Y7Lfhod3f41YKwV2FVgtJnMYtruTbtAX37dj+Ms4suJLC2FRUMERKLK7lSAVx//fVZt956a52I5CSf3VZYWLhHQ0PD4nYR0BZip1J6KBQCICMjg0GDfHXnnCPFbaUVgYYGeOyxrH/feOOEM6+++to2VzosYpG9q3cOrF1bluiyw8IzfU7iY/UxoVCIQCCQcuieo/ju3bvTUN/A3/k7UaJcG7j2j9Fo9N4PPviAQw89NO0x2lVVVfTr1w+l1JsiUr7NQtoCbHelZ2ZmfnTqqdFDiotFZ2QI2dkYPl/iNtvpNvjd1p2dRSAchsmTM94ePfqU8ueff8FpBMY3fGMpFM5Zr8tqehP02677nOJiIpEIfr8/7dHadtmJyjcMg1u4hdO/OJ1Bwwal4SX1iE7TNIl5pw7XyQ619JKSkiH77lu3dOTIHfdq2P33s/C91a37+bJXgEfxAHuwh3vmKqRXVlvX+vbty/G9L+PB2ZeRmZmZtktIl9cwDCKRiOrITYo7jXsPh8MUFxdOvuyy0PmZme1fvtYQCNgeo2o1rFgBi7+F4h4Hc+p557DvIYcyaEw2UmWiUOzBHvaKV49Sko/OTueuk4/irKyspHfv3gm7VScf2ZmcXymFaZqqo7Yf7zRK9yISiTBw4MCS4uK1q8aN0zmQ6PINw/69di0sXwarVsLIveGIw+yTHgb2AEOBcuZ4vOewSPw0h3UbYPa/f8auD/4Ly+nHEc7J351Kq9JVgANHOaZpkpOTg2ma9OrVi+rqajdNcn+vlCIUCpGZmYnWmv32249vv/2W8ePHc9111yXk8dbTEeemuzR2RKHtAdM0yc/Pv621tfUqwDh4H3jnUcgzYkdveE5ScpF8FosXSee6iMDKNfD4FPj1E1/T2jjQHYefXFpKOGwfLJtslSeccAJvvfVWCr1VVVX06dMn5fr7779PaWkp999/Pw89lHoukvfIbi/Ky8s55ZRTfBdddFG7L7XtVErfY489+ixevLhSRIzLz4a/XrL5eeIE/Ur8KC3veS3iUbj3jJa1dfDidHhvPtw2cwkbninilnevZsqjj7pWmtz/Gp4Jl8svv5xjjjkGgJdeeonHH3/cTetFugCwV69ePPPMMwBuGcleJRAIBC3Lyt2MCLYaqqICefhh/+Lq6sgexg6YQTr//PMzHnvssbCIsPQN2KV0E4m9GvaexERi6013dhqpWWlphQWL4b0F8O1K+OWnj/PzunNdRXsVDjB48GBWrFgBwNSpU1MaxXHHHYfTD3uDtmS5Tps2LSFNeXl52vgglq/dDdPQGi66yNx90iRDxo9HsrIy/tzRDzxizL4IyK8OfTRszRX0vPiJzBA7/yzpz1Gy9ztAsPTGWMHxvF537v5OGiRkZcIeg+Do4TDqAPj0pHPTnonu0Lxy5UoARo4c6d7z9vu1tbUpvCqluOSSS7Dm2efKH3sojB07lurqajdfS0uLVy7uX8+ePbdMoFsJw/scwzDgmmsid02a5JNzzlFW//79+rZnZVprlFJ1Pp8Sc56M0/Pg2H1jSukzyT3pE4mP171/yqM012oFcgIBGgqucrLauvV4gZQBYcy9+wzolg977QKjD4LjD3PKTIzaHWXce6+91YwTgCUjWUlOGb/+9a9Rhk3T2/fZB/mNGfp7xo4dyxtvvEFubm6CZ3DyXXTRRejY3rTtibQeXSkYMECMc8+trJwwAdljD9W6rdbv8/lm+AxDrE+l2PoUlMYVvsT+M3pPTJmYUR7Td9J6/wj0BYSivDw+WpSYN+Fstf53IiqxQVx5v312enYuDP4Z7Du0bfpFhEsvvRSwHwGnu5/83VFiXV1dvJHG6u6da1v+7b97AMMwWLp0aUoZpmmmjOPbA8bq1ZvuMpSC006TrJtu8smkSYhS6iknst0SFBYWZgASmmsdrefF+1jnaGgFYBRBzKU9+c6Q+D1v2jSfAKr4V+73Q064FRXzCN5+XgGG1QplN8VNX+Cep+D04yFzhH12ekFuoou1+VcJv7XW/PznP0+wSK01Y8eOTcgTl5/i7rvvRiybLqercfjIVSBzYf5ru7kW6NT30EMP0RGHDRmLFskWF6o1TJggv73ttky54gqkqKhg+KYagGEYn+8+YGNY5oHfsWwP467bLv4ZiCACZ//urERLTnbzeKxVgfiLcNSrTDM1aHPz2GH8O0uOBeDDJXD0iPj4XylQPicAjCs03QRNOBxmzJgxlJeXU15eztixY9106Sz+/fffB4duPO3O4U/B6Ufalm8YBpWVlYgIGzZs2FLVpMWA3/R9qe+ve9+V7C38DQ3F38GGIVtVWiMUFMDllzfOvfXWTEaNUmZeXnn266+/7j0hVurmaApjs4muxaaZW5fMIST3vu6R2d7fxPvphPx4QlxvggQp2xZ87P8cAdXvcMSZ8O/b4Kmp8NC1drJPvoLPp0BNTQ2lpaVp+3WblsTP5EaR3D97u1Bn+KjEw7GHMZkHh5/Un30OvQjDMGq908Bbiv6/Keufk5m9SmJS2f38Xf9sWqby++yRhfHFFxte3+pSFfYZ6tjKOPpo8R900OvRigqkuNj/ASB6ARQGcAWfMFzyuHblXBV7zluh2nzvxnXXHqv3NpYEAcYy2HVkuJ27UrDguzgdr38AxbFFGpVrYO8yOyBL5+IhUcEuXUkzd958o0aNwnROYPZ2aZ6uyuHJKeGDR2FY94cRkenpJdE2jrtmtL+4OH9VZo6fQEbsKYIIwy7YwyXcMAzjpTZLaGrjupO9MfVWQ4N5mP7MDtRcBj3W7Yyfnd8uJa7MBKLxS17BJPtuW1CxhuI2HBL6bRRQmLhk7eMvihKLU55GJDDtYfjww/TrH9p60pYMx8rnzJmDsuJ8O3S5bcehMW4BAPzhFPjlcXJ6Tk7OsC2qEAhHwmzU1dGcPD+5+X5y8gNk5fhcmsvO6PU8gHHiiWPbXt2Rj634ZOX7iUvME8jW1sK912HPeSePlbzWpxJ+AmIPx2L9ujuh4ggiSUhumkC/hAqefvbFxPocV593aDyjxIlWpEluwJjhcMQRh29z5GwYhnvOujuvoOIycEtP6o6cCP+FmyEYDH65JXWJaOTdYZJTECC3IEBuYYDcfD/ZeX4ys+1xeWlJ0a8AjP/856VNdxrO9nhe5TtP/RTQEk/6wANwySlxwr0Gl0Kkk98oBJSb5rHHnkhQtMQCnbUNiYYuAN1PRYgHUL89+qtEZTuJ0cRbm+KEw5vwGR5Ze7qEz5faeZ2gKhqNxtJseQNwZuH03LiivXU4AlDK5s3lN5k/bDqUUpscLzd/eHKWfHWYGDmZZOf6ySlwLD2m9BwfhgGtzSb3/vdujM0GCl6rFmzFhz0MKCAC0SgsnhZXlNtvJXtDD3MISPG4WDm24s8rXxlvEB702usm/u+lQltIDi0+O3JXStG0ckJCHm+j87Y6EWFwKVg6qYpY4qUrcOuQedC/dyaHHHJIysSJU1bytdmzZ7sKdypIiidd+hLYVIn0JAxbRdJO0GitOfAvu9YcP21Fq1nfzCcbhOxcP7n5AXIKAmTn+cnK8ZGZ5SOQaa9UeWzGQ/8wsrKyNh8eFsQJA2zv6DXjENx6K+zag0RFp3HLXiUIoDIHOhJE1k6IN/NYmjv+Bb2OhfOumsJ+R59JZX3CSVmgFFb1ePIz3GISRwdOxBar+9HHnk7lTyX+uYGiwJq34YOHPkEpxaBBg7AsK63yL774YgzDwFo5yla4F+IJ2JxRiCTRmtAwPX9A3Rw48MAD+wDc89LdxqDf9lu6+3lD5eib95eCguySzBwf5XP83FeXR1aOj5x8P7kFcdceyDTwZxgoICs7cIHfqcRVVJMjKA8hCvvJrklqR+go0NsXJ+okQf7JP0Q0369dT395MO6ZPVZwzRlgdgPLmsf0D+fFswsoNR6t4bvv4KOPINgIZ5bD/54OA3sRm/Xzu4K1gPPHLE9goaTQfvbubSjisToR8Fm21Yus4tXJAc67GhqabR78Pjj9Z7vyxPVLeOAcj1K94ku26tgPbx3OtQRdxMrQhg9GBav2H7UHb859lO6l+fh8Khak2RUoBVk5fnwBRXaeH59PIQLhoIU/oPD77UKzMjPseisq0nS7GmhOppREjjycvT8bpnseF3uZThxIt1GON19CfwzXPQJZqY+qtwgi9jMFFMyfB1PG21WeeSMcuhf06wW/HQ+P3hgX9j67wW790pOe0qiTriUPNBKJ8RiGR7mSJt8z3/XgsW96xctUMP1YhUSifL+mhT/VlmL4nNlCu6yikkyUYX8GMg0aasM01ERin/b3XgNy7BGxzwcp08kGcbcewh1GpXAU49qKTTO2JSHnXsKEC3EBOG41naBu/d9Sbplak0rjFsCd5BE44IC4a/3nJDBGwAu3Q1Mw0bo+XxxXOh66nVGHJF1P7o9d952UPk0bt9MbcP+S/rxWWYrfkFg9irzCGF0KlFIYmbYt9svWZOf5Y8pWbpdqxPRoWQIRjeg4744ulFK20uvrFQUFaSTeTBtNNplD2GUX0D4wPBFC2iFtkuvytnzPhyshpUC6n86KxR/Rf+g8thVugIn9aDUcgQkXQMUjUHFBYt2SktHz07HSJDftfO99AgT8kJcDGzbaS7OUgrxeWRx60a5k98zmxb2CSCjCmSuLQEG3YlwFxwNh5Sr+1dWtjMls4fyWfmRm25qe3G093zYLf5deiEA0bNHabGL4FJGQxjI1liU48bqI2Epfvlz0/vth0II7uknbJNuUIvTvByVHQt3MBLmlGn5S3+96ea8XSI4D/KU8etdJ3DR5XsoU7g+BAPT8C8EP78I40H7Y8s13ca/gWqejWA8jyTFiwjVP3/2X8+HKOxLr/c2/DrfvK8XAgIm/KAezXrisWwNPqB6eYE95LNwuUSl4W2XwtlVIfje7UdybX4svt4DdaSTLNNACG2sjtlfwQSSkiYQ0ZsRWvgBRM2qvRlq5MrsWBeRhu/R8z2d+Eqfp+uaYUPbd3XZVritJShqLOdx8Ctw5aKcxeGfxnMBOxczu83l7sS246y4PHb5c6DWR+k/gtGvh+dvh1KvjDe/7Gg/dSV2PSvPp3HfyX3GqHfyFFsTz1X3bSH63DPK7BdiQn020tgndGuY/3crI7xaI/WV4vtu/C5J+O983mKAjJqKFzJzYuDzfT0tTlJZGk2CzSThoEQlrohGNAppbgxMcul+rqODEtJIKEh+ipeuvk4K6intsZh33qBxXqZKSelxhcutIMebeE3Fa+8RHxqclMx3efBPGHQVX/CJNV9N7EiihMRTmqcm38sfb4IU7bMU/f5tN32nHeehJ6ruT+XB5TUYsYQjIHp6eztcegrEjiHvB2GfUgKzhRqPWutBJa+kIPiODN6oeKZq1/p83WuHsK3xKuwaz4psmGmrCKENhmZpQ0CLYZNLcEMXnV3zx0CLlB8jIyPgXRFKVLsSnWdtSuPMZu1ZRAWp4TPGQ1h0mlyfJXzytw/UEyp6ifetlOP4XqYITsZdEz/+kjDmPV5GpYfyJbcSVrnAVBVlZXDIOdh8Kx50L/7kDxjmKJ+5tSOqSkvlIjr7dOpz4AXvFTOAge2LIgZ7v8SKue7fLyTgAIK5wAJ9hT0iUl13QAFwZ++OKBYf2yfMXVWVkGkRCFqYpaFMIhyxCLRYiUNg9A5/hs/v044479lWYlirJZs/3fM9350GLQ2wBCQ9fJk60Fe/OSqUTjKvMpDqTG5K/2G39b75cwQePwaQYqVrDfffCkrnXU5Kb4T5YWLdoPD0L45aYMufgwr746JQczj85iJ4PxoE23f6D4ZflYHhGLenG25uvgwQvaX4K1zwMGT6YeD6g49lmfAHH7Gt3kb4DQGuttnSx6j0HfFQNqOsWjq5Zv7q1pLG6FcuyAzszKuQW+gkGoyMgtsL41VenhFJKaSbep3sV7n34kkt8WFeAO0+vNZSW+hYbIzx9vHfY4MjGK0SvGXlMSYrPRBs+zDUTOOEQ+0Y/H4wfAxUnw4YZuAp3shUXeUINT3/sPs4N9I7dsycwBu1xhH1fcB+QWJ+CYXroayOQa7MOldDrJeS77SJb4cpjEADHnQ+PTAPfAYSALVa4F7fuN710l/3y9s8tDCBaiEY0hSUZaK1Z+Pdv50HsybVpmqm589oo1Wvdybf88OhkVV1VJWVOv+A7gKYjDiBv9iPxMaNKEqDXUpIXT1B3P8qKP2JXCs45gRTLcmcERfDruNCT4wMRoPtvYt/txQ6RYDjRYj00JIw0kkYe6RSawI83j5e3NHX4Yqt4LrnJXw7mm6nS3XI8OPr9hW8tmOa74bmrooZPGXV1jfOWPVo5wrnvB8jKytIVFVtYYh4pbyCIwDPPqNply6zSiRNTWmf+Z9/mZqjhLeEV02FgYdytpwRySa5dgb22zBGac9uxIlfx8cLmff4lI3rEK3e7FE8Z4suPDRPtu6ENH7iJ0wWXydfa6pES6nDYSJM4ubzXPgVBaa0tX3u9e3D8AWPbfC3KrWGLx79JND33nGoYP95S330npW0R3NLSEgHULscZ5WoErG7A7dPjK2DSBEiORZD4PcFtZu4Wf3IlwvAe/0npWr1z+XZeSbDenx9lprhi7yIP74OipJ5qE3WkerJ0dbQK/OxihYi0m8I3B7eWLVwQ4mLKFBW58UZLLVki3bZ0EyCt9ZuA2qU8cKwxAiqeiNVN0qdHsir5tySmV8W/dH9HqiZ440YX3gjcneyIlTt91gcJedy25lGid4nTsRfDqAu2pI7EstLVsSECOSNAJMUfdChcpW9JIxOBN95QesIEUZ99Jpk/dMenaDQ6HVCDRzzp8x2ktBoOtSESHie6wZPnt7tuXTyeychiY2sQqR5PpmdhRJzoeBkJ3wHxGRy721spmdxHnkn5AKY/CBefgT0sTQo+E+pI6egTfx71Byg5nCCp7afD4VZ4/fXIpvbqmT0b8403IoGOelk+Ly+vb0tLyypEjH/eA6ePIsGHtiUZT8yU+MPjS903XBWIrwzV80I2NDfTbeOdqf44Vle6AEx50ghgDIeD94GPHovnT8hDatnzV8KIcZCbmzu0paVlWTuJb6vgrjutrEQPHpz6kuinn6KnTtU+wzDoyN0RmpubVxMLPHSPZw3/Qb/9SGt9kKHg1QfhxINBOWPapMjdhdNveqPnpL5jVfhIileMp1smiYryFJvumbbXNzt1yDzQAfDta1979FY4pxyU6bF0BV9Wwv6/sBd/FBQUnAqN/3HeX9sRcFk76CB/05gxpjtQ+/JLePHFLZ8c6EhorTEM417gMufa1RfBLRfYAnZIdOXsdAne7sFpBJvwHuL5otpoWAJ83wAXT4TX5zgNROmCgoJf7r///v+dNWvWY4Zh/DZGs+H3+6cPGDDgj19//fU3HWk0WwOXnZwcPr/qKvZZtgz91FOWr6N3aNxWRCIRo6ioaEg0Gr02Go2ege21DKUgww97DoYTRsIhB8DBe0JRNxA/qChgghmFkAmtUWgNw8YWaGyCxSvhky/g4/mw5Pv4rhdK4TyevPG0006777nnnmvs7DJqC67S8/Jyr/vDH/5w+5133rVzHTIWw7XXXuMPh2+PFqSZNNpWPPCAb+G6dZH9d1YlJ2O7R47tDdM0OftsvwzZuhezNgkRmDFDmTNnRgLbshNlZ8VOrfRRo7COPjr9DiUi9m5SX36p9FtvCZdfvvkdr2tr4eGH/fubprmw/antPNjplK61ZuhQf81ZZ+kSp6+tqUFPmaKa/f5+l7744n+ePeCAA7XjirOzee/qq2nznHPDgNtvz7izsTF4dUdt4dXZsFMpPSsra0pWVmCuzxe4Z/XqqmB2dvYm0/fvT82551KS7t4jj/iXVVVFh27pu2k/JvxoOT7qKOTII+O/ReDTT2H48Bt8N910804ZrLYXfpRKP/dcpH/shLTWVnjoofxjGhub3t2xVHWhw3D11cjEiUh2tvFER+zX0oVOBK01Q4YYa15/fev3WPip4Ufp3ruw/SDaQhn2SEmvHJ8hG2Z/ICp/uGhDS/0XSNRslGh4llj+q7N/XrVkB5P7k8WOf5jShZ0OEvrONZ4LrAAAIABJREFUkMVHN8nSX4gsOkREx/ZOXvtMAd2OHa7KLoBosyEqw8DIKhKVscRr5CJC06Pdwo2PdFvX8NfMX+0wRn5C6DL0LmwV9NcH96f+JYteV+WhDJSRAVWT7InMnr8LSaQO2bgAHVoLWpBoayRz7HdXJxRiRcHnywDpYWRnPL/x/hwrsmJ6V1vsQPw0Zpq70G5QWUP2kcwhKKsRMTegRNB1U+pFR/PBFzQX/kzjKzGwLNvQVd5Iw0h8TNn0RHEPVADRGrRGLDFanv/Za8DYHcPVjx9dXrQLWwcj9yskiqgMUD5EC4qcPD1vv6uUYWgJrvxQQutABNFaZ435OmEXCa01CrUILcT/NBIO3bKjWPopoMvQu7B1GPB/K1XTeya+XJS/1O61tSBk3mHOHjTOyD/4eMK1iAZEGSLxN3611jRPLngIw1/s7IUj2nYIRTdGO+WRtD8WdBl6F7YKyvAj+SOzVf0UJGMXezG5E4Kr/Bd17cx3JLThXbQF2sIwMjWAjjQTfKZko8rIvEi0a+CgNbrJf3hnWGT/Y0bX47Uu/CBosxkWjxWJhpBoFDEtxLTAtNCxTzEtdMuGazHybsPUbpqEv6A5tdu10ZN2ND8/dnQZehe2CeZHA45GFc9Ia8SOwUfT39PN1tPF14Z/t6N5+Cmgy9C70C6Izij7jaiCZ+KGrBHTBFPbhm55DD5krje67doz/7ef7WiyfzLoMvQutBtEayP6xRVj9Or/vibeED5qIaHWL8gePCL/N59HdjSdXehCF34gRAQt0v/LYGu0KhKR6mhEvl8flurfV8mi7otkQc6CI3Y0jT9ldE11dqG9UFB3S+1fe1TjN5RCCfiKFK33d6f6yz5k+gOzl4xakrWjifypomtlXBe2GSKSYa4zDwj0C4zzr7JQqzTNB/rROYoMpehbnMnSyv4sikRadLH2Gb6u/mV7o8vQu7BNEBEE+ldVhmZ27+UcOQ95801ECZEihd7Lz+CMDMJg3Fq5fpW29IAuY9++6JqM68I2QUSKvmlunV+c6R/sCws5n0ZRKEQLVoNFeGmY0OIQkXURwk1Rpt9TwOpucvNdu/W9cUfT/lNCl6F34QdDRDKq1oV+K92MyZmx41M0EJgXwZrSQtObTYSWhTCDJpZYaDQW9mfGXhn5w78e3ry5OrrQPugy9C78IIiIgdC/9ubaFfyxEMlRWCI0a83KSITVpkkwbHHIgWsxqs0EI7ewsJTFEZEjlBHoCuG3B7oMvQs/CFrrgnWXrPsg99jcYb4CH5YhVB/iZ3kkzHrLIixCVISI1kTB/m5Aj5ea2OeG9ahak6g/Wn1U61FlXcbe8egy9C5sNUTEX/dh8xjfN+aUwKAAYgrhL8I0PttIU8jk04+7E9ViG7jWREVcY3f/YvfMevP2yXsPvHYHs/SjR5ehd2GrICKISK/vzMiaQuUjY0EUc04rG5/eSPirMGLZO3JqNNEizex3e9DcxyCKTjD2CGDGnMA+3+qyP44eUL1DGfuRo8vQu7BVEJH/Z+/M46Qo7v7/ru6eY+8DWJYbDxBFQRHQoIJ4a7w1kMTz8Y4+MY/xZ+KNSIwxeYyP5vF4YoxJjMb7iuKNCoiACoogl8h9CLsse83O9FH1+6OnZ3pmZ3aXcxX6w2uZ7urq+lZV96e+36r6VnV0SUPLW2WFodEG0OA4rLAsii6soeSlFgQCmfzn9ckzjoWDYzhsPjDEN2cUs+zkErb0Mfh7dS9hBEtVdxoCogfoMKSUmrnEHNj8evNCLiuhOapYaVlssu1Un9xuUYzcaz3SzEN0bzDOdy6RmMJccWr81L20SED2nYGgVgN0CEopBKK09ne1n4X2CaG/HIPTvqXlkzgOpKbWnChMXVfN+5t68E5dbzaeGU19rFqhkMiMc++fprT+LxW+dHanFXA3R6DRA3QIUkqjZkLNxaG+oUdFkaDp+Saa3m5CNbmktfoKPp1XhW3L1gNvqcE3hakUff9ex5CJG5CJtF73jnqd3ysy/J/DgxVuOxgB0QO0i+QAXNUqy/q2QAgSN2+m5dF6nHrH9YJDpX4lEqdIMm1WFbEqDZMcpPeNumc3CnGlzDf79IvoRmBs7kgERA/QLpRS4WXftvy7qNI4ocFxWG/bxKSk8G/NdP9FfTqeR3ScrH65Q/1QnZl/qqJ2YBjbVlj4ptykzGgQ1Lr4P985Yv8LOq3AuyECogdoE5423/SrTd82TCpjo2PT7M2NJ6fJLBQDTq+laGoiD9HbG4xzAIfawSFWjixm+ZElDPgyXnHz/4za0tnl310QED1Am1BSRVces3Kx0cXoG5sWw9lks2ZpTxLdhEt0vymePO7yXDMDr96Eo1ROsrfVEPh/f2z/WGiBCb9DEBA9QJtYMqP+APGTjQvkZonT6GRck9015i/ojqWnTfDsPrepIPxNgsN/tBp9rdUhgnvX4uH4jEvMS47onJLvXgiIHiAvpFR8Ho8pW0Hohs1EH3IXm/kH3wAEApDMfa2CmsPCWMpHeHzEz/J712ptDnhwPf3+XUt4bQIblaK7R/p4l5YfXFF75czOqoPdBQHRA+TFnI2NP6VIezI9aKbQ32yh27gasl+dbI2scFj+s2I+/00XHFNmDLylyO4P8zcKpEfkTQHz9t5H6CJ4VbcHQe0FyAnpSBaOXq7ib1W7I+RJAqZWo6Hof8ImCmbZeUfbc5njSndYe0wBn1xfxbdDC9xGIN+il2QjIBvtVfOGDOoXCla5bTMCogfIia9KvrpZNIq7AMzxBWz5S5fchEyG9Zy0hR73NeC00wfP5wLb3kBdS0XLsdfWXTulc2vl+4uA6AFaQdpSWxxa7CS74CmoIsXy9b2xfX1uE7A9Mzxpgps69L9rM/3/WIu9FWRuK0wJxWWJy4Qe1jujSr73CIjeDqSUVFRUHN6jR8OHAwcSnjpVn15f79xr2/arSikMw5CdnccdjS9HL3tCn5o4X2S9Ht4gHED8YJ0FH3bDdvJ4vPm0v6kgYSi6vdvIodevxlhvtnJ97chIfILEup/Hf95LjwZk31oERN9KSCkZOHBA16amFR9deqkz0DBACHAcWLhQ8OGH2qJNm5x7RowY/uzHH8+MO44jI5FIZ2e7w2hZk9CWVDiWQmn65TUYT8VaxfET3ht4W3R/GWvOK0xvOJGaXsvj/po6d48TukI1O0Q2mJQta6JwRQvhzQlQkubyEFv6R/n2gFJQnPzJ6IPe3LW18v1HQPTthJSSY44Za8yePePvF1xg/bhHj8wVgSpp/uo6LF0qmDpVbFy5Uv5h2LBD/jF79ic1lmXJgoKCzsh6Tsxd1zhNK9OOVIANmEohV9l0GbwuVRY/8mlhu1wx6/HurD+iANtSGQN62fPtZp5GwM6dRTm9tEeosnvxbmdJ7UwERN8JkFJSXFx89ejRLQ/+4AcqJ0H8UApCIVi5UvDhh8SWLFH/O2TIQQ9+9tmcNUopGQ6Hd0m+14xfY2xRtuU8XoVC5VyQEn4rTq9xtZCcR++Iye3FW8xi5vE5q4vXM2+0QhREifToQfGQIRQdfDB6jx4k4nEs4XrdZbjnKAUKnIhGaHnjks+PHLKfEcptwicSCQAtHA7L0047bd/JkydXRqPR8lgs1nTqqac26Lr+1fPPP4+U8ntlbW0PAqLvAti2TSgUGjl4MB+NH68Mx2n/Hj+UAsOADRsEM2aI2BdfqKeGDx9+10cfzVgVCoV2iGaTpmRh8cIvhCmGCARyWIimaT1ye7uR1MqOYvDobwktNFNk19C4jMuYwxwAhBBcddVVXHvttQwcOBAhBEIIVLL1E0IgpaS5uZl3332XSZMm8fnnn6OUQkPjaq7mAA5oPTjXS+1/w9obFkkpKS0tvaq5uflPSikDoLCwkOuuu45TTz2VoUOHEo1GU/KklCxZsoT333+fBx54gKVLl6auhUKhpxKJxHnabrjTzR5D9Hg87h1qAOFwGE3T5MqVy7X6+nqtpaVFu/jiS4xVq1Zpzc3NRjKe1qVLl2i3bl0rCwsLK0Mho3L27M9KlVKF4bBeXF5eWlZSUlS4du3qUk2jUggqhaBc1yksLtaNwkIRLirSwgUFmuE4ZjgUwigowCgoQItGJYMH75iyKQWaBo2NMGOGFp83T0zu12+/SXfcMWHeueeOk6IDziZv8mZhX/o2AxlLT0Gx+fFKGs8uTJvfWQNvy7/4gruPPRaAO++8k1tvvRVwSezmT6XI3davP653vHnzZgYOHMjmzZupooqbuMklOoobuIERI0YwZcoUioqKtlmGl1cpJbfeeit33303ACUlJWc0Nja+uiOeUWdjjyC6k1Sh1dXV4ZaW5mt797auHzvWqu7Rwx1E292drryug1Lw0UfC/uILbbphdL2rvLzig0WLFkkgvHBL01J5dW1vLTn45h9wS59Dw48K+ObRchwF1x18MJtWruSuu+7ipptuapdoHrLP/cgXVwiBZVmUl5cTi8X4f/w/hpwwhHNfPtdrtNtMp6My/L//+te/OO+88wCabrnllrK77rrrezsusJu/4h2DbdtomkZhYeGFVVXWxLFjnf777gu2vfs3ApDs/iatgjlzBPXLDuJHC67gWI7NjJecWD+f85nDHKZOncpRRx2VV1u2L7d13HzaNju8qqqKmpoa5s9fSM+e3SkqKsIwjFaE3x4Z3nF9fT3l5eUAMaCoQ4X7jmEPeI23D5Zl8c9/PsF//dd1JxUXt9w/apQ18OCDFaa5cxsBP/mEcAfrpIR4HGpqYNMmqK93f2NN0Kcr9OkOVdVw0ADo1xUqu0OPMqhMvppKgpDuryOhKQZrNoI87ltEYUlKtpMyyxXav2NU/NT1bRcIBjGIESNGMGvWLCBTO3ZUo+ciX1v35JOxZcsWKioqOPLII3nllVcoKSnBMIxUPL+8tmR1tBz3338/1113HZqmjZFSTt2e57urERB9O+A4Dm+8MZlx48YP69o1fF/fvltG19ZCbS3EYmBZYJnu1NreveH80+Hc46B3NRQZSZNagfC/h8mvkQpB2jHNO1eknpjAd578FSp5j0gHe/enbkqeJyzYuBkWfAOfLoRjn3+L4kVHQtSdVsvwbVeKuo0b+cmAAbz11lscf/zxbnJtmMep4iTjTJw4kYkTJ7YZNxKJsG7dOiorK3MSMB/C4TC6rlNXV0c0GkUIwdtvv81JJ53U5r3jxo3j6aef3qpyWJZFJBJB1/WHWlpartlVMyLbi4DoHYBlWYwbNy789ttvXxyLxf4AlLq7okJVJfz0NLjhP6C6FFJzQsJHxqzzFDeTte/jbwoeif2ETR2r1vdmxxfJi0r40k5eUAoSJmysg/nLXKIvWQEb6zX+9PFCnAM16mf3wEp6vQld59iiIl555RVOO+20Ns3cbDz00ENcc801W1PdgNuIeiP07clIeijSt29f7rnnHsaPH79Vsvr3788333wDkFOGv9EBME2TSCRCNBr9RTwef2CrhHUSRDgs6nU9+vOmpqZ/6Pqe7Vpo2zYDBgzovXbt2sdN0zwOXEKNHAx3Xw9jhoHYSpM9m8TKp62zyajUVqSdpc0zGgO/RZBsWPA1DCjXdG9ogtUbYdEKWLLSNePrGqAxDn+c8RVCClREcpAcSu+evVi+fLkrI4/pmy6je+2JJ57gwgsvbJX1Xr168Ze//AUpc49tefeffPLJ7crwn3dkWuzJJ5+krKwsZzlOOeWUdmV45++++y7HH388V199tf7QQw995wfpRO/e3V669NJNZ3qmoa7D/Pnw0kvi+X322e+8hQsXmh0dXPm+IJFI0NTURJ8+fX7c0tLyqFKqWAj4wUHwxO9hr65pEnoaEDK1qB8Z5GrFbFKEFGRpWN/1Bd8eQFXhV3Qt8VnY2aa6/55kYLaV0CpyrmPh9tNtB5pbYNMWWLcJ1m6EDbVQswW2NEJTC+ib+/H3mSupq6ujvLy8XRM3lcWkls2OP3ny5LxpZDcew4cPp6qqqk05fo0/ePBgVnyzkLoZ8Lu/w6T/dRs0gBEjRjBp0iRs287bHz/mmGPI5UCTb+AuEomglJpp2/YPOlQpnQhRXd397Cuv/PaF9rgci8Gzz4qNDQ3l4zdtqvnAtu2clfJdhFKK6urqqo0bN36slNob4Kxj4Z/3QIGnRT0CFAzjb682c9Hxi9G8aSnSJM71m5bTTrwc2tc7Ub0mIXC/PvrVR3cwdJ/MxiYlgxzhXhr+froPQmTFId14SQmmDbE4NDa7BN/c4P5uaYTH/w0ffSFSpnSuwTVXRuvBr169erF+/fpU+NNPP01xcXG793nhxx13HKFQKG/cbMI+9dRTnHfeeag5gMzq1mjw0nQ471cQT4Cu69x4442MGjUqleZJJ52UYRW01z25/PLLeeyxx4jFYnpBQcF3WquLgoKCnrfc0rLWzuNY3BYMA6ZMEcyaFf3vk0466ZZnnnnO9EY9Oxu9evUqX7du3UKlVLWhw8sPwimHprUq5FF2PSa5c8YCnn7+34wf9UmruP7BslZpqA7IIOslJAQ9b814kZ5/aTLnHDaztSb3p5urrw6s2QS9u7bOY6txAAHaodCjK6ye7PoU3PEY3P0XmPJ/0K8afnwTfLpQpHwR8jmdZPfbvXCPOEII3njjDezki5bPmcVDaWkpRxxxRLsy/LLmz5/PkCFDsD4DXbZdVyiI6zByPMxf6oY/8cQT3rx53kbF37jcf//9/PKXv5TxeFz/ris9rampaUNLC9vUGtk2jB6tuOGGlv930EEvJX7zG0PdcQfqqqtQVVXG3D59+uzrbK2/5zbCtm10Xb8C9zmqy85aW+d8oqrVp2DOgh8e6sZL9Vs99ijfi6AAX1WMP+dUnJ53UtfinguVJosXX/nCUlqzLRleBL/5XXZ8q/Kce9YpvLnguIxGQiS1sScv4333yeo9dCL0nsTDL6anfP15AVCGS3KA/7keNAEn/twl+a2XwpD9oHcVjPmBV960tm3LESX7XErJoEGDUEoxffr0jAG27F8PRxxxBEcckXtPyHzdSCEEU6ZMQQjQab+uhICoA/OeAvUJyE9gTK8LKIhqaJrG4MGDU2MIufIrhGDu3LkAmpTyO+8zKwDOOQd10EE7T4hSron4+uvEFiwI3zBy5GGPfPjhh3J7fYqVUhQUFFwYj8f/rgmY8xIM6UW6T+wzbVOEye5zK5/WKzwUyk9PXhMpLWBKCevvIOTF86W71TJ8+U9p2l6TcBuYTPWslOLFp+7knKOdzP51OmY6vpdgqA+q6+WpfDmaxvp5t9K7whdVS5P8uXvcvL7xMTz+Ctx0MRwyyA370XGgQqAfDPPnz2ewz2e3LbM21znAxo0befbZZ9l7770zNKSUkn322YdBgwblTacjMkpKSigINbPxHVIDkG3WFZkNtddFQ4Gtw4Fnw+IVMGjQIBYsWNDKrE92K6Y4jpPpWfQdhDBNk6FDo9b48XLn2tzee+yrYE2DJUsEb7wRerOgoOtFy5ev2NiRecn9998/vHDhwnog+uqDcOrIrL4yrc3jtvrOqd+ebj/Zn4Brxguefe4lxh0xd/tlZPXrURqq54T0S5siuZvulKkzGTtgcqsptFZTZ14eqm9E6YVuOSDpuAqfTLmdEYPc+/Y9E75ZC8/+LvlolGui79cf7rwynb8Tj4CSAjhoPCxeaWCa7ifRck2v5Qr3ruUyv7342XGy43VUxvTp0xk9ejRbZkGZ3sG68j0/r+rxnqdIWkHC3aCy8kh34PIf//gH559/Pk888QQXXXQRDz/8sP6zn/1sl/XPj/yvI7purN+wVtO0FFG8MjTHYx+sfnLt2Fz3CYCystAr111nnb7Tc9mQ/I0k/3JAKbev+MwzomnlSmN8S0t8sm/ab19gaSQELbNwvbx8BMruk/lVaOoh+zWjr6+NAtHrDkBrTV5gc1MTlU2/T1n22yzDr0kEqLLTEEUj3OipNibpbCoE875ayJDyf6XNfzJlpbSQd9Jroj8nKVmmALHudmpj0HM0HLo//Co583Xh7a4DzXP3uKT3j8yPS/Yq9BEwZOhQ5s6dm7eP7GY5P6nzHfvjt4V893jz2n+8Cf7r7MxHkLeu8snIvierJfh/D8If/+aehsPhs0zTfLntFHcMCk8uLN27f59670VyHIXympes9zBuxTcs/8eKHkKkp8uTK7nKXsozpZkfubtpHUMCl/Q5ZArhDvKdd54qvvlm6/VJk3R1xx1urzYaZqmcA/GPSTmmpB6cSBsM/tZciDTRlC9uRvYVUDAcpTTvcmaeso63WYYvLJXvopFpGcILTx0wc9q0jAZCeBkQSa3jNXLgmu3KJYBSbiZdcijCSvH05AjjfuFGve0y995IyCX5kAFpLef1bzUNmpJ+A85n8MUXX7DPPvsk01cp4nWUtLn65/742eMAHZFRU1NDJBLh1qvgunPSz6LdulLusdeueY/Ia1BdGaRMeQ/3/qfbn7/jajBN86VIJHJ7q4LuQNiOzYD/2NsafED/+oIinYJinYJig6KSEAXFBpGohh7yaTgBhQUF1ftfNkjd+rebUla6BnDUUaOm+2YxOgYBtOAStpGOEV8jkzXNQFP+6ErB3/4Gd9wBW2ZCywxXi0P6oXl/+I9Jn2dn2Xu4qZFz72FWnoHXL/aIIlCpNN99/S1wtlOGSpdLKVdjCiUzy4GvgdZ1LvrhmlSdpRoJv0x/ml1+4msoVLLRSRILQdwp5+Mv3JB48sPEUz51f88/OfczeGNqMl/SfcHtluVompYaPc8emMvl0+6ROB9ps+/P18fPPj/rrLPo1q0b37wNky711XtH6grfq5j9HLOeMWSSH2DCJSA/hdLCxERA9ejRY4cOyEkpeeQPPb848Mr9VXWfIqOg2KCwxKCoNERRiUFhqUFRqUFhkvDRQh3dcHMpHYWuC16e9YL13LRnNEgS/cUXX/06vVx7K1AAlOJWRmPWXy7iZzcmyRcoZdJnYdIkaNzivmBlRhbJciCjJcenZX0POCW31bnMaM0huTBTgIXkrCO/2AEykvd4/5WfnpLhRfDMS6VprJlzCxEfyXN1FzLKrxen5AmfqvLWl5cVbsaRrlOUV84V69zfqspW2UyVr8VKn6/6N9TOcP3LS0tLffFyL1zJRdL2fMvzecN54a+//jqaplG/7mXkJ9C/kgwF0qG68oJVJuGzo6eeB62fuQC+fRtefRjWr1/vRCKRA/MWqoOQUtIyY9AyZ9Yw9R+Hlg3pu08RBUU+kpcaFJaGKCxxwwpKDJfoRS7ZQ2G3vXFsha4JJvzr5k2OdFyim6bJN9+IbR9QKAWyh/I8wjfgam0FZI+z+Rt0H9mVgjvvhJ7dYNM7mRWc0R/Fd82fpEo/aOEze1NpZMcvHJ4RzzVf3dXYlpQ0L0+PuHdEBn3v5rHXIqkbUkrWn4YCUXxYOi3PpFUwa+48WHsrfbr68uvTLBkDTV4dhPqm8uS+iO5qM898bTJNzj3OZazts0zKk/4rcTNtGXn163Hx3x/4yiagMgzqU1j9bhOa5k5H+VezZZvofs2eHe4d+3/96fi1+7Bhw9A0jb/efxryE5jyYLJ+VNpq6lBdec/DM+d9xxndMV8afhneuVffpw2Hz1+ARCLxZZcuXfZmK2E7Nvtd0/voY28erJyPD1bhcPHeQhfEhCBS5BLZJbpL8qLkX2Gx4ZryRTrRQp1IgU64QMMIa4Ai3uJQUhytHHvLYYNSu6189RXbZ3oUAp7TU3ZLKsmt6bNb2iTZX3zRnY5b9XomgbwWWEHqKaRGT32aL2W2ZTNaZN7r9d2oOA1Iv3gqefz3J58ltOEOyiNty1C4+U3JshNcduUt0PNOnngjlC6myOARStnJYTfXXJ2/aAmNK27nsO7Pt248fHluFQ6ILuN9pkLGIVLTaFx2F5qEkuTUeii5e+2Rw9zz92ZnNaS+Y02DuJPZLgOUGy7h5Scw89XD0TQNIQSXXHJJhsZua+47X5hSigULFlBRUYEQgopSjamPzEV9Ci/+rvWz3aq6ypbZKhOZ6YistPx9f+9vaD+46CzYvHnzMsuyslNMQUrJuLt+VNj/gj53j/j1oPqjbj9Ijb1zmOretfJ9K6xz7Dvwy+lx3lnawq+WFhBNkrigxDXTi1Mme1KTFxpECnQiBRrhqE444mp1zXAz1txo02TWv5UqY69epR9edlnDaCFwiZl0EnE3VPL9ieRvRicnC02kp9PaMJ9aVa4CocGE/4bf3QC/Ht+OnBzIFT17ZD7juhLQ646UbaaARx5+mKvOWJ9XbLYMKWDQePjpecmiJF8Kx4GWFti8GVauhDVrYOO3UBKFbt3KOXzkIHp0D3Fg12kcdQSUGKAr3L476bQ6VOhed/psUa+wsKm+gZKme4kmm/E358DJV8AvfgxHHJyeWtM0+Ndd6frJLqOmwdlj28+PUiD1pK/5w+4qOfd+jd69ezN69GgGDhxIeXk5zc3N1NbWMm3aNJYuXUpdXV2qgThwX3jhARjQLY/MrXwvtum+PHEzNLtfERmgHQyGYfxkzA2jXlu6bslNRZGia0NGqNjbocdLr6p3Id6z8oenGxNBZXUEXRdounAJHNHQdFcJOZbCTDgkWiSJFsf9iznEYzbxmEM85mAlJEopuvUqlKlsVlV1++XPfrbp3jYfZAvgNVbZ5G3Frhxx8t3nq1Ah4P/+BlOfhr3LaE1MX/Legb/PlCtLKteN3sWikcz8ui+rvnqRHx0nM82+rZGhweDzYCtXSOaFvwsrhEs0pdzNJlatgnVrYc1aiDWDjsaIYQMYOqw3R4zszz79KqjqVsjiaXcyYn9aefTpI9wyePPo730C//cC3PwfcPB+ZDwPf+N4xjEQ0lo3BNkNaOpckfatT9Zj6pqXvnSPF6+F/fqQUhDbIsMLz/UOZ4Rn5as9GelE0u8BCtBgaUOUSTN7saSuAM+fRgjQBbx7rO3mz3ZQCZOxs0vRgcJSg3BES1s02dYGAPvkAAAgAElEQVRCMhMVVRE0AUITKdM8FNaQCsy4R2zvL0nwZjsjXCmo7luQLoau6wdMmOAs2OppNou09m9Vc75wfNfyheO+0FOmwG+ug1H7peOJrPRythXZsn2y8jXkOdshkbsI7crQBYf8h+Kss3II6iRUFMG1Y0l1eYSA2jh0PRIqS+Hhm9x4l9zpOoQ8d0+6GyLIfPnDBpw+prU2888qeDJSg4K+vKSqLut6RjdIZR53pgwEWAgmr+nC08uqWN8SIZRc6ZTu4vh21vNl5PUjbPTCCGgaMpZANsWRsRhnfd2NolIjVamttblIpV1SEUIIgVSKaKHumulRHSkViZYkuZuziZ55joIe/QvTWVNKaRMmCEvTtrGvbuPOj/td2/MRnBznPkydBi1x+OivmQ/BD38Fedf9D9GL1IaY3D0LX0C2ZmhXRtEYqDyew0+7lVNOySN0F6OiCH4+tjUZpn0FYy6Efj3g99e65Rp/k1u2F/8AltP68QGcdVzSl5zc9UCOe3Ioxpztvf9iKs5WyvBPt0LrVw5AaIAQWLX7oKRAWTaXraqkUQnf6LrIlJdBSjc0YzwjI57gsu4tHNfVjaRMC9li8mhtAVMThRhhLTnY6N7iINCTWt0nmnBURw9pxJttV5tHNIyQ65ptWxKzRZLwafYM8idNeaWg516FmXV8ySWovn3JDRuIk3ZyyfukaP/J5kMyjqa7Wv2nZ8Blp+TXxN6D9bfM2eFeXO8gw/TyJZxN9lxptSuj190gTQjpHHnmrZxwQjvl3QXwNLr/EXyzXrB3D8XKzbDXCWDo8NRdbnkuuM1dtvp/N0NFaesyFkXhlCOy6iO7Xsj/DHK9NrnMZ7LTTt7U4yT4trZjZQ8XGZz5v8OztKagq+Fw314JtEgI5UhX4zbHeaMhzHNORaYSySBxVn/aHy+Zdut7vHii1T23lNTRN+pGkKaNajH5MBHmeb2bGyZB1wUNm03CEXc0XdPdinYc5ZI97mDGff30liTpYw6W6fbRe/QvSvu3Syk5ZrQu+1YpLWNo2Pv1jjXfMVnxvELkVJUdOPfy4sCRR8I9f4biQvjx0ZlJ+sWmiOurfH+473llLEbJeJl8CXojqipHWm3KUBpCma7Zb0umv3wXR597C8cc07p8uwqpGQkyq3rv4b8FafLJ7Ddw5swkNBzG3QgP3ABPTIJ/vQVX/haqKuBPv/YSc8sbi4PS0uf5xi/89QV5Hr3vAWU3vqk0s2RseCsd9/OVcPylUFufo/ACLvjnqAyt66XbQgjlxFC2hpKeCQAzSyopEUaG5s4etc+45k83S0Yui8Afz4xL+kQFWlHU7dA3J5C2ZEyiidcKq1PxG7dYSKmINdkYIc21RgDlgG1LbFNiJtw/y3T/bEti265GLioN0dwS+yZDWXbvHv7kZz8zh+eotvbhTZ3la7L9Bc6l2XOFC7jjXhi6H8z9J5mVno3sViD7sspqgXPFV+TcY61DMorGoEqPzYwe0Tnhx7dw5JFt5Hs7oZTrMrxqFbzzDnQvhjuuhRMPBxK56syAHmmvTSXgxScnohc6nJXc2u35e9zfH/3aLfL44+HsY9JplRTCSaNoG7nqjjxh2eEdRZYMacBPb4Jn3kiHRUsMDhnXF6RCSlDS9RGXjiQRl4RbLOrioOI20pZcfobivJMVBgoDBwOJkcyoSP26fyY687/VOf8WnR4HFj8w+IroO12ivSpB9RRC7aNQvaN68b4WLb1DIhLWhKbhrtDQENDUYHOntZawAGyHGkvxx/L+6dUWAr5d1YySsPnbBLoh0DQ3F0oqpKPc79qZEivhjrIn4q6Wty2X6N37FBLWi7plVK9hGBNvucW+vUNTOh5s0oNx/gfg1UgO8rZrwvtRCn//OyxfDotfh4HdW4tKJdmWOZ593a89/PGy7M9WGjGfjJ6TSK8ySMPWdc685FZGjuxwiTPg9TlDIZg9G6ZPh7OOhhuvgH26g3CyNGoeGzk1Ol1yIqr4iFaF/svDf+CyM5q492m44V439H9/5XrMeX33A/eB2y93r517Iu54TC4Z2XXVVl2SvpZxS3vlaEcGCl6cCef+vP061oTr7VfmjZHlkZGRfwElyRVt77//vhg7dmz7gnLAlhYCtKe/uVv7vO69czXN+LuhhcIpo0DAV7Pr0DSo/TaB5llAynV1tW2FY6W1uZWQ2JZbYV17Rmlqaf78s98vPSSD0qNGHX74iSfO/LgtN9MMeN5s+TR3AWmPuey59WwI3G6BzLpeki7wb37jbqG8ZDIMqEpWerLmveOURs4iZHY/MvsFyW4DMhqC9mQoDXpNSMrwrbMWgk/euY0hB8BPJsEhh+SuRi9vsRi89x5s2lDC9dcezcU/GU6x7hqJQhPUL72NskIy+r7pRHwvp8osi/DXea/fpBskkVkvX396OwN6upfqLKg+yu2v6xrMexUmPADPv+1eP/s4eOEe0ls25bLkssqXr9zbVI6tkKF06H6MuxeeByFg2pMwakAHZPi7GAJ6nggbaqC6unrwhg0bvmotdfuhlOKGuUeOK9BLnhFCMOf9TQgNatbFU9elBGkr14S3FLYpU2XuUh0hYVrm7Hu+iui63tpgmjAB1a5GjwNJRwg0XEK3tYGsp/VzmfA6rb994fd9L6UV/vQnd+/0X1wE9/2c3C1ujhYeMl8GLzy7P9/KolSk+pw5ZRQfjSo5JnVnTUMj6+b9N0P3ScuIKbj491BWBm+8Af2r4Le/hNFDAROEKED1uBGR/Ug8MmqC5uW3URTO/VJn5D+rIU3PXIQQPW+lFUuSMp7613P8dMyXraad4hqEFan5eAW8Mh3OOCKXDDK7SDny6K+/bSvHzpcxYykc8RP490Pww5GwqRm6j3GvVVRUdK+rq9vYWvrOww1zj7z3s8lNv9Q0dyCuZl08Zb5L33LtaJHrHdcYa1618MEV/VLl8idmmibXXhtxqqvVjt0ax6/585G7A3jkEe2b4uK9D/nqq68aQqEQkUjkONM03wFY9Drs192n5cnx0JN5SJFX+LS17+XJGE3259u7niVjU9F1vPLcC5w5ehVdi7dRRsU4KMi9JkIBK9auo794JKMaveMMyyW74L7rovREVNGo1o1JMurUj2cxpv/rGYN4Wy0DX/1kacRWGvo7KuOtT+Hkq+Cff4QJf4RlawCYqZT6QWfviDzoF917VxZ1Ww1Ja0UqpALlKKRUOLZk8drlRS0vmjH/fRm5bmlp4ZRTCtWYMVnN3PbAI7mB6w/fASjlOs48/rjY2NhYObSmpmZDWxVs2zbhcPhaKeX9AE//EcYdlaMlz27d/S+HX6tntRB+RwqP6N79O0QGpHaBzZWWAuZ9dDtD98pIMrfc7HTxhfeahFISf12mGxzFo48+yuU/XNPKwtkqGdB6N5ccaW1XOXaijNFXwPTkRkJCiG+uvvrqAQ8++OB3bodXx3FYtPYr7Yd3HNdfSeTyv65f4SiHkJ57vXmruundO7LwsssSg3ZIbmxar2rLAa/in3hCbF63LnJILNayaltbTtu2iUaj+zqO86VSKtq90u1fdvN2tEk+2FxztCnT3B+e1MjZ3nLZLxlZ92ydjAii582pPr5bJ+76M6UJZr1zG4cdkPtF9ucn20pIWTAKIITqdWsyX5kyECCFoOHr2ygv2A4Z/jrLUVdZivk7JWOzCV2OAE3Tmmpra8sqKiq+c+TeHrSioWWVvKtUYtAOsVDykNzT2M8/L5pWrCg+pLGx8evkFSDO9phHye2mv8YdOWBDraKwsPCnLS0tTwBaNAJvPgqjD2hNTC9vHjzNlv0lFeGL5/dmyna5zG4w8sqoOCupsYQvXDDz0885rNeLHLZ/jpdT5MiPSKfp5SNlUZQeCwiEbyeG1FJRBR++fjtjD9lOGcmA7Ke39+kwfAg8Myl32tsrw183uRrYtmS0AEUj3GNd18scx2moqKhgd0MuRh09cSLvd3jkvYPQNHj1VewvvgiNMU1zRmf1daSUVFVVVdfV1b3jOM6BAHv1hBf+BAf3y6GpO4CUNvGZ7SpPeDaUwh0J91wOleKpp19k/Jgv0uOb/nSVr2Hxy8iXD0/79XT3q0/FVi4rbCHYtOB2epTvABn46iyrcbvsd/DXF1z/+k0fgrB3sAxfAu2WQ8E7n8OJl7uNXTgcrkgkEr4x+d0PrV6//v37GxdfvCL/gtqOJizgnXew58wpPLmhoeHd78qHHXLBtm169uxZVV9f/7Bpmmeq5OZxY0bA45Ogf1fafamSpzmvt2owfAFK6MzZdA6LPnuZn5xkugsN/PflMFOBVHcCL1s+jaY8zYZ3rCF6TUgmlXS4EIIXnriDc49xdpCMLA2apxx1JvQYA6YFfXvAktcgnLWIZntl5CwHMGUenHCZuzRXCPGslHJ8Zw+u7Sq0KuXxxx/LgQe+p5Lfoet4QgJmzMCePr3wJ42NTc9v757t3wXYtq3ts88+pTU1NZOam5svITmcaOgwdgRM+gWMHIQ7FuGHT+34++cZLyTkNjGzM5FH3WVoNrJO/BcFUPpDKBqJFIK/PfZXLjxpBUa26bK9MrKvdaActganXwtvTneDu5S701mHDQLhbIcM5aZ999/gzofcfQGEEGiadmUikfjzd1np7Cy0qi7TNLUzz4w6I0e2PxYxZw5MnmxcblnWX/aUltGD4zg0NjZqlZWVZxuGcZ1lWaP8u6qEQzDuZLjoNPcrrLpIvrzkN+NTyLYe/CQhR1fAT4bkufLkJDWjv5+7U2T4jjsiI1VVYViwGiZPhUefgq/X5K4S7/byEne5rFKwuZGMOeR0gypkJBL575tuuum222+/fbf7SOi2oFUNxONxDjqoZPV551m9/eFKwZIl8OKL4V/HYi2/39M/sdwRKKVobm7WKioqBpaWlp5dW1v7IyHEwd41D0K4q8IOGgCjDoURB8DIodC/R/IlTiR/fTv7ZPAnm5TtZoxUAn7z2M1M6/5wPhnuPC4QBmGAmYBpC+DzL2HKJ/DlQvc7cFlmikwOAsbC4fCzUsonfv3rX8+87bbb4oZh0Ja2NU0TTdPw3j1vP/cA7SPn6xGJ8PiNN3LxypXw5JPab03TuSVoFXcuEokEoVAI0zQJh8PahAkTor/97W97h8POx1dcQaWuu0Tz/2la7vPsXlO+R5cisk8bAq0HwToIbzbls8+EnDLF+EdFRfUvVq1a1RC8O52PnE8gHnenuILWcteirm4zvXtXP3jhhebVVVVbqaU7AbEYvPCCtrGuruzy6dOnvzZgwEAZ2uoPBATYFfiOv0q7N5KLX3566qniyeHDt0J1tpnmjm8gdB3mzYNXXtGeHzp02EWzZs2O7Q6DrXsSAqLvQiS/Fz5wyBA195xzKGxrfz6l3D/DACmRK1cKbfFiJVetMtasXWtP7tev3yuHHjps3vPPv7jOsizKyoqfuPFG8/zt8X/w7n3mGWGuWVN4Xn19w/PBWMzugYDoOxFSSvr161vqOOvmXn653FsIqK9HLl0qtK+/FjWxWMnnq1bVv77XXnu9Nnr0kWsef/zvcYCt0ZZVVfrSq6929t2afHlaf+lSeO01/e1evfa76IsvvtgQmN27LwKi70TYtt3mKPK2YvTo0Vp9/dTEmWditGemK+XOI//73zQtWhT++cSJE/9xww2/koGm3rMQEP17hJ49e5Yefvi6+iFDcl8XApYtE7z6qj6lT59BF3zxxbx1QV86AARE/15ACHHgz3+uvqz0PoSo3AGyV18VcsGC6PW/+MW1D0ya9JtgxDtAgO8bkg41/zlhAurKK1GVlfpnlZWV/U3TbO/WAAFaIdDoAXYolLRQ6BqAwJFCC6yM7wICogfYZijHhpoHNdH9FxLA+XTYrUrvehNal6hsXI5qXitRkUUy3vB29PR11wttz1tM8l1BMFITYJsgl55eyKLDl6n691I7vCu9+AbR/YJC0eUEDaFp6EWGQhyIdOoCkncuAqIH2GqoBYdcJjCaMcr3FnpRHFyTXaBFRbgrqmU1WI0pr5/ICZ/91n9//Z8LDmx4tKK54aGiD5tfOSl4B3cBgkoOsFVQX428XxUf9SjFRwECFfv8BAChhVBK2jgJVPNi97taSqHsxHQK+2T4AAoS/YUmCtGN0faa6VbDY/sH7+FORlDBAToMJS0welwsSk8AFMgEQkQvkDKRjGFsUHYDJDam9qIj3OU8TctyzrH06pSPr1KaU7PihV1clD0OAdEDdBxKaehlpehlYG8AHJSIDBTeLqBm7VfKrEHZMVebKyUjY95a1SodvfAMvIZAAYY6UzmJVtEC7DgERA/QcWgGGOVSIVAyltwWS2hq1Y3ujv1Ke4fEBpCWq62lYxLu2ioZYaiDXWXuanXXjVcP3sWdiKByA3QcykG53yREINx91pVC1b75DACRXh8QX4enrZVjrsk225VjgzB6eqa76xikcDeFCrCzEMx5BNgaSKHsBqBUadHkPnQKCJ8qHQuhGfPs2Sel19gq5mQnEHthaLFCaX7TXdlSqhxfog2w4xBo9AAdhtBCYG+eqZQJerlvR1uB/OSgn6JslFkrVVJTK9tqtdWjrF/9jEi2AymtntBma0Z0F5dmz0JA9ABbBy36B6xvEXoXXMXsae/QEwodrMbPUe63lIXQMyxGp/5rMEKnoBTCZ7orad7bWcXZUxAQPcBWQfV/bIqIfSqVXgoi5Otna5rz4V7/paz6iUg7uVNkpDh1n1LEXhj+SorcqNSXVEIDTn+580q0ZyAgeoCtgqbpkticyVjfgihK97MVKL3kPhHtOR3HBhTKiQ337mv+a/QYoYdOz5hWQ6Ec4sXjn8v+BEaAHYxgMC7A1qPslDNonu0oDJ/pnvyzY7VKOV7fva+SFs1Pdh+FCL2HnQz3x29R/63p4U4u0O6PQKMH2Hp0v17SsvRKrM3+EfakGU9q2g0RKY893f19YUQ+Spn4numevEff67CJnV2cPQHBMtUA2wSlFHLu0IXKCQ3CdlA5/lLhVna4RNkOTkzNKL+h/ohAo+98BBo9wDZBCIE+bN7+SKvJb74rn4b3a26vH58OB73nkDEByXcNAqIH2C6IipPKULZUGSY8GcfuCHt6Sg2lUA1qTNmFs4JBuF2EgOgBtgv6wN9L0e3sENKx3f551uBc1p9SoKzQGRW3tUzt7LzvSQj66AF2CJyaqdifXVirpFHp9s0l0rbxjpXloEyzQTnhPmXX1DZ0dn73NARED7DDIKUsjb89ZKUwm8v9A3LSsqVKOKcVX1Y7OdhnvnMQ1HqAHQIppQZULx/zSbldPDBlqlvr9+Lryz64pvSKuoDkAQJ83yGljK5uSlyxIpFQ601TrbFMVfNwg1o2Ypn6MvRlQlrB6rTORNDEBthuKKUQiNI6Ie8KCQFCoClouCRCeFgUrUQLLxi4oLyz87knIyB6gB0BTaGqev0l1lXzffUxJAQ191WQOLEQa431707M3x6PgOgBthtKqWjDUw0nGNUGJdPTn4wSQLGmseGRLnzycY9R0pbB+9ZJCCo+wHbBM9sTXyYmaCUaQkLJR6a7pgUIC0FXQ0ffK6z97+trftqpmd2DERA9wPZCU1JVh/qFSkUoabY7irKPLBQKIQSluk5Xw6D50PBj0gkG5ToDAdEDbBeUUtElicQ1ehcdoQkU7m4SQkHFNAthKVer6zqlUSP8xuQNwaBcJyAgeoBthnQ3bi13BJeYoyKAu9hFKJHcM05R8mYL4Q9bUAIKNI3Z+/Nkp2Z6D0VA9ADbAyORkD0LdU2T3TVUcmdnhUIlFNYqi9j0GOZDm+l+8lq6/08dToV+kgx2dt7lCFxgA2wzpJSFS2vjjxWXGT8OCYFEUfKhibQU5tcmzdOaic2NYW4ycSwH27ZxLAfTiB812jx6emfnf09CoNEDbBPcDSFFqSwW5xrpc7YcFcZeZRF7P0bz1GbM5Sb2Fhun2UElFEoqhNT/Le1Aq+9KBEQPsK3Q7A12dWFcGJ5ZqJQigWLe+WFin7Zgb7LxCJ3c9zV5o1a+9r61wX6FuxAB0QNsE5RS4br/2Xxl+XsJ3GF2gQPUOQ4bLZv351Sy+PelCKEy70v+W3rH0l91Ssb3UARED7DV8JxkVEJdrBVoGOsdlFI0S8lG26bJcZDA2gsLeXtTbxbfWYow0hodQItpE4M59V2HgOgBtgWaU+tUhvYKRUVYEF5qYycUmx2HesfB3dU9ueOzVCy/qpTX1/TjjWV9+faUAhASlDCm7T2tqnOLsecgIHqArYZSKlx7T+2VRpUBGihbEX2okbpGm7hSSKXSW8el/hR2oeDjx6p5cc2+PPvtAGZeVfEvO5hq2yUIiB5gqyEQhdJRV2ilGiiQ9ZLEFwn23W8DBXMtcs7aJpevKkAKELZi2YVdjiZ4B3cJgkoOsFWQUmrSVqWJ31UUipCrza0VFokvEzhNkoOOrWXombVIzb8hbFrD+6GU0m6YtfKYXV+KPQ8B0QNsFYQQxvIVsSvDQhA/OopslCS+TGCttlCOS+WS6RZjK9ex381bcAyRJrtHeJUelqvprv/LCQbldjoCz7gAWwUpZemS5sTayqhRLICGJhtx9HoSCxKQ3KXdwUEm/zk4mN0Vc++sYOU5xTgJBxOFBVjK/f3hai007gc9gz3edyICogfoMJJauecqy1pbrGlYSrHBtlm92WRAn3Wg3NVrfpJn/koUDokqWD02ytdnlrLmsAJiTfaEZ4fsfWdnl293RkD0AB2GUsqo+X3t+dZ1pY+HhaBJSlaaJpsch7hSHNJvA6JB5SG506oB8I5tYcdOjp9cpEWCnuTOQlCzAToMpVTUXJC4peiNOI5SNElJs5RI5fa4Zy/vzobLC1KOMdm/2WHesVCicOGNC4N3cSciqNwAHYKUEoEoNnoY+2qGIPR8jAbHwfQG1pS74cTS35Xy4YYeyDL3vlwk98MLW/rg0v/bBcXYYxEQPUBHoTW+2jgw1DcECqwvE1Qe8S2OyHSMAUBXfLC0Jx9/2B2R/FhqLk3u/9Us7ZJgRdvOQ0D0AB2CECLc+ELjbXoXHafewZxvwlKLA6rWpebMwTdnLqBp/xBvru7LO/P70Dg0DHlMeAChhPZKt1cCl9idhIDoAToEpVSxViCOExGBtcLCXGyi4gqVgEPK1lM02/KRXGQ4yZhdNT54szcvfbsv70ztx8bjCtCFRCWHgj0t7zQ6/+rEIu7WCEbdA7QLpZTWssYaWFeqFha/Eafp1SaaXmtCNqTXmoMgMUDj45ldsaV058m9X6VSc+Zm6prCNEDbaFMxv4nqKfX0nLqF8xaeLDQj0D87GgHRA7QLpVT4m9Wx+4qqQ1dbjRJr7DrXQcbJjOdNma39jyhf/r48TXiP6CrtKGMqha0Upv+6lFTMbjr+yfEHvdsJxdytERA9QLuQUpYua0zUlhYaRp1ts77Rorp6jbs6xR8va55848lhZv+5K6YBlucNl4/8yXB7i7lm8oH79jECrb5DEdRmgDahlAKHwmiBZlhK0SglVhS+ruuFKs4R3zfg1uWNFk7os4JTey1jr8e2gKOS/fesJaw+H3hZHuodqJ8dj4DoAdqDtm5xbLSGoEXK1HpzgEWre9BweqRNxxgAKQWDb63hjN5LObfnIk4btYR9n9mM0SRxQu78nBIi1Qic+fKXP961Rdz9EbSdAdqEUiq85tw1n+g/Lxvy7UiDOschkexPeya4vsjmoB9sws7r497a/TX1KyQCm5YywbqDC1gxtphlAwviL/7ooALd0Du7+LsNAqIHaBPSkeXrL1hfRxhqegk2/brYHUyD1GCbqRSWgH0u20zFC83tkj07PFdDMF6OF0ILXs8dhcB0D5AXSikaX2qsBDDnm4T/UE+34zeikt9AV8kdYwCQikV/rmDq+p7E93Zfq3wur7lM/ezzfxT944odXZ49GQHRA7QFreb2msutNRbmchNMCM+y2Kv7GpSZvSdcclAtJJgxsyfvrexDbH8D8hC7vYUvIi7+FOwSu+MQED1AXihHYdfb/2UuNZFbfB9iaIH9uq2l/KmYO5BG640gZYFg2vu9eX3D3qy4ssz9vKqXbgdWt+lKD0/58ZTorijnnoCgExQgLxobLeNr3UwUlK/SlOmGZZrbAlUKny6owixw58pNfHPlGXPmIGMOI69ZRbd3GrFl7rXp/t9mrfk3V8orb9v1Jd/9EBA9QF58sb7paLtUvG/ZUFa2EnB3kBFZr41C0XCYzqevd8HO4QTjOcZ4XnC2I2mJCnq9toUDHtlAxWeNKCmxlET5iG5rtnlB4oKIHgpG37cXAdED5MWcuqa5MiwOdl1Woap8FTitXxlv+ygHhy1HGsx6vgpL5Hd/9Vxg09dca6AlDLajCNVYaHUWpgH7f9ZY8uh1hzft8sLvZgj66AFyQkqlaRExJB2iWNvQB9m1dVz/SHrJ9ATHVK9k7IGrKP4ykdcDLjsFACOh0CxFvFSnvm+Ehp4RZg0rvHsnFG+PQ6DRA+TEgnVNxVa5aLRk1mIUFN0urKXo5Xgqrl+jt54zd9g0JsKM+7vT1E1vreVz+bz75CWUsufvtW8oFAp00vYgIHqAnJivfXmxvWnvx81IVn87eSyW2gwYuRGlQGb9y+8s49BSLZj/s0rmX9iFhJ4mve0350mHOwr2n1ZX8sKlIwPzfTsQED1AK0hTsrBw4XLNEf0b6vphG67La8aSUlyPuH3PraXovXj7rq65doEVDo7usKVfiBXHlrBsTBkb9o1SX2Fg6ZAQ4CjQ1rc8svDIg37W2fXyfUZA9ACtIC2pLQovsoQSGpqitqYPVijT5E6RXkpko+SQg9fDlq3wcW/zWvp/iYOl2ebl8csjejgYfd9WBB2fAK3w9eCvi4US7rshBV0qV8Mm2XoTSAAhcEo0Pl7ak5lzeiCLWru15nN59YdlXvNvJAma1MIf3fpReMeUbs9EQPQArWCtsSZmhgiq915H0RPNrWA/ZLUAACAASURBVL6flvoTkOij88Hyfry/uC+JXiKLum3vApvvmnf8+cOf/2knFHWPQUD0NlBSUnJtJBKZdPrpp1dZltXZ2dklkKZEJMQlitb/Kq+po8+xm1DJLZ5JTpNlkl5hlwve/6w/r9fsw/JrytFo7bPeES3vP9aatMsc02kVN0DHEBC9DTQ2Nj7w7LPPTnjvvdfvP/vssLP//tQXFBTcN3z48GrTNDFNs7OzuMOhNIFwKBWIlAec/zjymc0BZesonG2mzXiRHurxE17YMP/Wbry0dhAvf70fK39S6u7+SsfM+4x935WmfXDlB8H7uo0IBuM6CKUUhYXRe844I/H/DjgAbcMG+OgjvWHxYv2fRx111F333//AukGD9kfTvt/v4rx/bjpYnVI4N1S5EpF0eQUyjkmGyO6CWfO6YenJPeFy7Prq94SzcafmEhpUfNrE4IfX0+vtzZgy/zy8PyyhJR74pfzlLzqhWr73CIi+lZBSUlJS9J9HH91y/4gRaEqBrkNtLXL6dGLffFP4YteuPSeNGTP660ce+TOGYXR2lrcKc1c3vqF10U+SMUW020pSm68n4fd19xxlmg8SzH6rCsvA/SRyDqK32vI5eWxLRUJzGwq9xqJobYzy+U2Ea0zCTQlaCnRi3UKsH1LKpj6F8suh++nG97wx7QwERN9GSCnp1q3r6YMG1T13wgkqLKVrwSoFmgaNjTB9uh5bsiT0akFB5V1//vOfvzr55FPkd1njS0fxRUtMiWQf3FRQ0n0Vojl3fIXK0L5mN8XMl7tTv6/Rmuh+bU/uPd+zfeBlhix3pesv14qiy8buG9u5NbH7ISD6dsJxHPr06TOsvHz9++PGqVKlMrqseOfxOHL6dOxly4relbJo4rhx42ffd9993ymNL6Xiy5YWBQoHUuQrPXYDxiwzpymfaysohWT1T4r4/M6uxIsElpKZc++0se2zr1HIGMJLDvxpG1oemT96aOA8s5UIiL6DYNs2BQUF1T16yM8uusjpqWmZhPfgEV9KmDZNyIULo1Oam/W7Pv54xtQDDjiwUzX+54vrz6RP6CVUkugpUiq0aXG6/3BTqpcuEHkdXvzHStisO7GQOb/uRs2gCI6l3HXrSbfXjAYgi/Dpr7S6n3gSQmAqxaIBA4SRq3ID5EVQWzsYSin69OlTGo+v//jyy50DwuHchE/HTxFfzpwJX34ZnRGLRe6+6qorJ//mN3cRCoV2Wd4XhOZ/aG/ca7SKCJwc/WpTh37DviW8xEmNlLc3gObgoKOzkY18yXyWia+YPyxOTXeHUJcuRPv1o/Swwyg48MC06Z7U6O6HnvCWviENgdIEv/v9ishZDx+Xd8rDcRwA7ayzzgpv3Lhx0MyZM4t1XTcqKiqajjzyyDUvvfTSBiklur7neNoFRN+JOPTQQ8JLl85769JLnaNLS9smfDakhDlzhPzkk/DMujp535dfzntx4MBBUuwkTSYdySJ9kRKAubkfViSr/+wztcVii/1/sKnVLjH+XxOTSUxiClNayfLK4C1XFUmNDVAaqmB81cUMKR6J05JAxCwiNa4vvYXCQZKIJH5zU+KmjJ1nbNsmGo2eopS6RUp5eDI9zS8vS6YUQqwqKSm5b8aMGf87cOBAuSsb1V2N7+7I0G6Azz6bazY0OGMPPPBR/Q9/CP9j7dpUV7NdaBoMH660q65KjLr5Zuu5J5/c3znnHOF07x6aW1RUdOEDD9yPZVk77PlZyy1NICQIwpUrYZXTeh158i8x0OCTmmqW/qOSTP83mMUsRjOasYzlffE+Bx98MM8//zwNDQ04joOUEsdxUsdSSmzbZuHChVxzzTU02lt4dO19/HzxT3hw1V0U1oCDhu2XZHKztN17R40aVahp2lzDMJRt269LKUcde+yx2jPPPKOtWLECx3GwbRvLsnAch9raWt577z0uvfRSTUrZv76+/v7Bgwc7kUikrqqqapiUu+eGlIFG30mIx9312kopDMNA13XWrVur7bXXXpPOPtu+ef/9ty1dfx9/8WLB1KnGVxs3OvcfdNCQv82ZM8d2HGebNNNCFv5YoVKfLRZA7L8raLqyOGO1Wq7R8pI3Y0TOm8U4xiGRlJWV8d577zFs2LCUtm5Li/vjKKWwLIs77riD3/3udyilGMQg/pP/xMb2rAb5WPFjRYubFy9WSvUVQnD99dczceJECgoKUmXKJ8OfD6UUTz31FJdeeqnnAGUWFRWNqK+vn/ddGijdXuwxRE8STwPQdR3DMKRlWSxevFAzTdO4777/0T744ENtzZo1BmAAmhBC69+/X3lJSUl5JBKu1DStctasTws1jeLi4sKKsrKSwvr6ukLLSlQKQbmmUSkE5dGoZhQVCaOoSAsXFmrhcJiwbVtGQQFGNIpRUCDp0QOqqra/XB7xlYKvv0ZOnaqvqa0N3afrob/W1dU1KKU61M//mq8XWliDvHnylFdaT421C3tikzkq7g2gOcCEww9nw9KllJeXs2TJErp27bpVBPfgj+tdu/vuu7nlllsA+CW/pBe9kEhe4zWmadN44YUXOOOMM/Km2xEZ3u8333zDIYccQmNjI0KIVdXV1fusX7/e3sZH853Cbk/0aDR6sWVZ9x53nCrv1UtpkQhEIkhNUxgGGAZaKJTuP+cbKfd+PVLlQ2cPBnt5EwJWrhR88IG2ceVK577u3Xv8dfXq1TVKqWyNrwk07SvmJ0BkdAXSzjGKjY9VUndOgesBl9TmTY2N/Gf//iilePXVVzn11FPbJHb2eb642b+2bTNgwABWrlzJYAZzERdhYnJD4gYMw8jog2+rDP8977zzDieeeCIA3bp1O2TTpk2fb/MD+Y5gtyc6uM4tixYt0n74w5MPXL9+1X1jx3L08OFK2xMGXT2O6TqsXo18/31hrlkT+qOUPGya5jpA+/WZk6p++tfr14YqV7Ta4TUDhmLx7Cqa++usXbyIX/3gBxQUFFBfX5/THyAfyTv6m33fvffeyw033EAFFdzIjVzTdA2hUCiD7Nsrw4OUkj59+rB+/XqAC4B/bkv9f1ewRxA9G47jsGzZUm3o0EOu6t49cdNxx6me/fopzbY7XyPvCij1/9k77zArqrOB/87Mrdt3WVikN0F6UxRFEEPEgt3YWxJ7j0YSjd1o9DPRRKNGU4wtGo0lJoLYGxYQFSwgTaTXhV223DZzvj/OzNwzc+82QEWz7/PcOzOnvae95bynQTgMK1bA66+T6thh4qwb/nrPuE59emKULkMkguva8S173RjfyPjG8XTt2pUVK1ZkwwSkp+7eVremCPKtt95iwoQJlFDMw6++w8TdexKLxTBNs1nJ3hYcejkmTJjAW2+9hWmaZyaTyb98V8ft/wPdumVIp9PG2LFjes2Z8/GN48Zx/L77SiPyP3TMgW1DKARr18I775sM+/gEfmKdQRVVvrXtoAh9EIOoqKhg48aNOWNeHZobozcXrylww7733nuMHTuW8oFD+PTlGZSVlRGNRr0NRTsCh/59wAEH8PLLLwP8APLMF34HoJ3QA5DJZPjyyyXG6NF7HFNQUHvT/vuLPoMGSSOd/m5IeynVzzTVDyCThppa2LAR6rbCxo2wfr1aj19TAwcf+2P69etD90GD6FjZiU5du1A0p4jCYzf5VsIZGAxmMJZQ02NBgsrmoenxsOufT5o2RYz5cDz00EOcdtpp/Pa3v+X000+nuLiYcDi8Q3HoUn7XXXdlyZIl9O/fP7xw4cLvnIHuO9B1v13IZDIMGjSwy+LFiy8bOpRLDj5YEo2qXWtfF+G7xCqE+oVCimhTSdhapyRvzRbYVA3r1kFpHHpWQYcOMKAP7NYLdqmAykrYpQQiIbAlCBukpdJOpWFjDSxb05uSEz7NWhmF0DaiQOWQlRjLVYc/j/N4jdfYtGkT5eXlQJOLUZolNNu2fQRpGEaL4+cgDoB99tmHd999l+XLl9OhQwdisRhCiBat7q3FoYdxp0mllAnLsuLftVV17YTeBkin08yZM8eYNGnS3uFw3R0TJohRI0dKw11j4fYV3fKtvxuG+rYsqK2F6k2wfgM0NkD1Rgib0K8rdCqFHv1gcA/o2RnKSqCsCApMtWtU2PgPbxM4tnHnLkO9VaUTR3taEhoaYeUG+HQxDNyrDmsPQ+WX3A0nclGGkj0XsmdmL6677jquvfbanLppSnKrsiv3t956i5NPPpmVK1d6foZhcNhhh/H4448TiUSa1BLy4bBtm1AoRFVVFV988QWFhYUYhuGFaWxsZOrUqTz55JNs3ryZWCzGqFGjuOeeexg4cGCrcOjl+Oqrr+jduzehUOiyTCZze4sdZieCdkLfDkin00ycuF/Zu+++e1bPnvZN5eWENm6ELVsgnVYSOGNBh1LYbwycehSMGQpVhYDtCFDNVuQxBpcwwUfEgI+40dxcIvV9a0QvyH7bFmxtgC9Xw5z58Plnlfy071wy15cjRe4lCikpOaZbN1INDehHarVkuXbd6uvr6dSpEw0Nze8uPfPMM7nvvvty4jeH44033mDixInMnz+ffv36EQqFsG2bESNG8MknnzSJKxKJsHDhQnr06NGqKUBQBD9+/HjefvttbNsWO/OW4yC0E3obQUrJXXfdFbrpppv2W7du3U2GYYyybTsEirg6d4BjD4RzjoO+3SDkjuZcgtPpwK39fG553KXUvIPhgi2ZjyE4kLFgaz0sXgmzP4O5C6HDgsM5Zev/kVzQnZTwr4Bbv3IlJw8axIsvvsgPf/jDZmonF6qrq+nQoUOrww8ZMoR58+a1yXgWi8UoLCxk/fr1WJZFQUEBrV3K+tRTT3HUUUe1GperRZimebtlWZe1KuJOAO2E3gqwLMvo2LHjbolE4qaGhobDHGcDYOwIuPR0OOIHYDRmx9WQpT/pfASlblbfVk4e3btSXfd2Ve9g/CbiuOnpuN1olgV1DbB0lZLocxfBinWw/6JfcMDq02iY0ZnE3mFPdf/x6NGsWrzYI57mVqGpvGTV33A47O4mazVMnTqVW2+9tdU4pk+fziGHHEIymSQWi+VoFS3BihUr6NatW7M4dLdJkybx2muv2el02vyuTLd9N3L5DUM6nWbr1q1Gjx49jq+rq7vLNM0KUIQzZjBccQ4cvh+Q0AxyScDIL5yF9hGUyD7i1bykQ9guuATrk+w6kwhQuIdbz5Bm4DMMiEWhpAjKiqGmDl7qcysGBpMmn0K8u8m6T7tgGIJVixdz2WWX5Z2n1p9B90svvbRJIu/Rowe///3viWjzmEIIamtrufDCC7npppt8c+PN4T7wwAMRQlBZWdkqIj/++OM57bTTME0TKSWfffYZXbt2bVX5hBA89thjVFVVGV27dt0d+KBFhDsBiOJi86Vddx16wuzZczZ+1yyJOxISiQSRSIRYLHZOOp3+nZSyACBkwqU/hat+AkWm39IuNSkdlLqeVT6fWt0C+CSyrgm4BB7QGFqdqJMfW0IiBRu2wJIVMP9LJd3Xb1Yq/cC1R3DqFzcjgE8PWcGPnp9MOp1u02k4rpU6nwr9xz/+kV69ejU5zy2lpFu3bgwfPrxVeAAGDBjAokWLmg07ZswYrrvuurzMYOLEib4NMS3hM02TeDz+YUNDw+gWI+0EYFx8sTXp8MM/3vDDH4asSCTyG9u2v5fHGDcFlmURi8UOjMfjawzDkKlU6t6CmCx44Gaw50LqPbjlzCyRu13ENZS5fcY1ggvdT3u2+JOahV7PoM5IBE0SebDv6kZ5UAzIU++FYmBFMehYDt2roMcu0KWj+l7a41mu23s/DMLc/by6tdidAvPhkNLnpn83NjbmJfIHH3zQR+TgV5Vdonct883h0OPefPPNObh0OOSQQ7jmmmuwbTsvoeuGOx2HngddtZ88eTINDQ2j2jpM+LbASCRUBxg/XhpXXJH65ZVXGnLo0IINFRUVR3z00YdGJvOdWxvQIti2zZgxY4qEEC+ZpikTicR005Cd/3AVZD6ErW/C6QcAKbLEpRO1Zi0XwhfECUBW+uYBV/oLLeyfno5ncTg/rw9JP27fu5umyH7rTMBlIkHOYDqqe0UJdK2C3l2gTxfoUQVdKqGocj1XH7Arb4s36d+/v2/aSidIlQ+ZQzzOGnEfTJo0ydvZ5sbTn+4ceNCtKRz694EHHgjAghkw71kY2Ntf/xMmTMjBocPmzZvz4nAhGG/q1KkA9ty5c78TpnejtjZ7Bp8QEIvBCSdkKi+6qPqZ++4ble7YMfJRz549erTVoLIzQiaTobS0dD/TNGtmzZq1FSknHXsg1LyvJPeFR0BGU2ZcItbBI2hNskrdE7/hS48TlNQ6jnMu+CWPvDZYjcuFZtSTWj60MbabhggkqePRn3rfdr8jYSgphKpy6NEZ+nSFvt2hd1f13b0TZKTNxIkTtToRvk6vP3VCyCfNL7/8ct93U+PvpvyDOHT3goICAF55G4Z2hc+eAOtD+OcdUBhThDllyhTuu+++vNqJbmgM4siHc7/99gMwRowY0S9v5ncyMDZsEE1ypM6dMS66yB7xk58s/+rww0NWcXHkz0OHDi36rhG9ZVmEQqFLwuGwVVNT81pxgSx59SGwPoDHb4QSxzQhJDR0+CWzFgSkN2St5pp+ntM9NUmsG8dy0nKTcN3DPRFCcPKJx/LPt4ZnmUceye3i0Y1snr9ukNMhT36FUFI9GoHSIqiqgO6dFZH3665+fbupsPvuu2+z0s6HyiGErl27+tyLi4t9c/BBlbipX3M49LTcOe135moM1oZjx8HWt6DmPRg/Gp577jkOOuggLr74YjKZjIcnEtjc0NL0npu3Pn36jGm+RnYOMNatk83q5m7n3n13aVx6aeqMo476ZOvo0aFGwzDOmDHjBZLJ5DeV1zaDlJKCgoJbTdO0MpnMHYP7SmPzu7DlddhvYJZYsuNsQVlhnN0n3ci090QOgUr80tR9eF1COMY4bSyfj9iD6jcFQ9TmESE4/tij+NMzZYphkAcHmnousxq5bgz0xvz56gQtXQPMiGN9L4TKMqXK99xFEfmuPVS4Dh065KjVzRGjlJJ4PO4jliFDhjRpfNO1BPfXq1cvH658OIJjaSEEGzfl1hUoZv76n9TQ7LoLYMmSJRx++OGcfvrppNNpD18QRzAPwWHG8uXLcyPuhGBs2MD61gZ21cYjjpCxq6+2//zSSwfK3r2jq+Lx+O47k1HCmb+9RAghGxoapk7YAyM9F+Y9DqXuIRMOUUL2WxhRAAxbcuAxNzBvaVZN96zpZDtPzlNmv/V4Phyafu32dREf6GgCqrOefcFlLFrtDxvUyb30yLp7lx+6YbX86NNybty/TYfQaHhlnpLsRUWw29FwxKXQtZNafgtQUlLiq9umlo7q/kIITjzxRM/ftWg3FT8IgwcPbhUOVbfZ9FLJZupKgGnDtaeD/QH89ddQvWkjRx55JFOmTCGRSOTgcNPX392FMwC2bZe2WJidAIzNm8NbtoVGhVAd48wz6XLFFY2zjz9eyMLC0DNDhuxW9m2p9s6Uzt5CCJlOp+8YPRhSH8Fr94Dpnh/sSlONYt1vGR2EcKjHsG06D76UtMgTT4+jP/OFDYYn2wddFV+GKnydU0ibNakp/jS0+O5TbzdPsoe68O7Ko6hPa+m52dDoyzbgDOcc1cl7KTX+pKvU92H7qbX1leUqimtYyyeJ9fcgs3/ooYe8MF9++aWvnZqLV1VV5dty2lzYYHpFpbS6rn5yIGRmw11XwYIFCygoKODUU09t0uinGyHd/BUVFW3KydBOCIZhFCzbngSEUPuZBw6En/88c8SPfrRg84QJISsej11pWZZ3SOLXDcOHDzeEEGsymczMsmLY8i588He1BFVoHd7Ncz4DFYXOvK1Ue7A7lZfy9+d7ev5NpUMzfjk4pP9bSsDOgBTOUEL1zPHj9mR+9kwHX5yggPfhLRjF2N2HszlyHltTfpuAHv70a9XzjCNg9WqwQvD0y8ptzCClzsfjKrtLly51ypQriYPSLkiYixcvBhSht0aam6bJqFGjWo1Dz5eUkv49/XXSXF25cMERYH8IZ/4IHnnkEQzDYNq0aTmzC/mGLxUVFUubLdBOAkYikflwRyXmjucnTZLG1KmJm375S1MOHly4plOnTgdYlvW1TEM4hphL586dawno/NIDUP0qlIT0MP4On7OizPEQkW7OODxLpWeccxbVDVr4QFnbjEP4VXswEUI66qXqkkKAkJL3P++dTVBjKt40nKaeu3kgvitCQLddOrMscSp2YLUeEmwBj/xHfR6wF3y+BI79ufq+/my1ai4Ugoih5tufffZZX31DrnTNJ2mFEPTp04fly5cD+E6j0dNwn0VFRRxwwAE5/i3hcP2EEEzepw11BVk7hwX3T4XGD9S6gilTptCzZ09v3r0pK/3y5ctn5WRqJwSjtrb+y1YMmdoMQkBhIZxyitX5/PPXzzjzzJBVWhp6q2vXLpU7SrXv0qWLIYRYZ9v278aPVoaWHwzRVGM3L2iN7TjoqnS2M0SyRi3HmiUsi6de6ZxD1L7xb1twuEFc9T7SDRA+A507sJ986KFqRb2ejhPXh0/PhNlBaQfA0AF9+fu0Pn5KF3D30+r1J86q/Zo6ePYV9T7Q4S21DaoNO5bDhx9+2CyRtQTdu3fHtm2SyaS3F11PLxKJsP/++7Pvvvs2Ka1bgkWLFiGlZP9RtL6u9PZwXqLAV/+FF/8KK1esIBQK8eabb3p43Hy/8MILAPb8+fOXtyqD3zKIwsLCEZdfXv/RN4FMSiUtZs4UmZkzw3/s2bPvFXPnzku09RzyxsZGevToMWrDhg1zAOY8BSN7aAE0ju6Ng7WGdr9znl1vcNrekVqoSwPWV2+iU/IP/lv/thUHAbormYIsHuN0RqmJfwnCILPqasIas/A6Lf603Siy6w1aFiVSGHzw6tXsMSCb19hYSGXgyVvV94cL4Ja/w/EHwFH7q3Bdq2DsELhvGpx7LTmHRXg4RO7+8eamxfJZr3X/fGm0BsePf/xjHnrwQTKzs9pSs3Wl+TnB/bMqKDtGvylqO+/kyZOZPn26l59x48Yxc+bMb3y7qm3b7HXx7pFV69dcaoaMk4CNRZHi2z75y2fTmlvCbvTq1XPp1yHRcyCVrey995ahn/88dcnRR89vHDkysrW4uPj4//znP4Y+z9oU2LZNaWnpjRs2bJjTpROkP4RRzrhMHyfrDew9ZeAbTZUWUTXF5UhPgdO5gE6VHVlfsyNw4E2/ee4FA7VOJrLjSWfN6tJVWXzeHL2XgSxOT1C5mogEKQXYkvrooZ49z44pIu9UrmwrUsLvnWsbfuTsQJXAyrXq/SS14IzXX389hzjzGcd0i3hTm0Lcp25wa2pFXGtxPProowzsrRSgVteV8+e2j64KSsCwYcm/4fe/ghkzZlBZWemp8jNnzqSgoODFb5LIpZR0P7HbW7UNW5PFRUW/KYgWDCmIFexnG9bzA8/sb/U9tdegpuIaEydOzHwjM2NJYGv2Uwh1PNLRR8uiSy/d+thLLx1qde0aXhSNRgc1t9beMIyXUqnUVSdMgZXPg2kFxqD4vz1t2JG2Dh0QLLOMD8W9uMBreDeFTIa5i3cADk2N9BiFWY6rm2f/wZ3k37gxT/lEdmzpdVAJhHsihXDy7477JRPG7clXG1Sc3/9dpXHJidk2SCTVM5PRiMDhOEVOPz755JO1cuRu3wy65xtbN0WwTS1vbS2O9evXk8lkePDWNtSV8xA6Qwi6O2lcdAQsflHtrQ+Hw8ydOxeAUCh0Nt8Q2LZNr1O6zS0uLBznukmNawmEEQ6HP+twTNlh+eIbHTt2/GYM4yYqU7V+Z+Fw1IoKOO88+l11VfKzY4+NyKKiyKOdOnUq0eYrEUJ8Bkz68w3w6LVkLdu+BPFJ1aCVW3+6jS8ACoZpBKss4J5UMQw2ro/4E9oWHFpQ102QcsI70twZnwtnnO3WD9rTReBKKDcxWTDc6bhuj3U6gm3z0jvlSOCOh5RXf2eos75aPSfvlVufDUnldve1sHr1apLJpI/QdGhq6i24EEb3C4YNptUaHFJKDjtM9e3RfdpQVy6zxQ+6UVVvuL4V0DhH5WHkyJEIIezq6uplfAMgpaTHyV1mFBcVDguFDcyQxvicP+HYeTqWdvx31dFV3YJpGNdee51dV0frjuPYHnCHD4IcYtfBsmDECLjsstSJ55+/vmavvQwZiUQviUajs6WUg6b/GX56EDkU5X1qDej1d/xjNPfpYxKRrujVlz3XXLmmrfD24wi8SxFCUzazibt5EIIq7domtxNqQbIdGyDe1+nU2bGBm4dBoyYiJazeqOLYTqd/dbYKesg4/CDhs8Xqee7hymn8+PHZbAYIrqmxdjbvfgnfVJzm5unz+SWTSWbNmsXV5+Gj2hbrSn93vnWm6n2TZegxqdbPh0yQUhr9+/cvyCno1wC9Tu1+R2Vl2QGhiEEoIgiFDcJRg1A4e86f0lZUYUtLilYEDd6GZVlGdXVuwzQL28IWXEJ3K35rUwEVuMRy8MEwYEDyjnQ6vftjd8DkEY6/FtYrqPue7edeY7mE6KWtx5eAiHqcUTit7FrepZTEwukdgMMfh3AXD4eXrpawRNK7i5aO8KeTM3wwK3VVzoskJQwZtiuyWMXvWJZNxyX0Lh2zCoCrES5f65TJhhsuhNmzZ7Nu3TqtjTTWGFDPW1LdW/PeGhzDhg0D4LqfOvXT2rrSwnnSXvMLPt0Pw4akU2dLly6tb2kP/PZCxdGlJ1dWFl8Sjhh4v6j2ixi4ZgK3zU3ToPvJXR7U0zEsy7LXrBFtI10DJZXbsszdFVy6iGvFkGHxYvjkE7j+fDjOkToCTZLKrIR1QQCuMUY6XMCnjslsGNdNYGn5kw7XFx6yDh1T24cDv3RBgogP9XC4hj93fA2w5MsV6iJjjZO5ODwLspuWVwZ/QHesXlpcypYtym2PwXiEUFOnoOMcMQAAIABJREFUgqbSuQzLtvEcrjpNufXs2bNZlTqfEa05ad3Uuvcg5MMxe/ZsFi1axDN3KQL06rilutLDaeHdvkTw6csHGBYk5qjv/v37b/q6ln8POXPgqI6lnR6OxExCDoFH3J9O9BqxS8AwBeXFpacuXp01LBm2bVNfH65rcy5KUITeWoLXKtqDdOA7DzzyCAzrD1efnnWTTnqe8Uv7Fpq7L7xLlG42ZPaJEUOSleCQtbhLJIRCDOu7nTg0N5ehyIJhWRzCnUuXIBX+V6b9KxsvgIdAungpCY/xKPVVeIHnzFevg/tmVVLLzpV2ulaSymQ9lr0EqVSKKVOm+KRqWyR7WyR+czgymQx77rknXTrC4Xv5899yXWlh3bbQyo3A09iC3dNV7aMSvpgOUsoKwzDu29HEvuKBaJ/icGZOWccIoYgi7EjUJBw1HWluekQecn4ujWXSEjMsmDh13zvc9AyA5cvTzYyam4FCVOIuwTd3MI1Wib7WaEaFdw8N+fgxbbyk/UCT5vmktNAaL5AFLw0BxAc7HV94LFyXKes2rKdj6XbiEHnCmsVaPOn8QAiJNAyOmbQ5K4H0Mmp14SYvIz1RZJ21tgdV0rXOlFnHMn8eo46dMUgMEvhsaTZs9zK45VKYNm0af/7zn5V7E4Y13QCnS/Z8kr8pLaAp4x1AUVERQsDyF7JdqtV1pbvr0l9j3l7cXNQe9O8IZx4DUsqzCgsLd8Al2Ao2PlfYr1P3XktePdgiUhgiHA6o6wEiD0fUeD0UEl4fszOS0uKiS9yDY4xYLEZdnb1smxiSSXbsDUoVb4ngA5JQ6Y25wRYtglQKFvwX7wx0N3oOV87j7raoJDee9+6EEfFhmvRwpm7IStfnnnxC5WF7cJAr2aVMZyU4womjJPIT/3yKDoX+cnrvMk+Z48P8fs48vOu/buMGqh29LRbJSjDpfAutg+tEsWylH/fUE+CHe8PZZ5/Nv//9b5/kxa0zyHEP+uthmppey6cBSCkpLy8nmUyy4a2syu6L21JdaeG8HX+6v9um0m0n511k3dzw9/0SomFobGz8YkdI9Q1vjdqrrPOARUY0Qr0RIhYxCEcF4aiZVdu98bmpEbsy0glnJWU6bROJhhh6wcAe4Ej0iorO237/cwG5orY5gndZqjeAIu9Y/dFH1bFG/auy8fTTVzwicr2Fn4NDtmF0N49jC63Boj18otonYUyDY3+4ttU4pABp5MGhF06CIKLhktk0BCQtm0PGfOypid4iG5HFo6vXCBDx/v48Oh/CmRD+YPanhJxM2IE8uQtndAOim++Ma7zV8M74A4wcAEcccQS33HKLXrImJbVKs+nxeHOS3v1Op9OYpklNTQ3LX4EOsYDkbW1dZavHJ8k9DUhrZ2/kE3BzrfpImPUESCnLwuHwdh1CUf9K96sqCs13jVgYQiaPbog6RKyr61lpHo4KxwovCIUMTOepyiIQBliy8SZwCH3FinVLtieDFOFnmW5Nuiq9vuAtn0R3wzrg7IFg3rP+xvAaRVPR3F+Qmbpqma6e6eg8tRsQIuwqvVrWlGS//567KY21Hocwypi1+mjqMwEcmlQXAJEqR5K7nVp61ya98OSNFEUC+Q28e99unkLljtQTWlj1LZFs+PJNKpxt5QmXATv5a0z6JTr4icPWmLLLEOY8Aj86EK688kpGjBjRovRubvot3zy67ielZM6cOUQiEaSUVL8D3Uu8LOWtn2brSvrbUu9XOQzZbUNNLRBaHAEM7QYFMbBte3pOJbQCLv3beQy7pM/ctFlyo8xkkKkM2DbvbI0QDgtPPdct7d4zrNR2M2woYg9lF0wlGixiseiJGSujCH348GGfNzcWaREEECe3dt1acyW8xiFzdCmH0KWEv/9dnfPl7kDTVSrIqlv6T2juevLS4fJuPj2VVWTVMonlEaDUEK3asIkzDl/jubQKR3woe44aTm3BRWxNOemLbDxPasaHeolIpBNO8Ke7fsvhE2xfNenvejm8upCAzICj/mfDOgY+0+ToA1L07qX8Vq7TyiqV1La9xAMg1Xy6p0Fp5fjnjfCP38G8efMwDMO3TLY5y3xrVH333bZtxo0bx+67707HcrA/grKIVgdan2tVXQXK4YV129DtF5qbL47m77arAB6/HWzbrmjtDTEAlm0Zgy/p8cv3Fr8piwoLhh33msBuTGE1JLGTabYK00fkWdXd9BnhFKELjJDADAkMUyCkIJOyKYgVGEjHKP/JJ59uH6EDhMn2HrfGc2pd89e/3XBptRTTtuHmSwPp6+Jbi+IaH6Turr9rzCGIXwjALHI4s/QkHAgsAY3L78SULeAQIJ1LD6UACoYBki6VHVgtf4Kt7T7zScv4sKyHFGCa3HfXrZxzVG1+DSTfu6staFJcP53WfT7+6BMUR2B4H+U2zyFcKcFwbCxmU+0vYMlKLe/4y3HCBKibBeXF6mz00tJS7+jk5ha/BN/zqfFnnHEGpmnyzjvv8LtfwLoXQViBvLS5rvKXQ3fThz96OHR/PT0Bh+yl3gsLC6fSBGSsDJlMhvKjSyb1OqX7zAnXjrAqSsp+40rjRmHww9dM/vWlxcNLoSCiCDcUEYE5dOEZ4ExHipum+hmmInhXfTdMyTG3HVQRAjAMow52wNbRIrKr3nQ1XifmZjoUjbB2s/o8/wQg4ZfmPv4gct1cXPmmRgRkp+N0NS2+GyCQzlhWoO4be//Fa9lnSCtwCIjsBQVxdcBij74vsM8ePRk6tCvjRnflH9MGc+IPP0OksnEBxWBQC/XXVm9i4ft/4OyjNP8gXg23XqVSAJEeuDvtdCYngQySH46ehxDqhF+AOZ/jMbXuVbBstdp/nsr4m8fFkUpr+LSKdW0QBQZsehVmfgETT9vKsGHDEEJw9tlnc/vttxONRvNazoPLXC3L4t133+XUU09l2bJlABy8Lzz3B7/RTe8TLjNvdV1JTasKlCNYd4GkskMvrX95fpbqA2nLuhj4P1CnDhuGYYw6f1jBptrqO3b7ya6nhsPhSFVZFZ17FnjMJ/tUCf91lTrSrLKLgQC1Ei6SVcttC4SwkRJsS2JlFENwpblpCNKuAAKWrl+8uwCYM2dW5LnnxiQ9Y0QKNa428vyCLC4IkhZXveWtQQdefh9mvq1OaG2ykl2CzZeVvI7NZLfDaYhoX/UuJWuqt1C75A4GdMum1RKOmx+GTIXSRPQptFQKamrUtNaKFbBiuTpOurQQdhs0iL326Mb6Je9y+RlbKS2FQqdxgjesNp15Jx8lh0LhHjkZlcB9d9/M2UckVAexIbSnqscnHBva63PgnifhxnOhf8/cTo6D4qgfNCP1dZwSFm+EYy6GTxa6ar6grKyMXXfdlX333ZfKykoKCwupqalh4cKFvPHGG6xcudI7zCEahl+dC1eerhanNFkHbWnrNvaLbYFTroVHnse2bTu821l9RliW/ed4LDpKCMOnBRYUhygqdVRgrb9kn4poyztFkRKicdNZ8qq0HtuSpJM2qaRFstEi2WCRcJ8NFomGDIkGC9uGkoowdcktv1cMUUouu0xYJSX499xJoAEl7IOVlG9M5zIBffCTT0TkA8dv2ovwwWeQeQ8wAh1P0xJ06eJyZB9nlv4OoofVsyJ3uQFQ89Z/+8tfOWXyMiLBnYct4JAGDDgOTjyxecJ0hZceRgjFEKqrYeUKWL0GVq0EaUFxAewzHIYOgb0GQ6+u6pTWqCB7RzogdvkFiEKvbqSD7LHH/8UJEz7xjaBGnwwfLYDHb1ZnAyRScOo1MHxX+NVP/XWjw+BdYVBPf33mK6pPAzNgfS3c+ld1TNWajWovgzvGdeuyvMRg8MDuDO21hctOqaFPVVbqNofDK1egfby6Fvjui8+XXqtxkCuX9LLaAm55qYQnV3bGjJgIFGPsVWiztCE7By0EVHSOZdPWpLnHDASEIwalHSLYNsTiJpGYsrobBmQyknTCItlok2zMOMStEXm9YgBWRhIvClFYHHo9BJBMJo0tW4RRUhKgXoFaFAOK2Bv00jUBroqVUxuBWgwyAAfKilQHD/q7Y2RPVdM4gKuy5l2tpjsFOgPA5voGnn3in0zZ+0t+elAeidYaHDYcN0kRTnNTqfmYgJQQDkNVlfqN1txdqDfgtS+h8XNYv15pBytXwsYNkExA964Psc+e3Rk5ugejBnZily7lvPvadI77wSdKM9Pa4oaL4dBzYcZ7cNDeEHes+3MX5WdEbn0tWgYDe2pFb4ZCvGksG6qK4Y5L4PaLtfSM7DsSVm602aXTV2r6T7QBRzBMvrABwnf7Tptw5AkiJaSF4B8LK7l3bhWmUKsS48Uq3vXDMkzoBNhgJxM8sMzg0TVxQBJyx9CuRNcQuEMcpaobkLGVOh5Wc+WGqSrWyggME4QhnJ+qV7XPP1tWK2ODoIeX/wMPRO61F62DJNnpsCCbC1SWr5ZaoT698w68Ow9qXs+TflNstQ0qma4JKLZLy+aJ1uAwYPBJcNxxrc/LjgJ39sC9g2DrVli1Sg0Zpt8OpnZIpB0Cc4S6peXhG1SnvPpP8MUyePA6iMf0hLOS15ZwbFNXowcIVOZxb6rJ8jXtTofD/TBgfk2ce+Z1YfbGImKmyxmdh/PsEJE8Pg5EyATLwk6ksesTHPRJKQZQXJ6dO3XXUWR3HKrkwhGT4vIwqaRNvNAkVmASKwwRCguSjbYnuV013fvVZ7xnJi0xQ4KKqlgiBGoKY889jTqUOa1liDo/CTQCwSsg3BptSqrniNosxGJqoYyU+Bbq6xtCvEbUhwh50Aj83FtqWXMPJPCIPNALcmi7JRw2TN63H0Isblaqfx3g2gXca/LicejXT/0MC3+Z0urqpaWrIGND2ISfnQjn3AzX3Q+3XOSUSTpN6NSJgVLWzGD9CI1xojWt7t4UFer9QObW+beOw4BFdXEeX9KJV1ZXEDayhF1SiKea+CQycFzPDEYkhBGLYKcyiIwNIYOJFWnea4xjht0dkm5c4ZXHVeHNkJu8eyAJSCmx7WZZVRZENpwQGCFQ94FXV4dSUmaaN/7kJIZaGQeK2BvJX9lBgm+K7QKdO0NtLYgQSNcQkye+K2m8sRj4bi5xVW0PjcZ8ffxB+hmCXoVtxfG7G05l94Ou4fDDW6i3bxq0TiwEvPYQ9PwBXHMv3Hy+mhoDdTZayFAbXfKpxktXwq7dtPpzeqBbfzoOnYCAnH7l1q17wotPZedbwAGkEbyxvpzpqyqZt6WYiCk9HIVxF4HIsbG4dexOc67O6CfHZnvUBiNCJJ7dR+5G9IY6WjquWi5tkLbEtiSZtLo4wspIbNtdIpytI239M2r5s6MpCOwQQDQapaoqshqoYFtA4pfqOdSi12qeuNkyU1mp1rlvaoAO0UBS+RpK5Pr7GlDj9Fqb+Aw4bufJuU6pjTiELRg5eHeE+OAbl+qtAbdzdS9Rlu0lK9XFDbaEn58Cv30YfvN3uPxUrcgaQS1YCv265frlw5FPauatk6YY7HbgkHb2O8dkJECYYNVXYjVUIC2bT2vh+o1lyhLtUFthQTZvurR2//IyGIdI36g3OT9Vh21LsG1kJgOWzdpwjChquixL1JBCEHUFmpemwmHbEiujfumUjWG4U2oS21JMQNF1lug94kcoewCs9E4/FyL6MaSG5GmKXJCoMbq+zVQjqCYldz5pH0g3ElGZ/NVd8KfLs9GCa7GbS9qXFSee6xA0xnkdTeZmJ1+xmsQhAWlz/22Hs/fhH3DQQbkS5tuCYF0JAe89ASOPhItugzsugzGDlfsHzhy7FIH6Axq0PQm6stZUs3phZP5uEkyryfw679KA4cfC8jUQDinDrWkqZtWQhE1boK7RScNJJBQ1qBpaTu9xlZT0KCIcDzGxJMm53TIYhQIyGYaKFL8W1fy6rmM2D3kkdXOE79MWBJyxvIQ7qzZTKG22pGwure1CNKbSNZx5yt6hNFcWb1HEmkozNbULdZgecpcxWhlJJmV7w1nbVtLdsmwsS0l723Z+GsELIBQ1AbHcI/S1a7c2feOEjSLsDOQQs95awVbLEY0aNEMEBQUwS99mIwNJBHqGtxAmkLTPMi+aRZkfNDwt4giVIVH3tvXvOQLD+HinlOoSqEvB8G5qqm71RvhqDfTaBW67CH7+B/jx9fD361R4r5xuJ5NgCH96LeGDrPak950cgteYSr6u89VG+FQ7pHNTTTN4JRx86wiKOsV889MCOK9rChGLIUIGdkIgMjYDYo2EM2ZWqOZIa+EjZHLCBZgB8LOaSm/4EImLbHpOwX/VoR5hRhWhG4L/s1dzvuiF6YwzbUsZ0zJp21sHIQwlxTNph9gzDqFbjiZjK0YgnTXNkZjBlvrq9/QZ4+zZ7jZqvF3r/OrJEnlToKse7pghSFmtYQDA6NGqE76g3yETYPO+0U8gXZ901vx8qPJQvZem8+JT41vCUTDce3/gzqOZMSM3/W8LfOW2wa66go8Xw3LnCqapd6qlsN07q4sVGxLwyixtWEO2wy9f50+3qSaVWhzPX1eHHEeffGiCyN3gvcphw9swqG/LZS7oEKFDj0KicZNIzPSekZiSmMI0EOEQwjAU5xJGNlzcJKrHcb71d3+4kBdXD5fFG/KlF4oYTCloQETDGIUxjFgYEQ5ByGSAmVB7y8MGliWJRE0yaZt0yiadskgnbdJJm0xa/ZRaryS7K91ddR4gEjWxLGuGR+iDB3RfLlKoDSju1FkINf3kzsu5q+N00Fu6KSnvhtPD5CN2J4xhqEY/5Cyya9TzgNDjatLAWzyhofX55cmWb9wnsuFajSM20FHxJKZt06VyyLeuukst316Zw10oicUYut+NfPSp4PdXKucfX6/KdLuzx+C+p6G+MZcffrYo//Alh5HmYRJuuGCda1G8cHlxoLamfvo4ZObCT49uuuyjju+ZQ7DRuEEkbjAnGcZOpbEbk8iMBZZNUkpicYNIzCAaM3yEGo2ZROIG0bjrZ6h0PcJXfhHXz/H38HtxlF+swCQScg7mCJmqwxuq04VN1Pr2sCI025YOkdsOkVveew6x69JdZon9nEk/+9Aj2/KOPdaaBUAMtRMtjrKoFzq/Iu1XjDpKqkR7jwRaJ9hiNOGW51sI2Gcf1cC/vEd9ewqDwHcKK5o7kJ2GcwLokjdftjz/JsK1GkekC+54TgjBY/cfx2uv8Y2Cq15XV8OTT8Ljf8d3YQSAKByhxm5SsscB13DkeBi6K2yth9seVjvZ/urcsvqTG/AWt4Cj9jc0Uac6DrQ2k/74QWXPDeMxTOmv87w4hLod9y9XqOuPn/oDRLS79gBm3ruYWGGudI7GTB6inLrGNHZDEjuRwk5luKqob0BSGz5tICjRI3FDe88N5yP2QLhYoclLlGCnMtgNCWQq7TGcL+NFjkQXxAqUNM+k3CWv2V86ZZNJucTuqPCaZFc9USJtOHvyxXVe85x22qmxPn0eatymcaUNuKfO6dShg86a84rUXP+nZ8C8z2DTTKiIaOGDkG+YIGl+BVS+OLq325lFM+F1HF1uzEZyBpsHnvwwe09Y9LWP1W3bWWj0Dpx7Ilz5YyiLBsruQtXFEOrgfX7yxSKGlD1MfAwk07D/HnD2Uep02PueVoLmyVudpatOWY+eBEa++nRhWzSZptJrJQ4p4f0lMP5kSGszQMOP7EZBecSxgEtvDGulbJIJC9GYoTEhsVIWQkpe/ZPEkJIQFiEkYSyN4UiPIVkIktJk33NDJKVhT7yj/KC4WVJSFu3UKS0bewvoZxqRLkLQxyZTGRFRWxghQ21mUOPsXWu3cqK9WU3DJdP8oaAr68LO/X/OCrdVi+tJJtRiGMMQniaprPEOE0g5xJ+wSCYsUgk111BYEkJEMon3bp4f91XXVVchQwHO2CoInjiXhyDyEnQ+0P1icL1zbpw1B/8KNo0ARQtp510LDd5BD3qSXl/Sx+gt4bBBdrve5aFKhZeStGFw6OlXM3ZsE2XdBnCXzH7+Obz8Muy5G1x7AYzsDyLtL59eLleVFl1vRHW27M6x++6+mbOPSRLeXc2h7zMcLjoe/vkiPP2aIvYnbnVOhQXGjoBulc3g0OooZ5ZDLws+vui1iV63bcUhJTz8Kpz2izZUKrBLR1g1A28PgYsjb9d1Ps6/He75B0Sj0T2SyeQHTaVt2WkMEcKSadYnlhu3Lzi1X9ws3quuseGUMIWTbGzbEMrG6bf2w5JPajFDgk3rkpiGmymJbYNlKWmecVT5VFIRuZVRtdapW5y6hoYrPrxt8S1eldq2bZx3npHu3DlnFN48bCU/p21KqrcEerwIyChcfz3sUgmrXsj6+8baWucIEqveSjlKQ6BT5Sgjun9zOMyOUHWhL19qSkmy34/+zg8mf7nNUt1Vx2trYfp0qN0Et/0CjtlPXUeVj4HmLadbxq5K8/CuKhKwtaGB4tpbsIGCMWq7as9d4LaL4dFp8G/nMtG/Xg1FBVBcCAeO9ePSJXCwyqTm5wunaUS+9mipHK3AIU3oPhlWb2i5ji8+Fe64SEswgEPH4/pP+xgOORMikcg9yWTy/HzbcFsDlp02DBGyL5s1ro9phu6OmvEDvXIAG1c3snF1gppNKWxLZtd+2Cg1PaNUeE+qJxU3FgIqqmKM7T8h/NvT/pjxiDqTydjr1rXxwrh6fBXjtUiwU4fIrTUC3/kIwVmhdcEFaufTiBOzeJpq+LzpO25Sf+YJGxTUItgxm8IRH+IVQjpIpJPAiZNq+KBJXp8nm066lgVvvAF3/zFCYstE+hV04dOHYfl/4fjxisjdcbDHgPIRh+vuOdiaGFXP4nicx2cIDBsS70PnDmrK7fgr1cWL/3eJSuenN8JjM6C2LlsfOTjy1ZHuF3j3GHdbytEKHIYNK6fBhSc1XddCwOLpcMeFfrfgbIHbJhLFmN5boojcNM3P6+vrt5nIAUwjbAshuH3PmUtv2/2Ng64e9oxI0XCnuzmlqnsB6ZRNUWnYG6d7FviUY5hzjXJp28tneVWUhkSi7jcn3ZEBzYZuGAZbtrThDpYUflU6SKxhsoa6As0vKCVbAR06wOmnw7yFMMq568/tGAKyy1sDRBlcGOM+9H6mp+FzD6bVHI6C3Xwpu2H+/d8ZnHV4NdUr8nRQDdyOtGgR3HuPYNbM3Tju4J/xymM3sn7er7j55xMp7rCLx/jQ8qqXSepEk8890g13Halyl26OKe06SZXZhtUz1MEftg0nXw3TZ8KqN9XClGdfh1OugRU1zeN2333qufPLZwBtUzlai0PAnZfAs3fm1vnwAZD+APp2zDKWJnFr/fW1z2Ds8RAKhZZZljW4rVd+twRRM87/jXzz4s2pteGUnVpuS7V/PZ2yCUUMb3rNld7ppDtOl97QKhRSe9YbEo0HhUNhf50lEgmGDy9oPOEEO5Y3Bzroxjc3FYki7hj+lgA1J5/WwoKf4A2UZV+SPbRCaOmhGmDZMnjwQSVxVr9IlrkEJG9eG4Dunw9kgBgdtdKX16ZwdHHGvZrftBdf46BhryMkZAw49gZ1p5xbFsNQN6W++CIYabhq6g845siJhDPOIFHHBzz13EscvfvbOe4+m4PvJeAOUHwIFO+JdwunllZjJk28+tdqvYTjvrQaBh6ijFuJOao5DroIXpwJB4+H//4O/zSkXn351HUdtqcc24BjUwL2Pkkd4vjfP0HXYr8WEcQx+wsYMiDbnaWEB2bAT6+CUCi0MJ1OD9geSd4akFJy2Udjjy8Klz/2/gvrEAZsWpvAzkjNIJddNKM0SkF5pwiJRKphzu8WFLp3pnumt1gsRlUV64EeLeZAJ/IwaiquOWjq2nOJInD9AsY4ijH4cqc6Qu/ecNFFcOedYI6GrbOg0N3hpkm64I41N223A0ntW+/vQXr2iN/thPlweEOBrN55/31/4qzDVnlhQzasWgyDByvr+Mdz4PyT4LYz4Q+noKawOu+htpMBEuEZfNzO3FBfm8UiNKmoVZ37opfDk3QCiO/q5El4dgQ3rXgszuatUB7P4uhTAcl34dm31M0koI563mJBaRiEnQeH1l4e4Wjl8OV3W8uxDTgqY7DwaXIgHw6AvU9VwyfrA+V3xFR47jUQQryZyWQmfN1EDrir7R7/7fxTnu49pH7roo9rI6UVETauSWCl1ZJXy/I6IFIKyjpGsNKSDsWdurtEDj5SglCo5EOobZ7Qa8luU211jslV2U2yh1ro4GpCiWDuFCxdig2cKeGvRWNg+v0weWS20fW2zjHQiMC38+6paxKfcUi3ukMTOMCT5ivWrmfh7Ls561C8gC6OmX+H+SvhhmNAZJy0LEXkEsAoBplRjZtn4X166xof0qbW/et+HtNyGVWoI7jTRUEclsWGaijvmovjiOwlqkig1AgQuY5Dz1Mwg8JPTNtcjq8Zx0dfqvUED9wCtgGVE2DLVohEIpenUqnf8g3Dzwc+nLKlHZ04Z8gXWKH+JRURMmmbzeuTSEsVoqDYJBxR8+41dTXXzv7d59V6Gj5SWreufnFz0yGAGnO3BRoC30Epng/CZAnegXnzYMaMgvNramrvCYVCSCn/ZhjGkoPOkn32GQVv/QWEYzPwCFejGV2C6a0e5D++bajOizsu9oV1cYSreOXNWWxeOZ2jf2DTY7SWmIYjLGFYV5AZTTrp6ciMF084vU9qCXXqsCH7pWks+nSULqGDUlKlYmmnxObisLJZ2A4cWUmad0mr1Nx2QhwI2ONY9dq7G4RGqfdIJDI4lUp9zrcEhjCQUg4YeXm/9wsi8TESKO0QVSvgbLUaThH51ocW/3nVDeJ+PxH7CL1v375fSLlwxy7ddMd8AkXcbbhRWkpYsACefjp0eSqV/q0QgpAz0e+cINo3Ho+fM/PDxL3maJjzJIzo6cR1ExH+hheQ3YjiOgTCeGEdd59GKPxhyKxj/37PQz/cQ123AUfIl1/11NSBkMn+e2Tz48uD1vt1q7PHpLzKVH/Sp/uQYSYLAAAgAElEQVRqOISgoGAH4BCB+gqoP/p8986I4zePqo07sQjsdzIIIVaOGDGi50cffbQtl4XvUHBU+T37n9ft5NJ4ycMSFJGrOXW7urZ68ooH17+c98Rd/SMSiex+5ZWp2TssZ5Ksca2I3HXyzcCiRdhPPx29ur6+8WbDaD7iuHHjYm+//fYqoGK33jDvaQhlspJYHzp4Gkuww+TRZHK0m0AanoDYXhyxAdDhJC2+e7SQcnjlzffZv+/zgJYu5N2fn49HS0CEukOnM5vEIU2T1Fe/IiK2A0fQTeZpA/dzJ8Sx1YKSPbPfpmkenU6nn26p/30bkE6nGXv5yIoNNRu6jOk/duVjU5/aEjKbVpN9Ej2VSlWb6pirHQMNND0WbwK+/BKeeabw1zU1dVerucSWK/ntt99OSCk7mKZ54oIv7YcjIzHOOxH+eJnWmK7K5nL7gB7oEqzXAXQpLAJqn8gmKbXvbcYRH66YgOMvPC6ijGbhugCRi9yOmvMtA/mMD/GlEcSxeu1auphkrx7aFhz+asjNbxNMcGfAgQGV49w0xXunn376vg888EBmZyRyAGdarxqo/opnefKK5sbCARl7zTVXrW+GKbQd4rSayJcvh1//Wtx+2GH/Mmtr669uq1VTCIFt2/+46KKLwqZpPnHPP8DcXali+jU6OqG5FnWd6IISOCipwUlLS8fnvi044rs6hQB36ks9JS+//jb7jsgGRYvn+/Z75YgrER/oOQVxICWvvPCSd2PsNuPQnGTg6Q1jtrccXwcOYI9T1EUVBQUFYy3LGvvAAw8ET0L8ToOP0C+//Bd1iUQbFs20KfVckBLWrIFf/9r405YtR4lMRl529NHHbBf+O++8085kMscNGjQobJqhd668A4zRcPXfyG63xd/wOR2G/J3MR6Can2fV1VXItuAwCj0fgXBmBwRJ22ZY5xdzOndwzb6eqD7FJHWvcKXnpuOQDjfareuC7cehuXnSV+DdaaaPtXc4Do+zthGHhFNuULfXhMPhexoaGt7bWaX49oCvROFw2Ni6VXztpZQS1q2DW24J/+3uuzMik7HPffrpPJOc2whCCD7//PNMJpPZ58QTTwybpvnOTfeCMQpOuR7S7n1oaOq01ASu24Ok1mlkNqxvLBiI61MVW4tDqsPXpY7QELzwrxuocmc5nOGDqyFo/drr3LrK6g0DcDt0JrsSThtqCARz5n7KHrvtABx6PTl+81cqRtsgNZw7GAdOfXpurcQBcMHv4dH/gBDi5XQ6fT7fU/ARdSwWs9esaSro9oOUajXYb35jPvKHP6REMpn+aWibtsu1Hv7xj39kLMva51e/+pUZjUaffeQ/EB0FfQ+DBWuzDa4TZg6Ba51IJ1TvqUt3/J3TJfAmcYiYhsPtlYJH/nodh40LyDERwBEAbywbfKJulhCaaHPTkEJgbXzCRyTbhCPwdN87O8ewFe0Bq/RVjzsQR740WsIBcOyv4J5HAXjPtu2mTq3/XoCP0KWUbNwod/g0gpTqDrLbbjOf7dr1ZjOVsk6JuLcNfENw00032clk8kjLssxYLHbxsrWCgVPA3AMu/SNY+omzWXrzq+U0PdZz/byfyP68cbn7reOI9lJThU4CjdLmlX9fwykHWtmpLjd96eMTnmrqe5Ibh0hX8HDIbHwp+fP9f2HMbjsAh8zG0eujIgpb31ff3SbCwy/teBy+MK0phwk9psC/XgTghXQ6PfabWOn2bYKvdKlUijFjYvKII3YMrUsJiQT88Y/ixV13HX7Ixx9/vNMYOCzLoqioqFc6nf5PJpMZAmoL5m+nwplHgkhp6rVLlFJTy3HcNdXRm3YLPP2R1LenyZYfg4wPBcPgH489w5QxH1LiHBrhMhh3kYvU390k8/RPN6+eX/HBULSXT02RCN5+fw7jev7bGT5sJ448AVxvCdgmlO+rTrIZ3A/m/Uut8d+ROFqqKwksWAeDpngpXAzk2fLy/QOfRI9EImzcSHVTgVsLLoHfdVfkzZdeGhGtr5eTdyYiBzBNk8bGxmWZTGZoJpMRkUjkyLoGtpxzHZjDofIHcOfTkAxp0iQgmfNJk2DHkzIbVl+S6wqQOqMfDzz4D5bOuZoTx39IaUwLQzZN9PeAVqDj9i37dd0KBoLQbvwAZs7+kL26/1sdtLAjcDgvMk98gdo2WvOG2hX32WJ1LdSDL2t1ugNwNFeOjAmjT1VELoSwge78jxA55OGVvXqVvHH66bXj8wVuCaSEZBLuucd4p6Rklx8sXfpl4ptW0bcHbNvm3HPPDT366KOnNzQ03GrbdgWoe8qOnQy/+Rl0KQNhZ1V6XWBLzSEo2YPuoNxsnGOZyNUgdEMT4NMevG+Rxa3G3Nq3m8cuNyNl2hsiPPDAw5w2eRHGjsThSlftO185pIQ6G3pMUuvHQyY89Uc4dI8dh0MvR8aAU6+Cx6erb9M0H6+rqzshHm9pJ9b3C3IIXQgeuOYaTm/LkEVKdfXvvfcaswoKOu+7cuXK1Hd9ikJdJX2Zcddddx1gWdbvpJS7SSkNgPISmHomnHEUVMQ0ws9H4A74CB78okdo36KNfjkZz4Oj6/WA4MtVa1j8wZ/44R5yx+IQ+aO2hGPmFzDpx+qsOiHgrB/BHVMhFpDmbcZhwKL1cMjZsHi58jIM49OysrLR1dXVqTwl+t5Dvma85JpruKM1dCqlutjv3ntD8/bZZ/Iezz3339T30ahhOUsFx48fXzRnzpyrLcs6K51Ol4GqwHAYLjwFzv4R9N0FhLYt15VOQYkDWYYAmsTSpHpweK9Lt3ydX9cqhBPGwmTaJ+Owt7zBYRNQKsQOxqFv2fUkLK3HMXMh/OgiWLspW0fH/AB+eQ6M6KsYKZaG02WaLr4QbE3Cv16DW+9VxO3mwTTNF4cPH37orFmzUl/3DM/ODDlU2bNnjwNPP3359OboVUq1TPbee8WC4cPHj3z11TcSTYf+/kEqpYTCoEGDem3atOlnmzdvPlkIUSal9C4xGdoPzjoRDtgH+nUG6Rj3vGp1O6mumrruoFFFVl0NvudIvODT9dYYihf+28YhQYaVNH/tA/jbMzDtTWhMeinYgKFrSO41TKBWsW2py6c5CdswjI9t2/6Zbdtvfh8Fz7ZATi107dp12Nlnr5pr5zG8uxV+771iWU1NdHgikQie//o/C6lUiiOPPDL2zjvvHNHQ0HBmKpXaDzDU5hEVprwYJoxRxyXvPxaqOoBIgLTViTP6OBQ0wtGIyxujBhkEeWhQYyY+yfoN45Bhpfm9OQ/++za88TZ8vNBXfTZAKBRaLaV8aMSIEY/Onj17weTJk3u98cYbU4DD0+n0KCFEmW1ne6ZhGJni4uLlNTU1bxYVFT0zduzYadOnT7f/lyV3U5BD6Mccc3TF8OFPbQpubDEMuP9+Y7Vtdx6+fPnyje2V2TxkMhls2+Y3v/lN0S233DJOCHFKQ0PDMUKIkHPMsjc4EgJ67QJDB8HE0TB8GOw7EIywGgbINAgjIDFd0AnUeXrB8hEgeaRvS5AHB246BsiISm/xSpj1Ebz3Obz3IXy6BJIpv8Q1DAMpJeFw+J3CwsInGxoanquvr19mmqbdnPRNJpMIIdzNHEgpSafTRKNtOQHlfxfy1uwNNyBtWzWQacLf/iaqk8mqoV99tXz1d8mKvrNBIpHArb9DDjmkYv78+bstW7bskA4dOuy/efPmUbZth4QQhtQpgyyRdiyHDqVQ1RH69YTBvaCyI/ToAt2roLIQYgVgh1UkIQFLjXGlM861bXVilfezIO08k2lFmO6vpg42VENjApathM+XwcqVsKVWXc7o3aOuq+VungXYtkAIcX84HJ5RVFQ0b9OmTYuTSaWbtxPoNws5hC6lNC67TKRLSjAeflhsWbeuYPjWrXXL28c6Xy+kUikikQiJRMKYP38+++yzTyVw7F57NdzlHirprtRz76ZzDabut+7nQlPNFpyG0iHfrEFrwJ1efeIJsWXduvhxmzZVvxyLxb71AxvaIQ+hJ5NJo3v3+Iba2sjIxsbGdgL/hsG2bcrLy0ftumvNzClTaPlE3m8Z3E09L70kEh99FL72mGOOuf2hhx7Zafdx/69CXip2pUs7fHMgpaSwsLBHt26Nn510kiyy7TaOo79BkFJpDnPnYj//vPFEaWnlj9etW5doFwo7L7S3zLcMqVSKHj16VIbD6z8780y7U77Zjp0J1q2DRx/l40ikw482bNi4uJ24vxvQ3krfIlRVVcUymQ1zLrjAHrQj6KXN1vRWpplKwTPPGFuWLg39tL6+/ukdfTtJO3z90E7o3wJcf/11xm233fjS+edb+8dibSdOdzZECFizRthLl8IXX8jqXXah8oADtj9/UkIoBC+/LJgzp+CGjz766Pq+ffvZ7ePu7y60E/o3CLZtE41GHz7nnPTJFRXNE7grnSMR2LJF2PPnS2PhQiNTV1fw6po1Dc/H47E3x48fP+8///kv++03oaCiYubWkSO3T6IbBsyfD9Omhad16NDtxwsXLlrfvl7i+wHthP4NwNKlS42BAwfcdNJJ6V/2cO7B0aewTFOpx4sXGyxeLBJffml9XlsbmhYKhZ/ZfffdF7/22mt1oVDITiaTOfPPoVCo80knZdb07t32fLnTZzU18PjjLGtsLD168+bNH7ZL7u8ftBP61whSSkpLiy846KC6uwYNgnQa1qwRfP65TCxZYqxuaAg9Zxix/5SWlny6YsXK9alUypBS2q1dTBKPx0ecdVbjR+Xlbc2X2qvw7LOiduHC8PmNjY2PZDKZ9kUs32NoJ/SvCSZOnFj01ltvfRKPizdNs/Clurq6af/852O1hx56uB0Oh+1UKrXNhOVcvnDwFVfwfGuTcDWImTPJvPGGceegQUN/9eGHHyXapff/BrQT+tcI+VTt7QUpJZFI+Jwrrsjc2xoaNQxYvFjw9NPhV0eOHHP0m2++taV9Sux/D9pb/DsEUkqKigpvnTq1YWpLy1NrauCpp0LLVq/mhGQy+Z65Q2/maIfvGrQT+ncIQiH+efXVHNvc+vT//EdkFiyIX1hTU/snIQTtBN4O0E7o3xkoLOTdqVPZK3ikcTgMM2fCK6+Y9w8Y0P/ijz/+NNFO3O0QhHZC38khnU7TuXN4yYUX0geyknvlSvj3v0OzamvNExKJxNL2cXc7NAftvWMnhgkTxhsrV761+ZRTZAmoI7Qff1xsXLs2ekJ9ff3L7ZK7HdrhOw577713aNQo0XjttcixY43GsrKSS4888oiQvbPvemmHdmiH1sFBBx1UUFkp0vF46OHu3bsXuIdRtkM7bCu0q+7t0A7tsNOBlBIpJay6O2bXfhATxbt3lrUfVZJYH5HJDQlK9lhPzafV1sbZKbPHaRkiZanQ4JtsKSXti8Da4X8V2gV6O7RDO3yjoIS1hViwXwWy/lgy1QZDl94jjKxt2fr8xDKSK76QkZ6dRLQHmGVqD1bDl9i1nyOTG9V+DVuCLZG2jcw0LscoHhs7+NPVwmjfdNkO/3vQ3uvboR3a4WsH204jNj8Na2/bi/n73CWM2CgpTEPIEBSMHqhu3FIgrTT2B4NCRLqWiYIBiKJRSBGG+sXI1EbIbFWnlzvnkkopkZmGtcQ6D49Oen9LPmEupaTmjmhEhKN9ZGJryqwcmAr1nrA2Nv7ujES0j+rb4XsB7QK9HdqhHb5WkMsvibBg35tkqPwSCoaHhFkGVi2kVoBM2TKzcZDAXOBFEBLSNbYMd7GFdIyIqWqo+xzZuAKshCPMUU87XSftxsnxSbO36KP8IBhF1hgRDr9BYYUhrbWkFz5Gav6jtmxIPVd9feSUsqsSdYbZLtjb4bsL7b23HdqhHb42kKtuqKTxi0UU7vlzUXZESJQeAtF+IFMImQBhIOy6kxBZViSMCMR620AddgMyU49MrkY2LodMgyPE1Z3ZUkrsdM2FscM2zGtOmAt1U2gvpFSXnjoKgZAYIhY+wig1t9bcXjBeWu0L09rhuwvtAr0d2qEdvhaQVtqg4YMumMXdiA+F6AAQMcish8xGkBkAAxmaJD8ZuZu009nIHQ5NYKeXyvQWZHozJNch01uQtqVM7KBG6HbqQ7PzIY8bLcyZSytjiEjHkWCq+0Bdcz1KORCGAMN+csvv/5+9M4+Tojj//7u6e8492ItlgeVGUFRuREVFURDjEeMVlXgQj6hJ1Jho1CRqjMYY81MTE6Pxil9jjPGIGo/EW1GieOEFgoCAy7ns7uw1Z3fV74+emZ2ZndldjgXEevMaZrq7uqurZ7Y//Tz11FP9B/feFdFoehct6BqNpncQoHy7VWOWocw+IExQEZTThFIxVNLCVsIqRYkbVOO/0/cjc9jPo9jhhcQbIO6KOU4coWTa1a6klDLecqN3n/u6Navji/7sJRE7COWk3fUq9Y5KTSVYpaLRs5S0e/WyaDS9hRZ0jUbTKygMhIpZGEEwfCgEStmgEqAkIpUPTUnAOpaVl30jJaZSJiDe+JyKN0ii68FuAyXdSPeUde1EQtbgU19MHqDweThxEm9fsxeGnEjG/qnPosNiN4QRP0yhI+Q0X030D1ej0fQSDsjIRlTCEEq6Y2SFiRAWApF0m6vklGACJUoekO/uOVI5MQQSqo/7D/H6TSq2DmW3g5SZYixRfOSZ+KdGYXi7Pg1hGErJXyAsIyuYLiNKHuWeLr6aB1GJro+n0eykaEHXaDS9gmF4JUVTVygVW4psASQIP8oogZQIp0UV3MHmxjNyxVVeMDBH/S5OouX/VLwR7PZk+eScoEoY4PsMlejyHqakTeudFSdhGke5Fn7SzZ8WdTpEXcq1CvmEYfp0PkbNVxIt6BqNptdQVWe1CKf5AeKrwWkF4UOYlSCCoES2C10plAiMUvX/ett554BilJQ46jbijVHsMCqV91glI9wT4ajqYkYy5di03TdwlPAY96BUHuu8ox9dADiBf5Rd9MXa3r8qGk3voAVdo9H0GgKkKj/htyr80VpiS0HFUVYFyioHzPTwMVLCrBTKCI5X8dD/7NeHBa1DPl+NE/sLTkQinSxBFsKyCqW6VI5N61+rJyPiH2CYQfJY5ZkvGVVRo3KvG4ROnqn5CqMFXaPR9BrCMBHlx8eF0/JN2uZHRfRTd73Z1x3ClnZ5J9/BFXnh20sZxWsSL9TuJQaccrWKN7YhE6hUlLuUEmEPV8LTyT2ulEPbfWUXC9N4B2EG03nhs14ZUe5KIXB+V3rOm5uE6dmu10ej2Zbox1GNRtPrKOnAZ9P2x6p+E/8olPJAZAkqtg7lJBDJfOxuXnYFjkwvE29+XCnzbYT/RiWlu11KVDy81qqYNNB7yLOAq/Htf+23uzCdFzCsWqREOcmyyX3IqUdJCTH5mXfM0eOCRz8UF4ZvB18pjWbL0YKu0Wi2C0pK+Gzf3ZUoehOjokLZEUiEUE48j9hKcJLvyhX4tNgnBVo5dhRbHGpUTVng1L1yJoZ5oxJmRa6Auw8HGZO4ZIp7wokjvePKLmv5rKtMcxrNVwEt6BqNZruhZAK19FteFVvzGPiPwrGzLOgOwc2wrJ3OlrUryBLlSInCUDkPBFnHzGulK5Tj2Coqv1l+RfxZoYeea3YBtKBrNJrtjlI28p3d98Eo+rdSZnUn6zxlWSsFOYKc+55P7LO2OTKZiCajrC3jMmofUX555GVhdjOOXaP5iqAFXaPR7DCkjCHfHHIcVt8HlBLBfKLc0aeeabkXFvB8+7qpYpPHiSdWyLAxtfzn0U3C0LdAza6D9jNpNJodhmH4MKatfVzUzC0i3nwO0g5nDy1LRr2Tek9tIytqPXP4W+fhaSTnTFdtyvEfbfbdbUTFVTEt5ppdDv2L1mg0Ow1O6F2cBUeegFF6j8Iozeozd7Ld8koqRCpALm2dp7ZluO3j9nxU/LSSH8ZXGLqvXLMLowVdo9HsdChpG/H/DjsIzIcUVk0quE2lI97zu9yVVCjbtoknnlVSXlF6QfsipRwMPb5c8zVAC7pGo9mpSCaC8QohKhqi9sQNbUseHvr+GcVGtKFzcFsqYt2WqFjwZ2ZA/iE454s2PQRN83VEC7pGo9lpkFIihLAUlCqlhn7SHn0o6DFGBQwDU0bw1P0Lz5rnMTdtRDb2J/z+TFpfmEJirSIRS7xVOqt0+rDnhnU7P7pGsyuiBV2j0ew0KKUMpVQxULu4Pfory2McFxQCS7i3qlQ8nIPCWesQvLeN6LsRooujJDYkSDiJe8e1jDvL8Om+cs3XDy3oGo1mp0ApZQBepdSA8PPtMzYlnDvF4QHDg0BkCDpKIZXCASJK0b4qTuk1TdhvhknUJ4gn4udPjEy8w/BoUdd8vdCCrtFodjipfnOgwql3xjTe2viAb7RvgFltEp3gwa40QIi0oKcsdVspwlLS6Disj9sE7muh//WNcSPuTBsbmvCuYWlR13x90IKu0Wh2OFJKQwhRqhw1uOH6hpvMSnOWNcjCCBoIU6AMaB9n4RSLjplWcR8EEkBYShoch/W2zaaETWuj3XjAY/ER+/10YMg0dYCc5uuBtaNPQKPRfL1Jutr9KKqa720+BoNZZrWJ4TfSqa+EhOIPbFfY9zRJ9BGk7BELCAhBuWm6rnilcCqpeOMY+Zj1TMMRgA6S03wt0P4ojUazw5BSopSyFJRubIlPjGxK/NQzxINRbLhKnfQhuk52EA4UfWRTNs/G96WDEgBu0FzQMKgwTfpaFuWmiae/Z8arAxLXO1Lq+5zma4F2uWs0mh2Ccn3nhlKqFMWARZHoc0WGMbjitQSmJRBmxu1JkXW3Su6LkgrHgtbdLaKVBglH0iIl9bbtut8dR7I89u3Lpg583DQMuT3bp9Fsb7SgazSaHULK1a6UqlnaEv2FGTDODAgDCwh+aGO2KBBJ8RYkQ9zdd5VQqJjCaXNwWpKvNgfbUWycaLHqQC8NXknIdmiO2/GaNWqP8yf1X2HpIDnNLowWdI1Gs91JJpDxKkXV2qbYYS0BdV+JaRgeIUh60TE3SAJLnA5Rl6DiCtkmsTfZ2Ots4nVxEusT2I02TquDjEuknXxFHGzp0DTSZNXBvkV7h6xJU+7YLWpqUdfsouigOI1Gs13JcLUHZVxVNZvyxiLTNCyRHG+uXP+6XW3S0tfA/5mNtVYi2yXOeof4yjjxZXHiq+MkNiZwWh2cmIOyFVK5c6grkp9RlLxrs+e70TFxy/79hrEl39vBzddoeg1toWs0mu1KMhucH6j54pP2X6jR3jODQrjWRU5GuHQCGVtivhzFf18b0S9iJNYkXDd73EE6rnDn/pNkr5dCErfiZxzcdvD/6Uxyml0RLegajWa7IaUEsASiquXx1gMi88IPmccXWXI/f/pmlCnmCaVol5KQ49DkODRJCSsSjPxhE0VvxZCyeyHPXCeFbHMCztTpDdMXGQEt6ppdC+1y12g024Vkv7mBIihjsiL8Uvv13jFey9OoUB8kiE1ITnGqFBKIKUWblDQ5Do2OQ6vjEFWKxBCDd5+qxBZAu6T2vjYG39GKtc5OD29LkRL0jBXFhPnXqhtW7QHoqHfNLoW20DUazXYhaZ37ger6y+t/bASNC727ezHKDYQlwBRExntIBCGqFK1JIQ85Dm1SElMKG3CSgp/1rsA2QEpF2ZtRBv2jlZqn2xBhiQ2oHKs9IRJ/OdQ59HvC0LdAza6D/jVrNJpeJ8PVXtb2XNvktqfb/u2f5LesGgvhd4PhlFSoqCKqJGtmeGhUrpi3S0k82Zfu0NGvXug99VkqcAQkTPBssKl4P8LAJ1vp91IbnuYEMeGccmjisH8Ypna9a3YNtKBrNJpeRynlutrjcsCGH2x42DfGN94zxINRYoAJSJBRibPRIb44TvSDKM2mZNGfSolUCjedKxnijWuZp630jHW5ZdLbM8srRRzCpZ9Ep/2/WcMXGoYWdc1XH/0r1mg0vUpymJoFquyLDdFz4j8sHW9Wm4gi4d6BJKiowtmQFPP3o8SXxvG+HmPcqI1MHbSB/neHwUnOsqaSs7NBxwxsZGSPS0XKp5bdmdzSwXap/UxBMDTC89BP/7OiePtdDY2m99AWukaj6TWSrnYDRFnrytjYtRXypZKAaXiFwLfYxtwoUVGFXW8T/zROdGGU+JI4ziYHFVPp7HDp3u+Aou5UP19cVEx4gImUIClgqZPHis+19AXEG+2/3b/n4NO0la75qqMFXaPR9BpJ6zioYqrm89bow4E+1mSfEJhJK1raCvM/EZy3okTfS4p5vSvmKQtbIAoOScOSNEzz8sWZxdTv5yNaZaDsbkScbMG3BdKpi33vgX2G32vofO+arzBa0DUaTa8hpbRAVHzRGPmuLDauLzKS6V2F2y8el5JWKWkKO5SesQnvi1Fk0jJXqCwx736suUruI1FC0ryXh/qJPhom+Wgc46VliIdIqYFU7qQu0kn2twuIJqS9W53c45fThiwzdZCc5iuKFnSNRtMrJDPCFbdH5fA6lfhfsWX4fYaR6jYnrhRtjkMomTgmLCVxqeh/dQvVt7e7IerQraB3lUgmv+hL9wyEWypWaRAa6aWxUrw7vax02tgHx+v50zVfSbSgazSabU7SXe5FUbX2nLXXe4Z7z+SsEoxKEwUkkkljQo5Dc87QNOm6wfF/nGD02SG8S+0C8ty9mBcW9vz72QH710c2H/kz02vu2Auo0WwBWtA1Gs02JR3VLikN3RPaP/JO5F/+yX7L09+DKhWEJ3ho9ylCSeu8XUoSSmEX6ON2BPR5Mcpul4bwrHI2yyrvlM+9u2UhZbwyPv3Y9ce+YehZ2TRfMbSgazSabYqUEoEIKkdVrTt73ZO+PXzjvSO8iCKBDEvsVTbtX8RYfV6Q5kGCeGYGOKVwhMifNEYpHEPgXZFgxG+aqXomjIp2L9I9tdRTnx3TWa36qinHrD5mo+HVoq756qAFXaPRbDNSrnYlVdmGizacbfiM6317+TCrTFRCkfgyQeyjGIfSqnsAACAASURBVNEPoiRW2jhSUndLH0LHBrKHnymFFIUTykgFDu46/4oEQ+5upv/jbRhNDlJtvQs+EUg8fmzrscdrK13zVUILukaj2WZIKQ2BKG77b9vwlr+3vOKf5C/zDPKAAfZ6m9iHMWILY8SXx3FCDiSSOwpFy+E+Vt7ah1i1kSXYnfK2d/UO2AKCn8epfbyFmudbKfo8DjGJsxl96UooYp7Y909sP/F24dG3Sc1XA/1L1Wg024S0da4oW74yfE/Jy7Gj/D4Do8jAqXeILY4RfTdKfFkcp9EVc6XcoWnQMUxNmIp1ZwdZeUUxiRKBo5LJYyict73L8eZK4ShI+AXKVhR/HKXfgjYq3w9TuiRKcE0cM2QDMv1gIFHYwo46fjnhhPbjPjMNHSSn2fnRgq7RaLYJyWFqpWtXRGbH+psPBDyG5YmC+VyY+DsxYh9EiS+O4zQ4yLhEqI7bT0rMU5/TGJJNR3j5/IpSWsdYbtIYkZGXPemWz5vHnZz87eQJuEuWkTLpERDgGJCwhDtLW31sxRnPRff89iV7Rj0e7X7X7NxoQddoNFtNMiOcPxGWVV9G48/5Ssy9vEIggbCUtDQ4+M6px3gpiop3JI5JkWul5+vnVkicYlh3QoDlF5TQOsJC2XlSv/ZkAhfyCHu+bYCoi97+zLRR3zeFFnTNzo0WdI1Gs1UkxdwCSld/EfmuGmTd5E/eWqLJTHAtUhKVkkRcUX5VM31ub0PRWcjTx+ymrzu1jCFp291D3bFBVh5XTOsIDyIqXTe96LqvPWXRp5fpHFUvgZgBA14KHfnAmeOeNXW+d81OjBZ0jUazVUgpDSGEP7w+PnxdUP7X7zcGmEIQU4pWx6FNSsKpcebJ/mzHAP9rUQae34RVJ9O2eqbAb8lYc4lyM8B5FG0jLDZMC7B+/yAbpwRoqzRRAqQtkWS46gtE12e68eMRp+4bT7dO+slPxm+0dGpYzU6KFnSNRrNVKKUspVTFujPWXSFPLLrYODxIAkW7lLQ5DhGlSKSC2PIFrtmKir+2U3t1K6LddcRvrpD3xJpPLYFCehXxUkF7lUloTx/1w/1s3DNA4ygf7VUWMZ9ACpAyOUROINWq8OPXrvF/e/qpI/QELpqdEi3oGo1mi1FKGSiC7S+2D2+6rekD7x5eQ9mKtkkeGo/xEyWZBQ5XvGWGsOedDc2Bvve2M+imVoxNKSnetulde1YGt16hUCr1ECBlhMgZp4fP/Jsen67ZGdGCrtFotohUilclVdmXh395l6fWcywesOtsEssS2OsShA/30/D7CpwS17WdlQkuX1a4tKsbHBOK34ox/Oomit+J46h8sr3lmeK2ZD/HchrNAeaUk5aetMLwa1HX7FxoQddoNFuEUspAElzznTUH2KvtZ8wq03CaHOzVNna9jYookMn+8MEmG/9YQdshXnfaUjqs9NwgtU7DzuiYsKX/31oZfHszgaWJToliNie969bsl/AmXj8tctp0Q/ela3YytKBrNJotQkllKEd5l++2/H9mH3O8shVOo4MMSVSsQ8xTuAFvivBhPupuKyM+wMSROa73fNHo5EafuzOrOigqXwwz7M4myt8Mp4ewbWsXfKf1QhEPxC89vfn035kenXBGs/OgBV2j0WwRUirjw1D4Quu5yC3eixsgAjIu3XSuSR1XdIwrzx2WJgxoPdTHqt/1ITLYdAPQRLalnjfqnDx98ApsC0SbpO9LbQx6LETfV9oRMdnJVb9lwXTZ6xzhxJ0iZ8qZoTM/0v3pmp0FLegajWaL+Oizliqnv/mhtBggBXh+2ojvj62QJwNcPmHvWAcCRXR3k1WXlbDheB8q0ZEwpqvMb4XGjrvL4AiFbYK10aFscZj+/21h4EvNFK2O4cjUsbPj6ntqydvCXjT7hdl71hxcgxZ1zc6AFnSNRrPZSCmNhZvC1xslxmWOVEbamk6A/+omgn9qBUdkudxTpIQ933JaML2S0IEeVlxSSuNULyqZmjVvZDw5edszl8kzVC4jN7xtuMtGu4NvU4LiFREqPglTsjpKyfoowVUx/JtiCKlASvelXEGXQhEzEtedvunMX/iKPL16vTWanqAFXaPRbBZSKpZ82T4yWineU4LSvCKrIPCXVkp/EUJEIDMrXMHjItPvnRzilqR9pMkX3yth7VFFxPqI7kW+0AQumW78fGXIce0r0pZ8rss/6ig5dEHz9Ge/M+kNnUVOs6PRgq7RaDaLNRuibDDtB4yg+E6H2OWKoMJJZmMTqxz6face70d2l8K+ucPI8ChaR1msPKmENUcX0TbAcqPmnQ5Xel5rPV90fVfvdOURgHhLfMVPFzp7nz53r7BHR75rdiBa0DUaTY+RtmL57zeOapsdWCKGWh1jy6GTCGYJonT7svvc0071r1owGiTk9K1vTh923n5toUBJhCkJjfay6pgS1k8L0ribj2iZgXLctK+OEGmxzyvedOGuz93Htfald1307pfGjDi/qiqos8hpdhha0DUaTY+RCcni8sUPGe3Gyc5xAaJ3VSG9osP1nUfQO7nAFUgH+t7aSs3v2xCtbg/6thgj3vW+EoEk4YPGcX7WjwtSPz5A41AfocFeIn1MEqYAR7lj5ZVCyuSUqqnzz02EA6AUcYHc7cO2w5/61vgXtZWu2VFoQddoND1CRiWfBj/d11Tma0IJr2tdQ/wHJYR/VY5j5bFyC/RRpzPFJbeVPRFl6FUhrDonLcPbIr3r5u2nkv347uOFEO4aWwjsIMRKDCKlBomAQSwgiPsMbA+gkkPZYomVh1ZW7X3IP2e0mV49Pl2z/dGCrtFoesSaC9dYoT+GnjGkMStzfVrYjwkQursS6RfZM5jR2R2fKejp/uykW96zyqb2Ty3U3N+KjOefea0307tuzYNBzIj98eR3T/5h34l9t/O3o9FoQddoND1AOpLF/RcfJerFk0KJLnzKCnuMRcN9VUT3sLLmG+92Ypas9+S0pgL8nyeovbOZ/o+2otryOdK3r2h3VaeDgwqqQ85rOe9V09JWumb7ogVds0U4jsPs2bO95eXl8qGHHrIdx0EIgcejx+Puinx5zJdWy9Mt7wgpxmcmhgEKJIwBLGg5o4j6X/XBCYq8AXQFx5DT2Yp3lMIxQDRL+r7QzuC/NlG6MIKMFZ4/vaeivTUPBrnrElZiWcVeFVPmLJwT2r7fkubrjhZ0zRYzdOhQ/7p16/ZNJBKXGoZxUGkpccexl9q293WvN/hKc3PLR6eeeuqm+++/3zZNU9q2jWVZO/q0NZuJdKSxuHTxSSIsHkRhQPbQs5SwZ5KZLEYAqljQcH4R639cguPLsdYzAs26EvZOKWBTQ+OEQsUU5f8LU/tUiH4vtmI12ChHbTNrfnP3iwVjt18YuvD7ui9dsz3Rgq7ZJiQSCb7//e8b99xzzyjT5EfDhnHC/vs7FUOGQEODkCtWKFauFNFQyLuivt5+ORAofs0wxMLDD59V97e//d2WUkoAr9e7o5uiycBxJLEvE9ZST2KNdVVTtXlPK4VuGykrvbO1LrJK4YX604Os+XEx0RojnSCmxxng6MJ9n8oCpxS2KZCOonh5lAEvNFPzSgtlSyJYDbYbANdNjvetcd1LQ9pOP+fwH6764cta1DXbCy3oml4hHo9jGAZlZWUV4XD4vJoa85x9900M3WMP8HjcDJoeDwgB9fXIVasEK1dirFvHZy0t5nyfr+iVlpbW988447QVd999b1QIgZRSW/jbGelIPlzR9hOj1roJCcQU5nmbMP/ZTldJYnKFPNM9n71OER8oWPnTEtafFMCxCo/5zjsOnK4Tv+SLqpephDA+gWNAcHWM0s8iVCxrp+zzMH2WRAhujOJtTiDCEmE7KJEcxkZnqz+1BhRKSHeqVx+0VrG0ftqgKbf885st2/I70WgKoQVds12IxWJ4PB5mzjzU//rrb5wcCNjnT57MPpMmKUpKwHFccQdQSQ+umTRsQiHB6tWKlSuFbGjwrqiri78VCBTPKyoqenfKlMmfPP74EzYgHcfB5/PtkPbtqix6vrE6Psn3nvCL2tTdQiqF44B1QwjfTc0ou/D+2a73zgKfa+WCJFprUHdOMXWnFBOtNFC2So9zzxoGR8+yu/VY+DulhXW3qYw6HdHx2X2gSX5AIVTqc3KDIVCh+F8/mrDHXD02XbM90IKu2WHYts2xxx5tvPDCSzMsy7lo993l7P32U1a/fmDbHQKfS67gNzfDunVCrlyJUVfHsg0bjE/8/uJXWltbF9x0028WXnTRJXHTNKXjONrC3wykVCxc0forc6B1JQpDJS98ephZUiiNl6IUn70JUS/zutwhf+Cce6zu3dpYkqapXr48qYS6Y4qJlwiIy46EL/TQas8ZE9+t5Z/vWBnr3XZ0fRN1wDY+aTpi0bFTXhSFftAazTZC/8I0Ow2O43D//X81Lrro4t1jsfBFgwfL7xx4IMHhw1WXAp9LpuArBe3tsH49rF4t5Nq13rply2KLgsHi12pq+r0xcuTIBU8//YwthJCO4+g+/CTSUXw5r6W6cYK53LCM4tSdQtFFP3dEUXRTCyW/a0Yp0eVkLN31Qxfu13aTviAkkQEm9Qf6WXVkKetnFJHwCYjKwnncMz5vkfWesS4rDFCpLp4+QbUllk54eeOUv//kYO161/QqWtA1Oy1SSqSUDBpUOyAUajq9oiL+/SlTGDB2rDIMo+v7aFekBD81OVYkAps2IVeuFKxcyfp164wVhuF9ubU18ubMmYctqKysbHvooX/YiUTCEEJIpdQuL/xSKj65+MtfyWsrr8QjDCE6vMnd9Ws7ABslVZc2UvTvKNgA2UFyWxJo1pOHAJBIj6J9oMmmCX7WHlDChslBWgb7SPgM132uMvrUlcKRsrNoQ2cXfEY7VVLU0z8/ITp+WKnPQqCUAtPAWNz0u4+OmPRT0zS2Wa73aDQKgGVZmKZJIpFIb/N6vUgpSSQSJONNCQQC26pqzU6KFnTNV4aUy3fAgAGljY2Ns4PB+BXjxrHXPvsoq6jIvYduqch31NHxWQj3FY9DQ4MbuFdXZ4RWrXJWChF82e8vntfS0vLuySef3Hj77bdHDcPE4/EQj8fx+/1b2dodh4xLPu3/aY3RZCwWSpTJOUXYt1eBKVCigGs6rxiCI0C1Syr/XytVf2lP522HzZ9dLXedQBAlSh11vMd7vM/7LGc57bQTJYqN3Wnu9bwkBVh4PJiBAGZxMcHdd6fP/vtTMm1/AgOHgukhYYBtKmzcG6dI9j0IpTAchRVz8IfiBDbFCdTHqFzaQuUXzfRZ3IqnORI1rOj0S1dftsD0dR/1nhJjIQSHHnqod8GCBRV+v3+fRCIxXik1LBKJjDVNs9o0zWLAsm3bAiwg1VlvA7bH47GllPFEItECLC0vL18ai8U+79u37+vt7e2r33jjjZbhw4dLwzCQUu7yD6q7OlrQNV9ZUgK/2267eevr6/dNJNp+PHq0PGz//VWwujpbnLdtve57SvClhKYm5BdfCFatIrxxo1nX1ma8HIupeZWVFe9OmDB+7bPP/iecukHv7Ml3ZFyyqHTRLWbMvDilhUoo1Cw/8XurccpEj4aY5S0jIfhGjIG/biH4Thwpu3KvZ1voi1nM4zzOfOYTIpQl1CJpDffp04fy8nL69u3L6NGjGT16NMXFxZSVlaVfAKFQiObmZkKhEG1tbSxZsoQlS5awceNGmpqaaG5uTh8zXQeCYorZm705mIMZwlAgFePeg4Qz/sRHtYfWTjn5sZPjlr8jliM1ImTEiBHFDQ0NY2Ox2Byl1FG2bQ8QQhhKKSO3nZZlUV5eTklJCcFgMP0qKSkhHo/T1tZGOBxOv0KhEK2trVnHSH3dQggDCHu93vdjsdiDZWVl/znnnHNW33jjjdLQc7x/pdCCrtllSGWr+/vfHzSuvPLK4evWrf3RkCHqpP32k1XDh2d5QnuN3IcI03Tra2pyXfqrVgm5dq2qi0T8r3o8xfMaGhoWfO975678059uDxuGIR3HwbbtHRatbydslo1YNlLWyfeEFKWdSyhUf4PwPX2JH+jr6K/O7Ium6znGO1K7uhZ85cPtDLi9mcCncaTssNxf4RXu4A6+4Iss8fb7/YwfP56TTjqJE088kZqaGgzDIDfoLFO4MrcppfIuq5wvTymFlJKNGzfyyCOP8PDDD/PBBx+kXd3ginw/+nEkRzKRid0+mESN6M++s+I7vx4yeAiVlZUDwuHwmfF4/PtATaZwezwexowZw1FHHcVhhx3Gvvvui8fjQQjRqZ25bU6dez7SgY1Ssn79el5++WWefvpp5s2bx4YNG7IfYISwhRCvAzfuvffery5cuDCuA/t2bvS3o9kqUje35I0g63HeNE08Ho8E90YTj8dTm9LllFLpGxUglVIUsgpmzz6cQCBgGYbhtW3ba1mWV0rpVUp6lVLetrZ27/z5/7MikYhB0v3o9Xq9JSUlfiAYCoV+VFbmHPCNb8CIEdv0Mmw2mYF7hgEtLciVKzFWrRJy40Zr7caNar7jWK95PNaCmTMP++yRRx5rS/WF9qaFX0aZ8SEf3tNO++kCN2d7yr2dPvf0siJ+hJ/mWyqwB5qFo8Pz9LXnGyfe3hTimVtvZt7td+IoJ13fkCFDOPfccznnnHOoqqpKr88Vr3xilk+AMgW8OwEstL2xsZG7776bO+64g5UrV6bXGxhMZzqzmY0PXydBB8K3cEvdWtaOSu9jGIwbN47zzjuPOXPmEAwGC57HtmpHvvKp4yxatIjbbruNhx9+mFAoK3tt1DTNv5SWlt60adOmOtPUCXN2NrSg7xqMB2pJCpjX6w16PB6/x2P5TdMKWpYZMAzD7zhOsK5unRfwGgaWaeK1LMPr81l+r9eyvF7T8vksIxJp9TpO3Gua+E2TzHevYeA3DLxCYHi9Ao8HLIv0e8Znmfp7NwxXuCwLTBMjVS65jGEoaRhuOcty3w0DwzQ7BA965kJPlcl8z12XcpXvzGQKvhDQ0gJr1wq5ahXGmjXUNTR43/f5SufV19e/ddNNv114ySU/Dm9tel2BMJ7hmZG7s/uSGDH3PMgeQ565nOXyBsKnBGn4VRmJaoGUrvWd5XLPE2CmpOQ/f/oT//7tb4mHw4Ab5HX88cdz7bXXsttuu7nH78aizhS2zRXn3O1bUseKFSu46qqreOSRR9LBaR48zGIWM5iRJeqrWMVTtU9x+eWX893vfhefz5eue0e3I7cMwJIlS7jmmmt49NFHcZz0g1bcMIx7J0yY8NN33323RVvuOwf6W9gFiMViPPnkk8a55547OBqN7msY6vCystiMIUPE4BEjYMgQhd/vju0u5HLWf49fLTIj9YWAcLhjaF5dnblx9Wr5iVKe1yzLemvmzEPfeuyxf7VJKckToW+k3wXG4vltjznXbjzKfC6aFUqWz0LPfe8orIju52HDNWW07etBOaQTw6TEvKW+nt+ffjrL3n47vduRRx7JbbfdxtChQ93DdPOjLOQ6z/ycK1ybKzxbUsfq1av50Y9+xL/+9a/0foMYxFzmUkQRtrA57PbDGHvGWAzTwDTNTq70naEdueUB6uvrufLKK7nvvvvS0fNCiPVKqTmxWOxlndhpx6Jv47swjuOglDIuuOAC3nhj3oBly5aPV8qe2b+/56iqqtjgUaOENWyYkkVFGCmxBy3uuwK5gh+JpCP1jS++UBtXr2ZpLMZ8pZgnBPNRIvriE2/t33fGns9IU3hFTGBe3oBxV2t6vFo+Kz1dX0FLHmSZoOGMIGsvKGJtaAW/PuF4Nn35JQBFRUXcc889nHjiiZ2s1EIUEp/cfbqyRLdHHUopHnvsMc4666x0QFoZZZzN2fStrOY7b86hpH8JlsfCsqx0HEChWIAd1Y5CdXz66accffTR6S4HIUTUNM0rzjvvvD/cdtttUlvt2x99xb+GpNKwKqWYN+9149vfPrnKcewxsVjkcI8nMnvQIGPU8OHSP2KEMkpK8rusNV9tcrsf4nFoaoKVKwUNoTIchrD3lAOYPHUa48OTqPopqIasvuAuE8dk1YUiRIi5zGUJSwCoqanhySefZMqUKcnz6NwXnLsutT63fE/KZG7b3nUAvPfeexx77LGsWbMGAM+okZx0273cvPcILJ8fr9eLx+PBNM1OAX47SzsKlWlqauL000/nmWeeSR2rTSl1ls/n+2csFkOz/dC3Zk0nEokEhmHw5z/fznXXXV9m24lRLS3Ns0pKjCP69rVHjRypqoYPV7K83I1fS3retNDvYPIZapnfSeqzSEb7S9nxHo+DbQsSNsSiitY2aGuFaAQkXmJxH+vW+wk1m5Q1FfOL+M/Zh33c4+W43zMxMLiRG7mP+wAoLS3lwQcf5Mgjj8w4r85C0dGm/OtT21L759un0PuOqgPg+eef55RTTqGpqQmAU089leuuu45gMEggEMDr9Xay1ne2dhRa39DQwJFHHsmCBQtSda0OBAKHhEKhFXp8+/ZB34I1PSYej2OaJlJKPvxwoTFz5izvwIEDhn/++dJZQthHDBpkjh0+3KkeNkwZffu6AW5qGyR7+SqyOeKaKq+UO0lNIuG+bNt9j0YgEnX7yVuaIZEcLCAkODZIGxIOlJVA33L3VVYMxX4oK4M+lVBdBn1L3JfP6x47FoW2MDSFvAQOfAWjdkK6XzR1ciL5nsqqlopQlw2Sossa8T0ehgR5+9vrqOM4jqMV19189tlnc+eddxbsK85Hoe09dTXvjHUopfjhD3/In//8Z5RSFBcX89hjjzF27FiCwWAnUe/uPHdUOwod48033+TII4+kpSWd6fY3QoifKaW2WZY8TX6+ZrdZTW9j27aRnAjFmDp1au3HH3802zDMw6uq4hNHjlSDR4zAqKlR+HwdFuL2FPtCQpt6pZbBFVfb7hDWSNQV00RSDFtboa3N7Z82lBtdZiiQjiuygQCUV0BVWVJQ+0CwGMpLoboCqiuhvBhK/eD1gvLiKqMNIjmeSySFPn0rzHOe+RtK1l93+oFBQjwB4Si0tENjMzS01dJv9jyMmuq8LldFF1OaKpBxKL61mdI/tCJaFAKDZ3iGH/NjwO0nf++99xg1alRBC3Jbkyk4mzZtYvHixSxevJhFixbR3t4OuOPZR40axZ577sno0aMZMGBA3j7s3jq/5cuXM2nSpLTw3XTTTZxxxhlZlnpX55Nqo1LuePm1a9fS1NSU9rD5fD769etHZWVl+rvsrbbl62Y45ZRTePjhhwEwDGNhIBCY1tbWFtZ9672HvrKa7YZt2yilME2TyZMn1C5duvzgcDh8+JAhnn37948PHzFCGbW1EAy6Yp8ptFK6r5QFG4tBNOq+x2KuqKZe7e2u0MZibtmAB8qCUNoHSoIwsAb6VUBFKZT4oU8plJRDRQlUFrsvfyDpmib5EKBwBdZJimtSMPNZ3Znk6Gr2+pTmiIyCyffUg47KXL8Vdbii7D6cROOuZd7YDBuaYF09rA0Jxr54K4N/NAf7lKCb1jR50MzJTArOYKYUEoE04f6zLueRh28HYPz48bz22muUlJRkndvmunO7EoHcYK758+dzzTXX8OKLLxbcpysmT57MVVddxVFHHZU+164Cxra0HUop2traOOSQQ3jvvfcAOOuss7j55pvTfeq5VrpSitbWVu69917++Mc/snz58m4t8MxznTVrFhdffDGzZs3Ka/1vaTvyHUMpxd133825554LgGEYmyzLmhoOh1foWQ97By3omu1OynUvhODwww8ve/vttyeHw+GJUsppPp9v90gkMpKcJDUi/Z8rctUVMH432G0UTN4dRgyG3QZD31IQBggbN7NJcr/c+1JmUFimIBYSx1yy9skQ38zjZS5nnH6PK9mWdaSs84QN0Rg0t8GmZli/Ceo2wrpNsKERrA17cP7/HkbMKMa+oy/0Nwta57mzlCEEd195JY/edhsAM2fO5Omnn85MHNRtn20hcejyOilFS0sLp59+Ok899VSP9+sJ+++/Pw8//DADBw7MOq9t2Y54PM5xxx2XDio777zzuPXWWzFNk1TyFtu2+c1vfsN1112XmaBpq6itreVvf/sbBx10UPpct6Qd+cpk7v/aa68xe/ZsYrEYQohGwzCmxGIxLeq9gBZ0zTYnFUVv2zbHH3+899lnn93H5/MdnEgkDrFtewxQg5sVrlNKONOAoQPggEkwbQrsPQKGDYTq0qR42cmCovCPt6eivLnkimauqOY9DwVKJC3lDIu7q3PvjTryCnrIFfKUoG9shFArtEThwFVnc/zqy3C8Ns45JcR+VY7jFdlpXpXCESI9t/jjt97KX66+GpRi+vTpvPjii+kHt54GW+Vz3Xbncj7jjDN44IEHClzRbcNhhx3GE088QTAY7JV2SCk54ogjeOGFFwC45ppr+NnPfgbA1VdfzY033piZ1GWbUl5ezlNPPcW0adMKPrB01Y580fC5x3j11VeZMWNGav/GYcOG7fHZZ59t1MFy2xYt6JrNJhaLYVkWSikeeOAB45JLLvF7PJ59GxoaZgKzlVIjpZTFmfsIXMvZY8HE3eGgqTBzPxg9FGr6gCHcIK9CruUsj2KGCzpTuLoSy9z9e1KGHKuYjGrJXJdRr8pZn/s5n5e9U9leqEMp1+WesCEWh9YwNDS7Ir62HtY3uJ+bWtxtkRjEbIvjVv6MQ9fPwcGGgCD23SLaf16OU4zbfy7AkZJlH3zA9w8+GIDhw4fz7rvvpidCAfKKQk+EoFBZgLVr1zJlyhTWrVuX59vsGiEEPp+PsWPHMmHCBAYPHkx5eTmWZRGLxWhsbGT58uV88MEHfPbZZyQSCfx+P2+//TZ777131nG2ph2Zn0OhEFOnTuXzzz/HMAz+7//+j5///OdZqWW3FtM08fv9DBs2jKqqKrxeL4lEgubmZvbff3/+8Ic/ZLVtc9rRleAD3H///cydOzd1HvNPPvnk6ffee6+tk9FspqToBAAAIABJREFUO8SwYcOGDxjQf/Wrr75mp8ZAajQpknOSG3PnzjVeeeWVAXV1dTO8Xu+3HceZKKWszuy7E4BpQVUfOGgKzJ4OB02EgZXgNdz+56zCZGtzejnHrQzktVzz7V/wmFtYR67wd9HtndXfndX/3c255tIbdSjlvmzHFfVw1LXSU6K+sQnqm6CxxV3fHnb72mMJiDsmM788nyPrLujo97cgfpCPpl+W0TYyzrkHHMDa5cvxer3Mnz+fiRMndtTfhSs3c3vWOXfRX62UYv369UyaNGmzxNzn8zF37lxmz56dzsPQXf94ap1hGLS3t/PII49w5ZVXMnbs2K1uRyapMh9++CFTpkzBtu1OZbaEPn36cNppp3HIIYcQCASyRzHkOce+ffsyefLkTue4LeIHlFJ897vf5f777wfANM3frFu37orq6uotbp8mGzFwIGtOO40Bn30m5EcficaGBu/ThuF/sLa2dsGCBe+0+f1+nfHna0AikcCyLJ5++mljzpw51aZpzmhqavq2YRgHK6WKVdYUjtCnGCbsAUfPgGMPhv59wUvSyoYs0UmTdA2jkpvzWMpZVmYX1npq/96uI1+gWpbKpsqQp1xqVWp97m65TxO9WIdS7jopXVGPJyAcSUa6t7ivhmbXQg+1Qms7tEVc93w04ZaP2zCgeTJnLv0t5ZEBuGFwgod4iGu5FnCDuu66667kNe3+vrE51m0KKSVz5szhH//4R7fHB3dylxtuuIE+ffrktTK7CrrLdx5FRUUcdNBBefuMN6cd+faVUvKDH/yAO+64o5OA9hTDMDjqqKM477zz0sfoLqgvtV1KyZgxYxg2bFje7d1Z4d11j2zatIm9996bDRs2IISwBw8e3H/FihWb9EQv2wYxeHDZS3PmhGb4fB0uRyHc1+rVsHAhdl2df8HGjdEHa2trn77gggvqLr30MqmU2unnddbkJzX/8plnnmk99dRTu7e3t39bSnk6UJvbr11eAvuOh29/A46eDn2CIBId+pLrJs5n0YqsD6RFt5DQFlzu5ToU0NgGQT/4rZx9cyzhzDoVna39zGN3Wg8d/d7bsY6UlZ6Kdo8lXMFui7gC3tzmvkJtrtC3haE94lrzkVjSWk8N23MMpqydwzHLL2F64lAaaaS4uJj333+fkSNHdit2+SKle7JeKTczWb9+/bq1Yi3L4tprr2XcuHEF3cWpOlLkE+Wsr0gpHMdh+vTplJaWZu2zJe3Ld/wVK1YwefJkQqEQRQG47mJ45D+wcLE7dLIrmR87diw33HBDt/UVOj9wh/MdfPDB6eXu2pGvjkL1Sim5+eabueyyywBkMBi8u7m5+XzLsvQY9W2AKCoK3HnmmZGzq6owunqgVsqdRSsUgk8+EXz8Mes3bBD/NE3rwVmzDv/oySefjALaZb8TkgqmqaqqGhMOh0+LxWLnAhWZZUwDRg2FOcfAibNgt0Ggohki0QMnTZa7N6kwuUamyrO+0747qg4JVJ9FU6ycf/79EfbfexV7DyNr6FfucTqJaM4hc+vPLJfpLhc55XujjlTBtKg7HcIeibnC3R5OCny4Q9Dbo0lRj7pu+Gg8abEnYO1GeO5/7jEPOuggXn311bz9ranP6XMuIALpdhSwDJVSfPrpp4wfPz6v+ziFz+fjzjvvpKqqqscPFz3tFlBKMXHiRAYMGLDF7cjdllvHrFmzeOmllzCE4qnb4YhJyWMLED5YsAgefhb+9TysWt9hjKXo378/3/rWtzjwwAMpLy9PP/x0dQ6ZAn7ggQdSVFS0Ve0o9CCwYcMGRo4cSXt7O6ZpLttjjz2mfvLJJ41othoxatRuP9hvv2W3DRmi2FwtVsqd3tG24fPP4eOPRfiLL4yXbdt8sLq63/MrVqxo1P3y25fUTW7y5Mmln3766Qm2bZ8vpZyYaXkbAibsDt/5FpxwmNvHTSr7mMh219aHy3j0ecURBzQzpJqOjbmubvJbj+ljZtxwsuogW3wyt233OkQp1PwIhYlA4ZgG/3zoUYZUfsj+e9Lhhs+lC3d5ykLOdYWnzgvyn2ev1qE6Xo7siH6PJ9yAuUjctdwjSSEPxzqs9JSox5L96/+dD/MWuse+5ZZbuPDCCzEMo0eWaCGrrjvRqK+vp3///l0K+vXXX8+4ceN67FLfHBzH4YADDkgH/W1pO1LL+cTv9ttv5wc/+AFCwA9Pg1svoiM3QOZ3njq0Fz5bDf94Dv7xNCxdnX3OpmkyceJEvvnNbzJx4sS8rvjUu2VZHHTQQfj9/h61o7suhdzrIqVk1qxZvPzyywCUlJQcuHHjxjf8fn/3F1/TJdYXX6xcOHgwJLtMNgsh3D45w4DRo2H0aBVUyjlKCOcow/iSiy7y8Omngupqa2FLi/VUZWXFQ2+88ebSoUOHSnf/zftD0nQmFWxSW1tbs2nTpnNN0zxHKVWbWaZfBZxxHJz5Tdh9EJAg604vksvpv9cMi7SqZhrnfX8qCaV47IlnCaq3OWJ/wMmxhFNCmSmYInWOGW7t3DpyVExlbEuf0/aoAxCBUShhJusSmFJx8knHEVff4i9338c39lvFwMo81nPyXDoeDDLqzSib2qRyziXrryD3PHujjuRxUi/TcF8eC/xeCNpuf3k84Yp2LN7xSlnosaSV/mw6j79g8ODBBd27qTKp5UJWbVdBZqn9KisrOeKII9LjtnMZMWIE48ePLygyhSzyfOTbFgwGuxTznrajUH0AQ4cOTe+34kvcrAyZv+fUYvJvgwTsXgPXfBeumetudyxY8Bn85Z/w+H8d3nnnHd555510XYMHD+aEE07gkEMOyXoI69OnDylx7Wk7cj0Y3d3bx40bx0svvYQQQtbW1k4UQszH9ZFptgIBjJowgXe+9S1Ku3jg3SpSN1vDcDN4LV8OH31krV+2zH61oqLi/ilT9nn5scces71er0ylO9TkJx6PEwqFmDFjRunixYsvBr7nOM6A1HYBjB0Fl54LRx8AJR7cP5OcJ3qReVPItHIzlsFC1FyIMvqk61eGwbPP/hd/4g0O3Yes5C2pt82qI9fSyDhWbp94r9ahgMozwD8io47sJ4hFS5ax+J0HOO5Q1RH8l+d4WfXnmMy5noRcOj2UdCqwbepQCmICTr4UhgyEq8+HPpbripdJq91xoC0Ox18CB0+G7x3ningiKfi2DedcBwuXujf0+fPnM3Xq1GQd2ZZo4XMpnOWsq23Lli1jypQpNDc3d9rn0EMP5cc//nG6q6kr13ZPLOjMZaUU++23HxUVWT1WW9yOfHUALFq0iLFjxyKlZPpEePEusNSWf+cAmLCxFf7xH7jpblhTn7150KBBnHjiifzyl7/Mcrf3tB2FyuR7ELjpppu44oorAKQQ4reRSOQKPXxt6zFuuOH69U1Nvk29mbQndZOS0k3ruffeMGeOXXPVVZx84YWNz+2zz39iF19c5Eyb5omUlpr/syzzwpqamgHnnnuOJaXs9ke0q+M4DrW1tV7TNL8TCAQWV1dXq08++aTZcZxfopwB++4Nz/4Fou+C8y588CDMORhKLdI3/7SRKjKsPDqsv9Q6kVFGePqB6fZBpl6GUhw1eyYHHHU1dz1Zy/rmjP22pI5UGZG9Ll0mc//erMMIgn84ApXhDRAIBQJ3upExo0Yw6/jLuetfRSRyjwlu2ZTgZp5z6rxE9rmL3HPKeDjJ3EcKPw++Pp7/vC2SGdm2rg6lYH07jDgCnnwF/vA36HcQzFvkdqF5LPB6YMUmGH0s/O9juOE+GHMitCfcyV9qKmFgXzdPfYrUDGK5lnhXr8zyueu72n/kyJG89tprnYRHKZU5KUgn8U6VydyWW2/muWSWlVKyzz77UFFRsc3aka8MQGNjY7pufxDMrfzOhQAk9CuCi46HL58F+R40vwX33eBmWayr+5Kbb76ZkpISLMviwAMP5NVXX00/GHXVjkLXM981SV3LDGydYGbbYFx44cUtGzYk1kejyO2tm6mbi2HAwIHwjW/gv+QSue/Pf+78/vzz168pLb0rcdRRpjNokPFlMGj9ORgM7rvXXnsFHcfptaxJOwOJRAKlFJWVlbWGYdxpmmZ7XV1dzHGcBxzH2X30UPjrDdC6ABILYP69MHtictgYHdc1y8BVHZ+h4+E+XSbnu1cKVHAc7lRaHdaJSt45fMLgnPO+x8r2b/Hie+7um11H5iqVZx3boB09rcM/BoGZbmdKmDuO796oSvx+5pz9I+57sgzHoKM/GjKeNrLPIe05yCiScolnnovKKJd2LigwA3sy55TjmX38tXwe+S5/eSJIU26082bUsWQDjP6Gm1AGoG8Z3Hkl7LdHx+/njcUw+SQ3+h1g+ED46zWw5xA3H35pERSXwMDajgeR+vr69PWDbDHtuNaqRw/omYKqsn5/HfuOHTuWDRs2MG3atKx9P/74YxobG9P75Apz5rFzXcWF3n0+HzNnzqRv376dzmtr2lHIa7By5cr0ct+qDiHPYmt+V7i/rRITzpgJSx5zjYHGN+GGS6BfpeTNN99kxowZeDwe+vbty/XXX59+0Mh85ba30HXJbPO6devSy7vtttuaWCymA622AYZpmkZ5ecWitjaxU1zQtJWioLgY9tlHGWedpWovvdQ+76c/Df/vuOM+aZ8711ITJljtlZXel4qKgqcPHTqkVinVZZDMzo5SCtu2CQQCewUCgf8KIZyGhoYvpZTn+n0ETzkCVrwAznuw+BH3j7A45xvLFL18y+Qsp8Qx648/vd1A+PfIWSeyrGKkYt8pExg+/lwefckEo/NNpOs6Ms5RFD7vrWtHD+pQIILjATtpn4usQm4AUtrOp8jj4aQzzuWBf5vpjPOZdXScYMc5ZV6X1M1ZZRfNstAz1xMcB8pBKMUeI4Zy7gWX0xK8gLueCBJOdDxQdFuHgk/XwtRvu1HsAP2r4E+XQ0kRfLLc3eeVj+Hwc9woeIC9RsDvLnb3/2KtO9rF5wG/Bw6Z0HFNX3nlFfda5FjCuZ8LueNzRSKzLzZf360QgmAwyLx58/j888/Za6+9AIhEItx8881Zw2rzCXeh/vPMZa/Xy3777ceMGTPIDdraVu3IXS+l5PXXX3fbCEyf4Ho3O3bcRr+rVDtSZRSU++DyU2HNs2C/D+88CjOmQijUwC9+8QsqKyvx+XycffbZrFmzJqsdqTYXiivIvN5vvfVWevuKFSveRfefbxPc34Dg4jlzuGXkyB19Oj0n82/IsqChAT76SMhPP1WrW1v9f1dKPHLqqacsuuOOO+M7c7+8UopgMDgmEoncA+ybWl9WAj85C358OviSN9aU5Z3Vl1zgPfWh0/bkh9RnkVGm45wA7yDoew4ChVICIVTypiFcazWjM1cpxeervmTx2/dwzIEqfcBu69ge7ehJHaIP1FyEG92eWi/SVnmn4CmlUMAbCz6gKPYEE0ZknEt3dWWcb+bKdBtS21KbjTJUvx+C8KQud0dZIXj19fmo5uc4ZFLy6yhQh1KwMQIjD3eHpQEMqIL/9yPXQyaEO/ph0AjY70S3Lx1gzHD45fc6Zr8L+GDWNPAkj1kfgeGHu1Hww4cPZ8GCBVnTdbrnUngYWFfvmftmUqgcuGJ477338pvf/IaqqiquvvrqvMcohJQSr9fL0KFDGTFiRNZsZ9urHS0tLUydOpUlS5YQ9MMn/4ahZdm/8a3+XdFZ1Av+dpMfmhLws1vhr/9yAyNT7T/xxBP5wx/+QHV1dcE2Zi5//vnnjB8/nkgkgs/nW3TppZdOve6669p69AVpukQkL/js2bN5Zt992Sms9K1FKVfkYzFYsgQWLhRtdXXiecex7h8+fNjrixYtDuX2mW1PHMdhyJAh1evWrbvJcZzvkLTzyorh+kvgrGPB65Dxl9rxx5xF5vqMv8LMsoX+cDsdM/dYpd+Akv1AyY6bWNoEUGnBg+RNDfjvS28wtPh5Rg8qcN7bux09qQNQwSlQfkxGi3DbKETyISb54JJ5LBQxJfnrHX/k3BMawM6oI+eO2emGmvE5fToZDy4ddQDBKVD+TZSS6btrx/fhHnhTcytP/P12zjoujHA61wcQBaadDu8vcpeDfvjzFW5Ue6p83IaLf+dmjAN3RrvbLst+SJISJu0FI/onT9ML3/4JPPqC+zu48847Ofvss7Mufe4NPXN9IZdtISEsZNUWqkMpd4rSTZs2EQqFiMVi6Wl8LcvC5/NRWlpKVVUVffr0SR9nc+rYlu1QSvHAAw8wd+5clFIcewg8disYiW38u8rYJ+vvrQd1ALRK+PXdcMtf3UBJcL0ZV1xxBZdddhmBQKDg9br88su56aabAAgEAte1trb+4uuSKc62bRBgGmbW9XGkY6CQW3sdRCwW4/LLLxs8b95tq44+WpLzu9xlSP0oDQPq6lxrfulS492WFvFIVVXVE599tnhZSUkpvfnDchwH0zSPA+4imdjFY8H3T4Vrf5DtQi/0xJy1PdckzdkOnZ/Mc8vkrUMK6H8ZwgyiMvOrZhXqfENSlsVf/vBbzjq2GUvsBO3oSR1KIKrOAN+wtAcisw73hpZhSWVa7obBI489x0F7vEm/kjyXKF1H4W0Zz2ydvQ0S6PtdlG+IW29m/enHD/eIceDeP93Cmd8METCz61ACLrsdbr7HXW8acM33YNTgjmtqGnDLg/DGh+6yzwv/72I3AC7XsvN74cjppCP9P1kD+5zkWm01NTWsWrUqPWVqIUs9Xx92+poU2NbdcXaFOsAdTlZXV4dlwnuPwt617oXfZr+rbrZtTh0KWNcKF1wH/365w7MzcuRIHnzwQaZMmZLVtjVr1rDHHnvQ1taGECJ8+eWX973mmmvCu3KE+8xLZhZ/uPqDvQJ+/88Mw5jt8/jcO71SRuqPSwhBwk7IuB1flHASfxo3dOy9z/36hfjmGp0CoLS0NFhe3vrl3LmqorsddnoU0IZr8wagK59Dpsg3N8PSpYKPPzbr1q0z/hMIBB+cM+fU12+77Y8Sti4DntfrLXYc589JaxyAcaPg7zfDHv0BmfF0TP4n7k4u1GRbM5+qRXJdlgarjj+8HtdhDYB+F6JUPNsiJNWHrjKOky00r775NtXms4wZvBO0o0d1eGHA1QjstKDnutpzSQmpAN5Z+BE0Psrk3TvXwf9n77zjrSjOxv+d3T3l9nvpcOmCoIiKCqKgomg0ViwYBVvs0QRLEjVq3l9i4puiKcZe8xqjRsVGYo8GEUQMghVQikiR3m6/55zd+f0xW2b37LlcOijP53M+u2d2Zp55ZmefMvPMM3qb3LIe3kIKTKjNpBFdbnIxeg/C7wMhfWFfn8nw+MN/4ZLTakOW+kdL4IBTgzYcPwwuPAUcO8D18Rdw6yNBMy48GY47NNQkHxwHBg+EXp1VumPAT++APz6qnl9yySXcf//9IUZeyOJtaW29tczsm4LDcRyuuOIK7r//fgB+OBbu+DGhd7l1xlVYUS5koW8KDilBmvCfD+Hc62GZ63BpWRY333wzN954I5Zlceyxx/pHxCaTyasaGxv/8k21zoddPbTTklVLnk+niob6XaZbFx5f0ztW6+zmbPPXGxo2nLvyqTVvWWbrtqEJgOuu+2nymWfue3vs2Nqh34gz5+sIu1ikgQSFB3sEpFRCPpuFpUthxgxRt2CBNaOpiUd79uz5wpVXXrF+3LirnI1N2w8ZMqTLjBkzns3lckMBLBOuvxhuvhRS2iEmIQtS04j1lyuk+zeiXmtyK1RGF3qbjKPiBCgdEtSVZxX6RfKs5eWrV/P+m3dx8uEyr03bnY7W4Cg+AFF1GlIGuyZCgkinXTvpRLj1fzLnCzZ8+TjD9tP6JGrVeMqICPeZPnJC7XITRPGBUDUKpIPXmoA+r389bwaV46tly5g56T5GHe7WY8Lx4+DVd9TfylL4y3XKAteZ9nV/gYVfq/seneH344I+85uk5S8pgu8cGmynkmllpX8wWz1/7LHHGDt2rN+fQR35gnBj17g6CgnRXRnHU089xdlnnw3AwD4w8zkwmoP3sFXGFYQOBQqlbyEOvb4NGbj8Vnj6JU8JF/Tu3Zv58+cDYJrmC4sWLTq1urqabxI40mHIlYMrV9Ysf6W0qHhotGMkLv+S8bqR/o15kMllVm9o2HBqfWPd5KZ/tXx+gQHw+9/fllm4sHZBU5PGPHdl0BU+ATQDtajwpq2gzxMilgU9esCpp8rSa6/NHn7TTdmHx46du2bhwmvsY44xs506GfNTKeu2ysrK/Q855JCklJJsNkt1dXVXIcQn77///tJcLje0vBT+dhtk/gu/uhjS7kvzrMi4l5inJmj5ieaXkTKa5rfJOEhA0Z5uP4hwRuGlqZ8ksn9XCIrLy1lfU+S/gx1GR2txFA9CSjtEh8eAfAEqRJiRiYD+mg31lLonv3sx33Ulw1Ms/Gh1Gu44ZorU2la0L9KdvhHCE+YyaJPXXoHfST2qq2kQ+7O2DqQDM76AN6YEeEaNgKKk+waFsrY/mhsIcyFg9Mj4ftX7saYelqzyOgtEE/zrXujWST2/4IILeOaZZ4Jujwg0/eov2USuer5CFnGckN0VcUyYMIFzzz0XUPv7X75fE+Zbe1yJgM+L6HUzcOjgcYeKBPzjF9A8A26+HCxT+sIcWJtKpS7p2LFjgVp2Tdj34n3S3cdUP9lM3ZrKitKhVtLASqifmTAwLIFpCkxD+I6ooI0XpCt7ZKh/k1ayXfvy9u90qOj4zwMu27+4pUOJDK9CKflk3bpvyNYBXaDrPdOEst4346hhnZlVVsJhh0nr8stl7xtuyP3kmmvWzzzqqKnNo0cLmUol6pcuXbpYSrlPRSm89ACsfxvOGYGKqiZ8OROq27cYReRj0T4mqae5Cf5HF9PezcKR7ARmWw2J9/ELTdnzmJreJm1jV4z2v93paA0OowqS1SGB7dHh0SqlpuRKEcKNYTB33lf07hrUH323XhNCOoWWIVRG7zejAlLdfSUmoEG9B78d7lV4DNtxOGTYEN7/2IAkPPisivoGaqvZkYODdU6kstRfnhy0p6wYhu6rNY6Ye9Sa+6y5BCFJhQpaMuNZ6FCl/EXOOussnnzyyVgBp3hO/D7mlhzcomWi5XdFHM8++yynnXYauVyONuUw83moLg8Lz602rgjnic2/iTi87yVahxRgOXDLRdA4Df58vfIZAto0NDSsKC8vf7hXr167dESZnJPjhSnPG52+1+7GrNFU26FT5VnJlGEkkgbez0qoazJpkkiaJFIGiZTpPhOYllpK9zio3+e+8qh+xeniE9fUr1k64JJ+3aPjzQMDIJvNGtXVXWatWrWNT1GRQAPKYi6k4m0NaGlJxmtD3Za3QRfyU6bA+PHgOBSnEir60tq34buDCIVe9X+axutNa3npeWmeRh3Rkn16PGauM365mTiK9gGc0IDykIRw4K7qug0TLoNqrKmlsrwR7B1MR2twpPcAkYylQ9Ung9kB9+pHgwNqGxqQdXMpKw4+OiJt0cnxx4sILvrPyyMAkd4TRMLH7T9zGy/0/8J7Gwp6VFezaKWaJXnxrYD8vXurgDCeUiRRh7B8Mi/IM3Sg1p5Q52mE4NEPi1dotAhom4Q5L8GAPZTgGjt2LFdeeWUoRoQu7Lz7ja076/kKldXL7Ao4HMfhmmuuYfTo0TiOQ/+e8MXL0C6F/xL8cbS1xlVMmS3FAflpOtlCgClh3BlQP00tOxoCo6Gh4cIvv/yyFhjDLgqdz+pw4o8fvGZDh3Ztby2rTFmJhIGVVL9E0iCRMkimDVeIGyS0+6Qn2FMqv2kJhEG48wjYsGkJSorSlTbO553P7nBQnFA3AEzTdLLZ3NerVomGbeqfIIBiF2stUONet7aAN9BGbgS/95Mu7iybDVLC2rXwm9/AxIkq7ZyTVTjF848BQ6NJRMr5lmKEaXqWl8+oZfDf+yj96TIRefcikrapOABRtJ8r1BQCgT6l7uEIT7N7eQFmfT6Pvj0CdX2H0NEaHBJE8b4Igk3+AR06lwtIV8Wkj3vS21M47KC60IyPxxj1csIr4Cko+aQEigYgHVQwGXdKJ5pXRJAIL5dUzwzLAqOETxbAuiAKKgfuFWwx8orPXhhY8ABDBqhY7egoPDNMa4iUat/6rHnKKU5vS1USPnwGLhil0u6991769evHkiVLCq5Je//j1pjj/FTiprAL1bmz4ZBS8vXXXzNgwADuuOMOAM4+AT5+DtqmgrEbrpMtH1f6+4zJu9k4dHQyQJEn8AUkJPzmMlg9GQarOEBJ4HHDMGZ36NChw8bOuN8ZwHYcyk8o7dN9bNev2pa1+WdJSaq0rDKpLG5XkCdTJom06QpsU/3XhbhmwSc04Z9IuILd5T9efzoO2DmJmTBIp5PpitKyt7uf23nfaMRUA9SBH4ceesjCtWtFTcy43vqQAMoIpuuaURbz1hLwgnjvdqn9vHyN7m9TUQh47z24805oaoI2FfDxBPjbzzWHN709GlpfQKF9ZAWee/fSzasLtqj27OeRbB6ORA+kWRbgkIEAE67pq3BoUbB8HBJpmXzx0WT6dt/BdLQGh5FGpnqHGJBHh/dPRh56TEoCXy5eQnbtJPbogm/xxkGoba5SETtb5rVLgjDLkKluwTMZPAsViKYL9b7UEoJkznx1KpoHvbqE+0UIWLpSU3pQwWb8mJEFFCkIaF5fC8tXh9sAYNrwyM3w+kNqz/v8+fPp3r07t9xyS8GwzdFp6ahTWlz+QnkKldvROGzb5re//S3V1dV8/vnnFKXgpfvh8VvA0mNPeOULtcu72ZRx5eXZ2jh0dIHm22KeqhRM+z94/i61FOQ4Tv+VK1cutizrxJbex44EKR2+/ke6d8O/un2+8ooOc2ecbnY/vBoq2qWwkgIrIQLBnMoX1smUEX4ezaNZ91bCwDA13iIU7800O5imIJVKFBcXpV8Z8IM922WywUduABQVFfHCCy+uXrYsV+Mz0m0NAihFeaBDwC3hr61VAAAgAElEQVQhX8C30pktBIXW0T21UU/LAfWtw+F9GH/7G7z2mkobeQis+A/s0zkw8HySNG1bN3R9i1izHIX+8WlMNu8nw/WEeKnQcG4qjuJ9EeTc/7og9xiBay16lruHw0XwyisTOergGkzZAo7tQcfGcEgQRfsAMo8OVU5xrqht7HnPL1u9hvf+/QinjJB5ywE6HZ5Fo5fX2x4HAqCoH0KfZtIuPg63cm+M+SChubkJy6hnvWadCwFF6aBPvf7cUBe0sbgIUqkwHq9vQqDRbJrw2TzCIW8J8By9H2yYCqcerdJ/8YtfUFJSwvjx48OKoQxvEYyb4s7rqxbyFHJS21E4AF588UXKysq48cYbATjpSFg/Fb57AIEPRBQHW2lchYfSVseRlx6Tz/v29LF1ysGwZCL0VOdFJoF/JhKJP2UymfwKdhBIabPy5eLuTZP2/Lx9dd/5qbKKPUUyQVmxRaoqHQjqpEkyZYSs8WTa/WnT68lkkN8T6rogV4JdKGc6y+NPwv9umxttTEtQXFTUxZbZv+pbqo2g0dLIZplRU7OdHeOSKGs9OgB0JuJ5qdegBH1rBLxHma4otITDZqPr6p4wv+cedQQswI2XwRt3K4sklA9XAGgKkmcdeVZP6L+WDopB+umagiA1hcGjyfsgQ/VsKg6SkO7j5hdBxSEcLgOWMmDgQqXPnrcAat6kbxcCibEj6GgNDkAWDwScPDqkwPca9+sVIFHP5i5czDsv38XZx+Xyj1DVcHj36DSJgAbd+NeZqEQgi/ZB4gV50gakpt3kD+UgNsD8eQvp263RP1gF1JbJVMyW1IbmAEMyofL51lyUjsh/D9ZtgBVrC49z04ZnfwOrJsMBe0FzczOjR4+msrKSJ598MrS+HhXycf+jz+Kc0nSICuPticNxHJ566ikqKysZNWoUjY2NDNgDVr0DL94GCd1RVoTedgTBlo6rbYtDn8XSiofSQg80ZbRtEr74F5x4hHqUy+WuLioqevzoo4/eoZFLpZ1l9Zvdjm/+76A1bTsP+CpZXrWnSCcQqQQkLf5bn2JWNul7sntr4coBzggL71T+z0qK0Hq7uhe+o5z6iWAKXoPmRgfDgpLiouP7X97zrJytlir8DstmsyQSJV+sX78DDmkRKKHu7o0NmVh6HtznrRHwZqQckTw6Dl3otyDUhYAHH4QVK9T9X26CX1+CH/ghClHryUcpQ+O6RQtT5yGhtEgbQ+VkoFS0GkeiA1htfSs4rwvcdN+ph8ANa95Xi5nz/mMcP0zG1r+ldNgywdPvDuCVqYKczB8im4zDrEAku7l5gnhr/syDjNYhwTD518tvsP7LhzjzaDt4hx7Dk5ExoGke/lDW7r31yrxnRjEi2SvIE6kuSBPoSLz8jmEw7d3JHDRAUqWdLJrLQVOMv0hZUTBOmppV7IXoLEheIyJgGPDpXNQ3J8l7h959uxRMfwyWvAmH7g81NTWMHTuWVCrFJZdcQm1trYtX+Nc4x7Pos0Ie5YUs7405vW0pDiklDQ0NXHnllaRSKc466yxqamoYsg989W/45CloVxTumxBfcMfsVh1X2xiHN4h8Nh2pQ3+WN1Mp1HLDC3+Ei05Xz2zbHjNx4sTHpk6dut3kkXdUd69Lq0v/5/Ye92en7GdXFrd9KWEm22AYwaEHLuHPrk6STgpfMEcFd1JbP096FnvSDK+ZJwUJ1xq3EsLf4qbuBZYm1L3+lFJi5xxyWUkiYRrpVPo3x9x8ZDprZwOBbhiGU1JSPneHbl1LoabhoyBj7r3R5KC2o+kCPkvgGBdlQnFMKZovRqibJjz9tAo0A8pT84fu4MvTeiOM2B/kQtOSZYDW++9pv34+7WOQ2i+kLet1QFij3hQcxWrPs0qTLk7XMnHT/KsMnOb+M2kqKz5/iFNH2O5g2/p0mKlenHnmWL57+i0ssi/h/udLWFufn7/VOFL9kCLpzp4In1YhVUQ2v69cmhcvX8HDd9/CMfu+w+B++IzQqx+dVo0OP117hn4VkfyATO+NFGaYBjScPm5XoZIqxIyXd8bMj9izywKKLWjbLsyoa+s1RuvWVVkW4GhshnotFoU+WxICGbogJaxeDyvXhmmM/ry+6lIBkx+E2mnwo3PAIMfDDz9MeXk5lZWV3HnnndTX17doLcelFdoa1pp6tgaO+vp67rvvPiorKyktLeXee+9FkOPys6BmGrz3V+hWqfWP0O4L9NVWG1fbGEdoFkDPq/HWuDbovNNw4IGfw3Huabi5XG7MsGHDbtyWjnKO4+A4Dvtc1aP7gKt73D3k+r0bO7apqn1lVdmlExZhONkcTnMW2dCM09CMbM7iZG1WNEi+aLb8KXJPSOetk/te7Wbs2rln3XtT7JZlaBa6cH8GpikwTKEpToLmBhvDEBQVJXsuXT9/DFKz0HO5HKlUasaKFRjbxTGuEBgooZ4gzE3iOEtcmoNycqt1n+vCWmj/oyM0Wm9kTf2jj2CWe7DFdw+DX12OmqaXmqaqofFuhJYQ0si9gSzDWnPIqtHzEORBhrXckBYtNgeHgKJ9EARrwqq9ItJu4RdqzGW57+472LfTKwwbuA3pkKijTZ0sSIc9unXlsiuvJ1M1jvueLaauOcjfKhwOiOKBgJ1nuQR9pSpZsnIV9935W8ob7uGikzOktQKx71xG6Ig89/PI/HR/VsA9KjXow6DxXp3C7x+3tFv2q6Vf89WnL3DofgrPfnuquOteV8z5ShkZHkiposIZWmMXLcOf1QjRIeNp8q6W6VrpXv9o31yh76PUhDuugqZpMP91GDEY6mprGDduHKWlpaTTaS644AJmz57tT8u3ZguZ/izOum5NPS0904X9F198wUUXXURRURGlpaVcccUV1NXWcPiBMPdVaJ4G9/wYyrRAIqF33pq+2tJxta1xEHyv0fQAQSR/TBuEAJGFJ2+Hvq5PqJTyVx07dtynkCNla8G2bRzHwXZsbnvmtuTeV/TsPfDaHrcO+Vn/VYf9z352RVn5V23KK69Ipay0lRCkkoI/f24yepLgk1UZco1NOI1NyMYMNGWYuM70p8l9i9qz1PX1cn3bmrZm7gtz72oZWJbATAhM0wgEuRuMxrCUQBfai5VSkmm2VX7TunLB8rlW9N2169+fL88+m9IWlou2H9ioPeO6YPauEIwISXh0RNsuCqTpEIfDBFkC2QzcdRfU1CgG+cmLsIdm/Xhrjno7dOtYRNrp9a1eRifBb4JsAcdGrpuEI9kT2l+ExEFEK9EqkFJiC8Gz4yfQvXw6Q9Uy9BbRISVgwBNvQroYOpZBZQWUlENlGirSaUT1j4G0KiuliowiAcPg3WkfULPkBY49NNgm2GJfGWXQ6Scqg3Tp8riZVP6Rb745ifVL/8OokQ4pT0CFX2+oTi8sZijdu422IVqPXkxUITv9CCG001XcdkoROO8p7UP4/Q2wbPVq3nzhTsaeIDGkIk0Ww4ATYc6XKk+vavjzj4OjL5EqGuKYmwJv+GH7wU/OVdvb9HemNSV01Z9Lqc7Oblce9Nmm9JX3f1kd/L+74PF/qlkDD0zT5OSTT+bcc8/lsMMOo23btv6zuG1iUdiU9Djv9rVr1zJ58mQee+wxXnzxRXTLMZ2Es0+EW34E1WUECtDG3nn02bYYV9sYR4u8yPsbw6v1WbUQ2wFemAJnXK0+dcMwJp922mlHjB8/vsXZYykljlQ87PCfDCufv3jB3mZCHJ6wksdIRw5NJpPFpmEaVR2SWEkjT+FQtyKPQKHR7rIrqjqksBIGwlB0eBa0aQkMQ/3U4nVAuOOAdCS2LXFsdbVzavrczknsrCSXc8LXrJpaV1Ps3r36wCVgmII2HVJksrmm2obag0NNHznyqOLZs99559JLswfkvTDvReSNju0Ajahp9EICfFNgU8pKkAmYsxCeekolnX8S/PUW/L3HnmXoCS5PG5YQCAJdq/WYcAtKhy9rCP8PKQjaxxjCH1PfRnFUnIwoPTDyPao7b2q9MZPh2fEv0rvdJxzqCvJNwtESHcDaJhh0BpxwKlRXQ2Mj1NdDba06OKehQSlUGzaoNO95LieoLEtTXtxI/57QqQO07wI92kP3dlBeAW0roE0llCchWX4wsmoUSBvhOCAM6hoaeHviu6z8ajInHZmjXRn+WQChdWzv/cb1uZsYFXqh/LoSE+UbEigegqw6CZBhHBE1KRxbH6a+P4OmlS9w5IEoRz0Nxy8egVvuUSUtE/54DXRsG9BlmnDXU/Cf6ep/OgkP3OTGeo/QHwWddA/aVsCRB+NHRdySvpIASfh4Pvzh/+DFN1XIWR2EEJSVlTFs2DCGDRvGIYccQvfu3enYsSMlJSV+nmiZ6NQ5QENDAytWrGDRokVMnTqVd999l8mTJ7Nhw4Y82suK4aSj4CcXwP59gcxmvHMf/5b31Y7EIfUb90E0PxQoQzi/11ZZBANPgVnzwTCMXJs2bQYvW7bsQ0c6WKaFBGYt+sz67s1H72kIc4RpmN81DHFUOlmUdtuvJp40pIYhaNclrcaDjpCYcS48HpjffmEKqjokldAWAunIkEVtmJ5Q1ytWAt3xhHnOFehZJczzBHjWIZfz/qs0/VmgREuqOqQQBk7STP00RMann35sDBly4PPjxmVPTKVamHrPoQRsTnuJ0TcU6Rz/uik/vayNmgZvaVTo+Apoi6E6KfBcq8M04ckJMOtzlfTawzByoPaetEGfpyxEPo6453ltjt639GxT6ixYTwI6jQOzPK8PbMPgvfemM3vGG4wa2UA7z79hk3G0jo41zbDvqXDCKUqot2bpR7cOhQh+pruHM5dTjl5NTVBXF/w8RaGmRikL9fXQ3KTinHeogs7tobIKunZW09Idq1R6ZTvoVAEdKyCR1Npgg7ADhSU0hmPIjXajOsb1AmSqF4FKJZFShBUjb85TQkM2y6MPPcL3jvmaNiUxXSphwRoYdJqK6gZw7CFw8ahwvy1aDtfdEZQ9/0Q4YXh4aEU/kzxlxE2wHTj6EGhbGqR5bQl9C1q5jQ0Tv68kYIBtwsw58MybMPk9mPm5mmHI+4RFy3vMW5PXNKF9JRx/BFx0BgzZ293R4im0m0NHNE9E6G2VvtrOOGL5kCb4ozM7MpI/jgXf+jj8/M9gWAZlfYvHtx9etTxhJL5jCNEnmUga3tbNPDYRleQutOmYUtPWoccivki0Xl/Aq+AuFW2VQEcoIe1tMbPcKXPDtdS9KXLpgON4wtwT4prgzrhpIeGtCfdImmO7XjQSSisTlJQmaMpkngu1OZPJGD16dLtt9OiVV1dVyU1bS3dQQj5LcNJZnMDRoZBgKiSMWxLmURyFRmAhHNGybpphwNuTYPIMNRA/fBb27BSuR5+SiWOqOo2haUrvA4vTfiXBlqoCWjPhqoMPlXB9LeJIdIMOl4PMQSLBV4sWM+k/75LIfsbIQ3K0Lyc43nVzcbSSDiQsrVWndo0aDTvi7IbojIIQ4XVnTznwFITGRnVdv14pB96voV4FzGhXoRzP2lRC+07QvYP6ta2Czh2gugO0L4OSkhKcLv+DIIfIOe6ygkQ67nSwz3HUssf48f+kR/l/1bKHRB+OfqcKoaK4XfMnuPMxVx4K+MtP1Tnn3jswDPj9o/D+Z6pcSRruuQHSbtSyuG8kNA0fedyhLRw+KGhQiJF7fUv+fd7nHcGBlt/lZaGKpAXCUMsFi9fCsuWwYg3UNsOGWvVbrxzpqSyDilKoKIPSNHRqC8nKbqxcM4DVX8+iIv01g/bK0aMj/vbE7UHHrogjjgdGHuexXQjzRmnCqgaLSUvK+M/icj5ZVUxDzsDUFu09HLaE07s7nN7NpmeRcmbN2Q6za+CvC5NMW29h6vwKSBWZlJQn/FbkLb3oAlyT7nG6QTJlUFqZwDDUDJkn0H2vdM+pzQThOqhICY5nicdY5Po1T4Bn8i11O+c5aArSJQYVbVM4OflxqKlNTU1UVlaOOemk5scHDMjXVjcZJMqKzwBRn4aowC50JXIfV55IXsgf1a3BFTOShYB33oE1G+DLJfDBP6FXacDo/Oz6R6INcND+x+AIWXQF2i2JKALE1K/VEc1TCIc04K0Pyvh6WY6+vRvp1xMqiyk43bw5ODaVDoCVjdD/RBhzDrRvH86zq0DU2PNo8Ha+OI765XJKKWhuVrME3uzB2rXqWlsLtTUCx0lQVpKktMQil1nPwP5q5qBfN7j8e2Dm3P7VlCpvLDYC7YYH69F9u8HvxqkQr16eDXVw6a1Be4fvD9eODfKEiXNxEAgM/ZtxHHW0aqUWNz4yw5n3LYTW5OPoiBT3+jiuzJbgIDIutwWO7UHHdscRg1Tq6VIJ7WZb8OHqEiZ9XcFHq0r4qjaJLQW+N5fOeyM3toQLe9uc31uCMIKGSAeZc5A5G5mzcbI5frmgmPdqkn7ZkooElhWuXOiVi0jzhXaJSPVkyqCk3EKYAhxlaQcnq4nAc11zZPPWy1sS2ln3Pizo7ViBnstKt48lyaRBm05pHFuuDoWaSKfTAEtWrSIjBMlWzlYVBoHyVk9oaRIlMDIEU/ZoV73v4hi5iLkvJMzj8hbCEYdTgmFCIgFVZbAiDY1rgVJNIBVqJzGC3c0aXfvW83uVCiI4CHdRqEK9zpgyBXFIOGpQLQwK6Mh751uKYxPpQECHIpj+DAwfC6PPhjZtdj2hXqi9WgwVhFBjK+F+H+3bF6pNImUG9dEEZYUAWULI8ziOmaclPH47nD5OvYu5i+Efr8MZIwMlq6IULj0NHnhOlZnyIey/Jxx+QP449tsQhwx3X/o8GD6I0MsOMXhaGA9xdOgJ7n1cF28pjqjz1rbAsT3o2F44ovyiGcG6JouP15UydUU5n60pYVWzhSMFpsjHlfIihUbSow0WQnBke5vz+giElUBYpppukoBt42RthGHgCIEhJb/qXc9lCxIszaq1t1RKKQChcVwAZ3TtXOEP7vV1cn0yOu9nuALdEEgcHBuEkO40vCcBggq8bzpUiceo/fVEXfNSbXUc5R/gOJSHBLpt2xx99MgvVq2a1GAYTnILdwrEg0AFoCiKpMdN2etldAjTlC9ZvGf680LKSZwiodVl21BRAcuXQ/fOMHkW7N0d37KReh8TIxBbQhP5KKLT8ToOL7++nipj6vK1Ye/ZLohDCOjdtpj337qEgcPv4bzzs7ukUN+aEEe7lMFRqL7Q1RQj72oIGDUMbroMfn2fSn76DejQxp0ad+s4dijM/Qr+84FKuutpladfj3gcIQ9pv1Hq+bJVsK4OqtyT6HQlVm9e9L4lOvw8Hl6Xn3v8bjeOrYsjNCUu3E1HjsnyxhQfrivlwzVlfF5TTE1GiRFfIBGuLJXOj3TmPctLFjG3Qh1S0r9cCW1hGoiEiUiY4EhkBoQjkY6DsAUYBlII+pY5rGpMIlDbybw2RpGE2iC0iwgnejQI1xlOGMI9f9xBSvdYY/ebdFxvdrcncRy1fObF8Ch4DkBsavyTqKItgDyB/sc//mH5d787uMa2qSykmW8TMFCBZVJammfJex7u0dHXUtu8/BvLu5F0KaFLF1i2TB0y8dpbcMkooIn89UVNYIVmHiI4fDJEvE7iC0wR4JB6Jq9aEalH+1h9gbur4kh1p2u79kz79zgOO/5uzh7TRFXVt1uotxZCyqOnSDnwi0vhq6/hsQnq2T3PqEhxg/qrV5Jz4IozYeV6+MwNbfzrh+HWK6B7p7CiJnRGWEDizJ4Ph2pnqxfUqaU7VCIZYukgMsYIK5a7cbQSh2NhZ4qQOQuEg0g08rVtMLe+mC9qSphdU8ri+jT1tokBGIbUXq1WuQmpogJjQU+KZmhBmBcSsK/VpDi2QyNpoSxNmXNQfiYO0lY/XKG5MmcwXZb4MwBWItB8ola6iP8TabfOp1Q+IQBTKGc3z+HNQPUnBlI62Ebwvrytap6nu1/O3c4mJeAoYS/9NDddupV4DBLwnGZN0++kmrw+bWpqMgYO7Pba6NGrj04k5LZloBKl9tmo6fe4dXY9b0v/N4YnmrdQ+QLpM2YqZyc7Bz88F0YfEZNtY210/4fWp9w0EVMkTqGKrsd7+aPrgHlr07sSDkBWjYbigSAlC5bXccCIP3PRxVnKy3cLdR2qSuCHR4NhhwWCPs58Zi+BBJz+E3j+30EdV46GEQfhWxiGATfdDV8sCvLc8gPo36MwDv2Fe2mOA8cfppzO/BmZuDHiKX2RsVCIDn0sQv5Y22lwSMCEJhtW10KDe6pjwoLSYuU0aRlgCnwnrmYbmnLQ2AR19VDXAPV1sKIGahuVg19doxui18BfSja0nzBQuy5SCUraJClul0aUFLOkIc1J5YJ9ik3tXUmw3TVo26Y+63DjqrasdAKrOw9aEMbqNk4y5wvI+PpE3MX/Ywm4vkMdexVrnrpSKoGes5G5HG81pHm0sTJ04GYoHrpGVEo47JdoZj+rmSJs1tgmH9pp5sg00n2ZIkwcAImE4U67Q+36LIYpVGAYfeuau37ufR6e0HfcLWu6l7sdcXiLervbUc/3XHB2Q3GZRWW7JHZOzogT6FRUlPzhwgudazt2LKQnthIcAoHt/bROCbh45FoIWpuvpbo3JshjnkupnJbefVdtY2lsggn3Qrt0MKZCDCDKJDbhCvF16P/9Lowwm5CgbaENOz0OKaDLz/ECrEhg1pfrOPykuzn/gt1CXYc8ga4L1uA29N5sAeNuh3ueDOo59Ug457vhs9F//yhMn63uBXDZ6TBySPDu8pDEQHUHOGQ/NrrOH21rIToKFYrm2dE4pITpc2H4+doZ9FsZ2u1ZxuAL96C4KolVZCJtcGzHb4Q+vSyQ3Natjs5pgbBMhKnEnbJsbWTWRmZz6prJ8bu6tsxxUkH5Qu84KtzjBHskvWB9eYqCILYKoRzkUkLSy8pRIhzWOgaL7IRWt8irT8fZ3crxk7L1pAwjUNocCbat+iSbY0VOcBtdaBLayYfeRySVf5VhCuprcji2xPQCy5jBGruuEEpHWd62vhdd93rPSU14h4PJRLewOW5wLYmksn2K4pIE9U0NT+iHjALw61//GtuWvfv25fi2bWnpZEElsL096U3ur9n9eVPlOTeft2/TlwoRaGHA5H05hb4q/T5abmMCoFA599a0oLgYVq1SCU+8BBecjgolqpXNQ6vXE8ERmmp2/+v3fploe7R+DOkhIqieaNquhCPVH0oGucJeZWpflea44wYy7sfTGTTIwbJ2C3VQ++aH9CYIuxv9Ftxvbfa6I3j21Q20b9dEVQkcPwwqquC1yer5nIXwwSw44kAw3ehXRxwADU2BpT59NsxfoqLJ+YwqMpajszG19Wovf8rS2uN9J3peLb0QHdG8uPmilvROgUNAdXs4YD+Y9N/8gDhbCgee24uhF+9BuszCSpgqkImpLEQvlKjp7Y22BP2LHY6vzGIkEhgpdWKYkTADBi+9nwQpKTEcPjDLsCzP8nTDklrBz7K8Iz7DPx9/TLlwffnlwnUJf2+3ZYVxJxIGhmWwwbBYbSSotyzfu9x0w6haEdzCUNPT/ZJZflpRQzKVwEhZiJSFSFhKyTEM/72XIDnKXsfERBV4QtoV2KCm0L1h1NxgB2PD23VqS2wbbCewyu3I1cmpeyen3WtR5IJp+mDK3vYiZbrtrGibwpY2lSVVd+WxxGw2ZwweMnho+/YfvXPowY4hPKHtBVMgqGirwkY0/Z0Fx/x56oCW2Qthz57w2v2QjHgu5+HTrVTcey9/XLskIYejFi2DFmjaJXFIoOosKO6Pd9SA1PLMnLuKkafcw8WX2JTGHeTzLQPdQgeCsQaaVWxC9S1ImSPjODz37ASqy2YyfH+Y8zUMGa0OZQEVTe6GC2C/vkG/z10MN98TWOYlRXDL5dDNjRMQt4TkGzISelbD4L1jdOWWLOQ4OiJjULeGQ8s/OxkOCWBAfQ5eeQ8eeBL+/R6bDfucXM3g83qF7CIfZ0TL9fhNkZDcXrUOK2kpC91S0+6eNSozroWeySIzOZ51KphoVIYV8Lwb7ZmIeSBishasT1DgbyhzfH0inF4Ah5OT5BzJmGQthxZlMRIWwu0PHImTzSEzOdUPzTmcbA6RyfBooiMfJ8pClUopaajN+YrUupXN6kA2zzJ3rfOgXzxnODX1LrX19CAEbH4Y2MBSD66OHUQ1shKC9tVFNGey62sbagfnC/ScTcIyuw/cx5g9+kyn2Il6nG8MoqMszhqXBe71tCYKhxctVPfG8uZxlJj0uPKRuhYuhBkfw8dzYZ8+MPnvUO7OdehrhTpTi6a3iMLLW+B/1DIo4DC5a+IQxSpynSgqUAimzlrBcac9wLhxuW+Npa53geFa0CtXAM3wl6vAyEQEjmcpSpBF+0Gb0QjtjPWcEIx/+nn6dZzJXn3gvBth/BtB+d7VSmgnXLfZnK0c5GZ/GeQ5cC+47jx1H2vZumDbMOooZaVHfTD05Rk9PY8Owspjwbwxde2UOCRICxauhH+8Cg8+DYu+DnYttAR7HduZI67uh/S8qPPlaGx6e8Pm+tRakqbhT7nj6OvParr9dVHOK8k2mDqjihO6MTi8PshvUOuEbl5dMbgL42ipPoU/0+ywl2zk4lSNssotdz+5RNHvLTtkcziZHGSy/L/y3jQbZjC03XrrN+TIZhwVzKjZoWFDVls7V7Hco6LGc3YLOdLZEQs+FxHiroD37r1gU9KRVHVMk0obTk1D3cQ3bp52TCwrPOusM9t8+OFL08aOre+zTbautQRZVCSMOKFb6H9LoOeNfq1bIAiWL4eH/qEYXTIBb/0VDu2fL6Bir3pb9PYU+h+BEAPxSGmF8NwlcKT6I9udCzIHuGFPo5VKybTZKzj2tHv5wQ8k6fSuL9RDfgfutakJFi+GefPgyy8BGwb1g5HD4OiDoVc1lCVRkcziFFPv2vZ8SPcOpQmholxtaGjkiUfu5ryTapi/DL5zsToG1YPDD4ArRqtiQqip+ZCs9HYAACAASURBVP/9qzo7Hbe6U4+Cs75TeLwIAT26wOAB+Ep6aE09ovwWpCOqNMSU0f/vSji8jssKmP4F3P4wvDJJO0gnAmbCYP/Tu3HQ2T1Il1kBvqCqPIHmXSqxOcapYW/ZSMKxcSSskBYTkxXMtkoIDiiRrkUJEoFwiRXeTwRX/UOPkb8q3VdovON+VUJorVlKRzrSQU3PGW5bdLPSCNqHv5Tnjbd8pKELCEFTg01fu5Hvi3WYhqGiuUl8b3lyNk7Opi4ruaeiGxuMRGzfOrZk5ZJGtX3NgA1rMji29A9m8ZcztHfsebAHAj3s/e5b6L6Ad1xhrtbRpQzoTSQFbTunyeUcp66h9oSZt335aiwb/OEPr+T+++/5z803yxGbY5ltFkhUrPZo2Fgi/wtdvTxEyrWmbCEBn6euB3kkSu+470Hl/Q5w8Wi470YwckGZWAtdb6qu2UeYelR4+mnehxGhP07g7nI4qs5EFA/AO6ccvJ0WQaxtL+72xA+Xcvo5D3PFFfYuY6nrPga2rcbOl1/CF1/AqhXQpgwO2R+OGQ6HDVLx41MQRO8D35NaeglQcKwJUeHOeCSQUjvYxe1DIQSOEDzzzAQO6vVfenWBR16CH/06ECYCOH44nHuCujcMeO4teOr1wKIUAs47wY0BL/PfhRBw7HAoTeILwk2iI9qH5CsN/jjzvrFdHQcqbv37s+HGP8GUmcqA2Ci09jtogbcXpeB/r4UfngGm9BqpXePqEpH/entinjcC37lEBTECEEK8N3jw4JFT35vSIJEIieuxZiAQCCEcT0i+suQBo9GuTTrSTs5Y97pRk1uT7F9+cOWi+lldJE53W+Y6JYx0Z8tI7pmxG7qbIlFpGlapQJSDMOwsTqbZMcqkzcHZWvrYjaQdmxoMPkuUMDNVTs7FJXQ63BtvfK9f1cSGNVl/1mzdymY13W4ECoz3UqVLt+NvTdMEuhM4yuUJdtdi92fLJUgk7TqnMUyDpuamt8489Nxjf3rKz3Oxr9790O+/9louLivbDueje4500PrBuDGIG2AtDcjNqF+mwEjDG2/AZNe5qKQIxv8Fjj3AxSUDjS5vHS4q6GTwHcRZr/690EiRgWUQhVjhuzPjwIQuN4F3fKivFAnNSvem7pT1MHHmUk4750GuuEKSSOx4oa4rM0Ko3RGrVysre+5cqK+BPt3hqCEwcjgMHaAc20Q2zDhCoTZphR6q5fUeSAEiPQjanE6gKXuMRffAVbW89fa7VPEqg/qqGPB/fBx+9meleHgwsA9cM0ZtuwJ4/BWYMCk8Bg7ZV22FS2hKlpSwR3c4oF8g/DaJDv271fpmq/bVTozDgzXN6p08+oIKy7s1QQi1I+Gx26BXFWGlpDV0ePXolUb4rZSACX95Gq79na8QOkKIS44++uhH3njjDbY25OwsQggMoZwAbSdrgOE8Of831qRlT59jGFa7YrO0TAq6C9jfNBJdDSHaGJiG3va4aX4BfDmrVk29C8hmHWrXZPw1dK8/vL7x1tE9j3d96j1sqXtWuhu33QkqkEB5VZJUsUk2m2tYunbpEV/eu2Z6wkzEi7ZMJmP06bPHFSNGLL2zVy9n2zFJB2WVxwnbOMEbN8KJlIlLJ/K8JRxx+QvhSABF6gU1N8NDDynmDbBHV3jtQejdPsAT9xHo9UWFYEF9RBOaLabBroUj3R/Rdiy4a70CETmvOSgt3cJSCp56aSZXXPc8P/xhcMratgRPeHlx2WtqVOChuXPVT2bh0ANh5FA4dhj06+nGWvfiortjwWeMEOpQX/GL/JduB/p9Tj6zDTFWB2S78xGp3gESF7FnpXscWgoJhsm//vU6/dpPom8XF6cB4yfBxTeFPbWLUnDhKTDiQIX69ffgkQlhC7K8BH70PbVM4Liev6eOhIQRkNwqOrZHX+1iOBDqIKPzb4D/vB+Myc2B6g5w7y/gxEMALb5/q+kIsqg8QsuH9p0b8ObHcMaP1NkBAEKIl4uLi0fX19c3bD4FWxdsO4sQBkIYXDdzRB8pc5ckzPQ5lkh2CZRgl16ptgp+Nm2tf/paNuNQ4wn1SN1KoEtfqPtHqmpC3XeUc9fW1TS7wiiRFJdZFJclkA5sqK/76cd/mne7aSgnrljW51roxx9zjPHi8OGOtU2m3fUzzjcmWP2Gafm8e0v7CcLWPq2sNw5HrLoZSfdC2Gp5liyBxx9XB24AHLQPvHAXdClVZfUBAdrH4VWv9XXeFJ+MCEO9WTKcFtJFdgUcEqj6HrJ4b/TPQGo3whXk3tOM4/D3R//OkQfMY/ZCGPsz+NGPAkG7JeC11zTV/erV8NVXSmAvWSLo0qEthw7rxTGH92H4wT3o2rkMmbMRjuCR//s7Y0Z+TtoIv+9AMaGglRPCH+1PQSyDKIwjjejyMzdB5GVQwiK0foltGDz64AOcdcxiii3t3RkwawmcfyN88Fm4DV3awwUnwQkj1BTxhTfAvMXhPH27wfknwUmHKyt/0+jYHn21i+KQqs/vfAZ+djs0t3LPe1EKrrsEbrwQEnbL3/pG6Yjkj4IUMONLOOEydfodgGmac8rLy09Yt27dgta1eMeDbee4asZBexdbFb9MGqlRBqblMbKGuiyfz1iPEOp7yuUk61c15ytiukCXQZQ4XajbdnBuuq44gKSkPEG62MRxJHWN9X8/f8TF5//01Jt9H4PYV9DY2Mjo0af3XrHi1dknneQkN9nTvcVeARoISwOvJVHNVX9moSxis1CrCZ+ZHi2/KfhSQJJgf32h8hb5MelRA3vOHHjmGXWaFkCvavjnPbB3V1f4eULNE3Ca0Auttxdoo669x7ZPL7Yr4KAIOl0DQo/9i88l9Gl/xxC8/sbbyJp/c+xQMFwcz02BK2+FSy9rnVD32mlZ6j0tWaLWs+fNg9WrDfbbq5qjRu7JkcN6csDALlSUphE52ydKX/f06xSC8c+/yhH9pqijZ3XmJzXSdUYtvbIa2XqZCFOPU6xicRQPQlSdpmlTEs8RyVcu3XLB+q1k/qLFzJ3+CMcd6ujHr/sWl2PCU2/CVbfC6vXhPm1TDi/cAUP3hXueg5v+CPWN4TzdOsEbD6pjiFtFx/boq28CDgOmzYOzr1EhfqMssLwUrr0QrhqDf4rHZtHh1al9y3E0SgNeng5jrw1Z5F+n0+lT6uvrpxv6ucS7GEgpueHDEV0Exu8sIzHGEKbRUJfj03fX+PvUAdavypDLOqFygPJ21wV6xEku+vKkhIp2SbVW78C6ug2v/uWi+044ZtB3Hc86d7MWhq5dqb/sMoq3mqd7PfHR4vTWJFCCsiXBXQjqtPp0AeL9j6vPy+cJ8Wgeb1kgrlw09nwMfP01/P3v0OBOKFWUwl0/hzHfAeE6zwmtfaGpLsLCUf+ovDz+f60f4/Ls9DiS/aD9+QgZLAwGa4tKU80Bzz//ChViGkcfLDFicIx/By7/NVx1led8ooR7IqHewfz5SmAvWgSZRuXF/Z0RKuZ4v26QThiIqksg0QXPASfM6DwCw0zX53uuQB/RfwrtyjSaNfDzavVG+0vvg2gf633t92NcubbnItN98L0OWkOHlGBZPHD3HVx08krlENUCDtuEf06B62+Dr5apCIrf0QPPAM0C/vEa3PQnFcr0nb/DwK6Exn5BOrZHX30DcWBCQxYaM1Be5C5z2PG4NwVHRsDp18JrU2DwQLh1HBwxUB8/kDHh1w/C7x4M1vkNw5hVVVV1ypo1a+bxDYRrPjh4n6RR9LCRSw2ZOWmVH3QGXGt9ZbNaN4fAUnekCkDjeIe3EJJTnvAvKrVcq1zl3VBX88jJB5922e3f/0ueF0VBkek4Du3bG1Mvv5yhiUShXK0EbyuaBwaBxa1H1dsS0KfwIV+dhGDUelBIiEdBEljrXj0ApRsv633AdXVwzz3CaWiQBqi0Ew6HB26BTiXx7Y06nMXSo7WxUP6W6tkpcAC0ORPSA9z8gUe7IwT//eAjPnzvdU4cUUu166xTEIeAx9+Ey38JRUVQUay2eB19OBy0F3Rpo+JBiwJKqjCrkJ2uRZ2S4HZAdNz4mb10jSUaBn/9698YM3IuKYMwp4wolb5ntF6fB3qZKL6NpQtAlEKnaxHCxN8x0Fo6DMG//vkag3pMprptTN2F6Ih5ltfePA1oI3REceh5C+GIq2s3ji3GIRNqWesfr6jH+/SBmc+CmQEM+HQJnHMdfPy5X4MjhHi6qKjosrq6uppd2SJvDUgpuWbGwZZlGmfOn565e/0yu1Lve+lA3foMDbU5/3OTMvz6vKl1wxSUlCUwLYEjlbDP5XKZdXXrz1740IrnCoVwtWJTgVwuZ5hmxZz6+pqhFRWbeUiLJwhNoIzwwNqa4IWfjYOogG+tEI/WkXR/0QEfAU+A2zZ88gnOtGnWgpUrnd/06NFjfG3tvJqysjIrm82Oy2azv/zX25R2OQLSSfjJRXDdBVDqnc4T5cGCkIXcUlM9ckXkA402d6fBIVLIVF8QAhtYtORr3nlrIik5n6OGZjm4Mxw8KhDaLeKQMHYkjBkZ4AlZQZK8gEUhOor2UWUic56xU6CehqNZwHWNjSRyX5FUh1iFrR29vJemtStvVkMvI2KuUisbxZHaEylSgB1ZEtg4HUhJWVUZNXXQtW0LOOLoYCN0xNHTEh1xOLZ2X+3G0TIOCVkDTr8K/vW2erR3b3jnMVi1Hn78e3jm1cAh0jCM5YZh/OD4449/YcKECTQ0NPBNF+aAN6OXA55wHPnEMb/dt+f6moaXipMle4NaN0+XWKRLLJDgyMAJzq1A8TjtxLVc1sFxcOqbGv6xR8c9vv/hHV9kxMOFhVfBJ47jkE4X3XjOOZlfde0qd973Eecpr4NACfEE20Sh0AX4nDkwaZKYt2aNuLtPnz0feuutt+ratm1LKpU/L19fX09lZWUn4E/ZbPYMXOWqqhxuuBSuPBOKDUVPniDT6RRBG/xpbS1d/x8nwHQGsCNwSGD+UoP3PjHYb68cfbq6EcWccJntRkeHH0KiPcE+vYgEDDD7lXn7uSXw77cm0b303+xZHbRnYxauXmWhq97uuLXvvPHf7vuQ6hl0sk9s6+h465136ZJ4lb26F8CxPejYjWOH45AS6hw44nyYOUdVOagfDB0Mf31ai1UgRANw11577fXLzz77rKHlQ0C+PSClZMDV3dqYwrwjnSg+yzQMy1OS1DUICaum4oP/2Wy2rjHTdFvSSvx+1r0LmlrTpwVzNDU1Gb179z7uoIOWvTRo0DY+RnVLQF+X92AbCnF9oH/xBbz9tli4apV5f8+ePe+aNOmdug4dOmCaeWfetAiLFy+mV69eewN35HK5o730VBJ+ciFccw60SRNSVnTBVWiPeBRaNfUdk/9bg8PqCB2vBNwALNLb2qU+TK8CX7FwwfswV2/YwGvP3cXY4zMhXxHdsShUxm2bl+A/jikTyq89k3H5DTXdLoXlVRfgbQUdWBZPPzmeo/afSbuSHUjHbhw7HMeHi+CQ7xX0ns9ZlvVEr169rv/ss8+WW5b1rbDENwekI7n6kcupqhalf3/xxVFJo+h00xD7IkU7KWUxiDpHOiubmjPvN2can92n5wETXv3V686mKkYby73PkCHMPOEEts3WtS0Fb4uaR4U3nb4NQAglwKdONZcvWiTu7du3zz2ffTZrNbBVB3Eul6OsrKxnJpP5k23bJ6ItixxzCPxyHAztj5rYETEvUPtQY1+uCOfLS4t+2N8mHKUjoOIoN9EzWYJ7X8BLcP3F1X54KclIyf/ddwcXnLyOpMgrGiKkkDOUx0ijZWOaEpvm90XxAciqUar6TaBDoAR+Tjo8cv8fuPS0uvC+5O1Jx24cOwwHABbcfC/87wPhqoQQTaZpPtK5c+efL1q0aO1uS3znghbfRklJSYf27ev/e8kldM9uozN9Nxu8qfZtYIlLqfYfz58PU6ea65csSd5XWlp69/LlK5aofYbbZxA7jkN1dXXl6tWrf5zL5X4opaz0nrUphyvOhivHQMcywrMUcYKN8L3/8bppLn8PlVMMPvzxS/lNxWFC+0sh0SlcsS/otGStGECz4/DIfffx/ZOXk4oIc13piiUjUq9Og47DLxN5kIdDgmh7HjLdJ9pVG6XDq+udqTMot19gv17h/t2udOzGsUNwSAmzV8DI82H5Gq8OsTKZTP48lUr9be3atU2WVdD1ajfsYGhRMk2dOtk6/vijpl17beaAnBfl6hsI7iwjixbBxIk0LFggHkom03fU19cv2J4CvOU2So477jjrjTfeGC6E+JVt24finS8K9O4KF39PHaRRniRvyldG6oudhta5AhHBlP84SPgm4DCqoNOPEdKOGP0qt8/43MLSfbq2rpZn/3YH3x+VIeGh9xin3hbtKjV6dK4chyNu5LWIg2LofJ07c+AeqKHFxY/Fod3XN2d45tHfc/7JWQy5A+nYjWO74pBAo4Tv/QT+NclPziUSiauy2ew9MU3aDTshtCipbNs22rSpfObKK2tHJRLbIab7dgCPqZumOjFt4kTRsHCh+Q8hUr+7/fbb5l166WXOpq6Bb29obm4mkUjQv3//4mXLlp1YV1f3/4D+UkpfwHdsA2NOgqvPg65tUHveydfOfX6QJ+XioaCGv5H8Oz2O0sOh4hiE7wIfbYD0tQcJYJpMmPAKHdJTGDoA5cQXYbL+NL9OQIzCEQLd7NLKhKJztYSjeBBUebHb9Qz5dOgLrVJCRkoeue8eLjp5JQmhCYAdQccm4JDA/JVwx9/hd9dowRt3hvexs+MAcibccCf8+VHQgohNAM5GhQHbDbsItCiim5qaaNeu7Y1nn91wa5cuO7Fj3EZAShVcZNUqmDxZNMydaz5XXFx127hx4z694YYbnMQWb7TfseA4DrlcjqFDh6Y//vjjo4Gf5nK5oWgeBcmECgRx6ffg1BFQahE+2Y7INx/h+/oUHmzG/zCqnQ+H690ePBdahYqLStRAmvnRJ3z63+c4+7hc4OAQw3yjU6O6FpGnpHhlwlUUtr7icDhAuwsh3R0QuKvj7vY9EaLDP20N9d8WgofuvZMxx61SR7LuSDpai0MCFpxzIzzxCj6cfiw88D9QlSqAe2ejYwfgkFIF/Ln0V/D4hODUPMMwPiwqKjpmzZo1q9PpNLth14LWiOgxp5zC44MGbfO2bDXwBPiaNTBlimj47DP5MqR/d9BBB304ceLE3Dd9DSiTyWBZFldffbV133337Qlcls1mzwQ66FZ8aTEMPwAuOh2OHAJVafztYh7DCAlCETAFwBeWEBaUupGg59cHW6i+HY3D7Ijo8AMQBl70ZPU88Ha3hWDSO++xfP5rnH60TVLEIIy0hUgWvw0uXTpTjkvTaWgVDlGO7HQVQiTc+hTCMA7p4hBu/ZIVa9fx8vj7ueCURhVwJ9o/25uOTcQhgZosnHM9vPROME76doe/3QYH9wF94mVnpWN74JDA3FVw9o9hxqxQdW8lk8nvNTc3r94Zlhh3w+ZBi2/OcRzatWvbv1+/dZ8ddxyGjI6onQQ8Ab5+PUyZQtOnn1qvNzTkbj3ssOEzJk16JwfsFOvgOxIcx8G2baqrq5O2bY+or6+/qLm5+SigndRebNKC/r3hvFPh+MOgbxcwvZCEkG/tulwiav3GWsIaQ40KVj1W+3bFAcjSo6DiSJDSTVcVS8Ngztz5THr9JQ4/cBV7dccXDCFLyr2PjrBQnG49XVdS/MT8tE3CIUEUHwBVp+ItC0QVIQhvw3OE4Pnn/ske7f/L/n1cXDuaji3AIaWaPv7VQ/D7h6DZ3SNtGnDxGfDrcdA2HS6/M9KxtXEgoM6GOx6HW++HpuDwqlwymbwvk8n8LJfL1X3TDZ1vA7Qo5TKZDBdddGH6vfeeqD3nnG106tpmgCfAa2pg6lSRmTFDTEyny3+5evXqdw3D2L0XchPAcRyklFRXVw9fvXr196WU37Ftuwuaw50QYJlw7KFwynfgyIOgR0dX0Dth5qiDJotDFkPcfVw5CDOpbYLDMZAdfwCJjmAYLF+1iimT3mPtsukcc4hNz86EYmDH1albSIWaGqUj73+0zk3FIQWy3bmI1B5+jvw61YyDIwSTp05nxdx/ctpIR8VrFzsJHVsJBwbMWgoX3QzTPg6emQaMPQn+9yroUoE/fndWOjYHB6gCtTl45EX4+R0qhr4GC0tLS8+vq6ubxG74RsFGzdY77viz9cADt3x2xhlr99xRRq4nwOvrYdo0nOnTxSTHSf/u5Zdfen3YsOFOMrmNNp9/C6G5uRnLsnAch169enVYtWrViVLK0ZlMZrgQotibsveEqGXCQQPguCNgxGAY3B/SKRB+BKl8Aa1L4DzrI8LEQtOJLnjFoxbOJuOQsKHR4JnXLfbaI8PAPdVBFp4Aj+L08IQQaplEDHf2+WuEKxeia/NxJBFd/kc13k30rHSveFZKXnnpdWTdVE483AkOXtmp6Ni6OKQEEvDWDLj+dvhgVvj54H3g+kvghGGQjPhD7kx0bAyHlCAT8PECtXf8udfBdvQ6xMpUKnX9/vvv/7epU6ducsCS3bBrwEbf6hNPPMEPfnDBM5ddljmjuHh7NCkQ4M3N8P77MH26+V5dnbjtrLO+N+Fvf3sst9sC3/7gedYDdO3atUtdXd3h9fX1p0opj3Ycp41+oAqogVWcVo54hw2BEQfCQXtDaQmIZpCOeseFQBe6oSsxApqwld4ay2ZTcWwMQmUiFu/WgoI4AIoGQRvPu11lkBIcw2D69A+Z+d5rHDesjp4dIc6Rf6egYzvgwIRPF8HP/gSvTlYhmz0wDDh4IFw8Gk4ZAW1KgWzhdu1QOgzIGPDGe/DIc/DyxPxoboZhvJ9IJH7e2Nj4upRykyNY7oZdD1o79G77wQ+4tkOHbbN1zfsIHAemTYMZM8xPa2sTv+nfv98LM2bMbICtG41tN2w98BzwpJQMHz48/f777/dPJBIjHMf5bjabHYEb6U53xgM19dm9E+zVF0YcBIP3h6F7QTIFNKOc84ywoIZ4YVvwedRCcq9xQ7hQHbEzA9H/2kxAnnLRQr44YjYLhwTaXgDpXkgrwby583j7rXeoTC3giINs2rtTyx6unZaOHYAjZ8LED+G398N/3kfzN1CQsGBgXzh2OIw8FI7Y31VEmxXPCs0mbU06ZDC7IBIwZyG89DZMeAs+nA21kc1krkI9J5FI3FZSUjJ+7dq13/jTzXZDPmxUPOdyOaNTp45nHnXU2sf79986h7ToFtEHH+DMnJlcsHq1+NUee/R+4dNPP6uB3QL8mwDNzc24Pg3GqaeeasyePbv7woUL9wWOlVKOsG27p5Qy6TKjYM0exeAqS6G6gxL6QwfCQfvCwN5QUgZJG6QdGcAidMnf3kNYqMcKbs3CiioAUYYdKkf+x9Sa8pBf36biaMjC2/812LO3Q9f26nCbqG/DluLYHnTsMBxSe27B0hp4fjLcdT/MXURBSFrQpQN07Qx776FOIOteDb27QccKKE2BkUKdNqmDDZkGqGmCNbWwdAXMXQhzvlS/pctg6crg4BMd3G8lZxjG18ATFRUVj51wwglfPProoznDML71zr/fdtjo289kMqTT6aGHHso7xxyzeY5xngC3bfj0U5wpU8TCNWuM29Lp9BPr16+vAdjV94Lvhk2DTCaDYRhks1ksyzJuvPFG6w9/+EObTp067b127drh2Wz2ECnl/kC5lDLtTueHtDwhwBBQVgyV5bB3H9i3L+y1FwzuCx3aqWn/lMv1hSTM8bV6ZJxUiCoIWnLsZyBj6gpXVbCe3Ti2Eo4YiS6F+jU50NAIi5fD9Dkw5wuYMQcWLIL1tVDfqIrH8DhHCIFpmg22ba+XUn4M9Lcsq51t26VxY3MLwHEFc4PjOCsty3o3mUxOLS4untS2bdsFH330UVMymXQcx9k9hb4b8mCjAr2pqYkxY87q/dVXr04bNaqpnR092SwG9Cn0zz8XvP02C1avNu7s2rXr/7388ivr+/fvv9sC3w0bhUwmg2maSCkNwzCc8847z3rzzTdLHcfpumLFiqElJSV7NTc3HyCE6JnNZtsIIcoBJzq97wVJkagp1KIUlJfCHt2gfw+o7gb9ekLvztCuCkrLoDKplgWkqwQIJ9y2OO9lf/3UFVJ5a/IRkzIkywqZpN9CHH49fmcrgSyEus/kYH0G6mtg+TqYv0RZuIsWw+eLYOESqG+CxiZ1Rrf+/jVwhBD/v717j43iuOMA/p3Z3fP6gLN9Plln80jstOYweQEJiqhrh0BIIhqlQijKgz+SiqIUNSJO1VZR1UoR6j+RqioKURT+KKIRjUhKhCBI1JUiASaJmoaHX+FhzsgHtuN7+Hy27867szP9Y2/D1YTg8Izh95FWd76zz+PH7W9n5je/4XD/X9K6rqdM0+wRQhzJ5/MdkUjkv7lcbmj16tVjb7/9trRtmzPGpOM48Aqu2LYNKSUMw+Ccc/niiy/qAMwPPvhAD4fD5qJFi2b29vbOPHr06P9l7YbDYbFkyZLU4cOHxxhjYuXKlSIUCuW3bNkilFLctm2paRpoGRn5vqYU0Dds+CXft2/HVy0tsl6Iiz+n+E166hRw6BDvSySMd2tr67bs3bsnU1tbR1eT5LqwLAuMMei6Dtu2wRjjAwMDWLduHW9ra+ONjY13fvHFF3ebplk3MjKyUErZ4PP5qoQQQQAzpVvr8pJXl8VBhxfm9DkHKsvcC4Jw0L0ICFUD4SpgbhAIVwD+GcCsGcAMP2DqgMndcsOSXRgp+OYWk3qFlwiGXqCcnMD37V3g7+FyX/8dZ4mL1j0Xgi8KB5OALYEJ6Q4hj2aB0XEgOwacTwHnUsDQ10B8EEik3Q1Bzpxze8zePLIsmv+/zAih17vNaJo2ZFnWoM/n6zRN86RhGD319fXtn3/++dDGjRvl5s2bZSAQgJRSGoYBIQSUUqAVM2Q6m9KEi1IKpaXsX6++ipWTa7r3fHJ11wAABvlJREFU9ACHDmEoFtO2ahp/K5fLDRWGp65Xmwm5JizL4pqmQdM0mc/nwRjjvb29aGtrC2zcuHGeZVl1hmGEysvLa8fHx+ts267SdT2Yy+WCAMK4zGa93iAU54XpAe5OEXwzlM8ufXDujhCUmkCJDygx3PK9jF1400oASrplO2WhByoLH3uPK1XIe2fu63EOcK3o/uSDuc9zBjCv3YX7Fz3mPc4vbnvxrXd4P/Pk5zm//H1Nc49EAjh5ksn2dnZKCO1jIcR2y7I6DcOAlJILIWgZK7ltTWlMRwjBKyur2kdH4yvHxhTa2niqp0f9LRCY9dbwcLrP25FMSoeGici04fP5vhlILwyjeh+nC0e7bduIx+MA3AvbwtxlU2kpf23xYrlq2TLwmTPdQEr5SFdPKTdw2zYQjQIdHTx79qx+cHzc2TF37pz90Whv4sIOiO6fy8u/4ZzL73hpQm55UzoFWZaFmpqae0dHR7PJZLLHNE0K3OS2IKVEIBD4kW3n/zB/vvN0U5PyV1W5CZ4UwK+OUoBhAKkU0NXF0NXFzw0P+z4C2I6XX/71sc2b/2xpmkb5NoRMEZ2SCCmwbRuxWB8ikQXlSqnfhsNi/aOPqqo77qAe+JXy5ry9mByNMhw7psT5875P02m5vbS0tHX//v39S5culRS8Cbk6dIoity3HcWBZFurr6/2JRPy5QMD6fWOjrGtoANe0okxsMiXFwXtsDOjoYKKrC4l02rfbNGdtB1j7wMBAlvZbIOT6oNMVuW0UMtrx4IMPmF1d3Y/MmuW8ft994v6lS5Xu8934AF6csV2cNOZldo+PA36/O6f8Q1K8y52UwLlzDMeOqWwsZh5Lp+0dc+fO27Nw4YL+3bv3SqUUTc8RcoNQQCe3NKUUWlpe4du2bXvAccb+2NCgVjU3K9+1TmSbvJWrdyuluydBNguk05DJJOfxOLLZrJGOxax0Pq/OlpT4O3M5qzcSifQMDw9Hh4YGXlu+XP5i2TLwmz3U713kMAaMjgJffcVkZyfvTyS0/bpe+l4gEPjPgQMH8rW1tbBtm5Z9EXITUUAntxSvGE0gEKgXIr/prruc9cuXwxcOA0JMLTgW95y9ZVPua7uBOZNhcnQUfHAQSCZVJpXS+oeHWYJzX1QpdGSz2b6KiorOd99952wsdj6/atUq3HPPPVJKCSGEV8wESimYpullzodmzNB2PPmkWLVgQWHt9Q3mbYrkOEB/P3D8OPJdXfzIxAQ+rKu76x9bt25NNDc3ywtZ5oSQHxJ6V5JpzQuMfr8/ZFnWhjlzVEtTkwrNn+8GcE/xumYhgIkJhpERYGREIZWCTCS4zGR4IpPRzg0OTgxqmtZZXl5xxrKssw8/3NSTy+X7Wlv/LR3H4UopqZTiUkrpVQ27UtXV1fPy+YF9Tz+Nu6urr/KXMUXeBYumub3ukyeBEyf0od5e9nF5ednOxx577JPt2/8uClXQbkyjCCFXjQI6mXaUUlizZo1vz54968rL8Zv775eRefMYHxlRMpkEHxpSYmyMRW17Rl8yme8LBoMnk8nUCSFEf3Nz09k33ngjtXjxEjiOI0tKSiClhOM4N3q4+KGaGux65hnUBALX75t4Q+acA7EY0NHB5Jkz/Eg6zXf6/aW7U6nhqFJKSilpuJyQaY4COpl2Wlpa0NraemckEkns2rVrTErJbduGYRiysJnQzW7it0omE6isDK2pr8e2tWsRMIxrP4ev60A+D3R3Ax0dLDswoO/O5+X7Tz31s4MffvhRhpLUCLl1UUAn5DqybRsLFzbwWCz2u3vvzb/++ONuudgrDeTF8/uaBnz9NXD0KBOnT6ue8fHS9wC2+803/3pq/foNwnGociMhtxMK6IRcB0op1NTU+OLxgXdWrMALy5aBf9+th4vXdU9MAKdPMxw/zlLxuPHJ+LjcUVMz+2A0Gk1RkhohBKCATsg1F4lEQoODPTufeEI8EolMbXlc8Y6FySTQ3s6s7m5ER0e190tK/P9sbPxJz969H1tSSkgpUVJScmN+GELItEEBnZBroDCHH6mowK5nn0VDVdWlC9V4y8NyOaCvj+HLL1VqcND8NJOZ2FZf/+PWTZs2ZV966Vfuvq5UUY0QMkUU0Am5Cp999hkaG3/6cHW12Pncc6jy+y88V1yUJR4HuruZ7OjgpzIZ/aOyssD7+/bt6160aLGkeW5CyLVAAZ2QKyCEQGVl5QuzZ2feWrtWzfT27LYsIBplsr1d5aNRfpAx872ysrL958/3pwoFZG520wkhhJDbm1IKR44cAef4U2Mj7FdegVqxAs7s2bxX1/lfqqurH3r++Wd1IQS3LOtmN5cQQgghkwkhEAqFfq7r+oFgMPhCMBicc+LECUgpMTExcbObRwgh+B+yarAh5aYb0gAAAABJRU5ErkJggg==\n", "text/plain": "" }, + "execution_count": 1, "metadata": {}, - "execution_count": 1 + "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", + "\n", "Image(\"fun-fish.png\")" ] }, @@ -42,25 +43,25 @@ ] } ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.1" - } + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, "nbformat": 4, "nbformat_minor": 4 } diff --git a/tests/notebooks/metadata_image.ipynb b/tests/notebooks/metadata_image.ipynb index fbcdbfd0..d54ffe82 100644 --- a/tests/notebooks/metadata_image.ipynb +++ b/tests/notebooks/metadata_image.ipynb @@ -21,40 +21,41 @@ }, "outputs": [ { - "output_type": "execute_result", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAFeCAYAAAEEVt2UAAAgAElEQVR4nOydd5wV1dnHv2fuvdsbyy5t6YIVO9jBV8WyoMYkGI3GxBb1jSVGE7uwYC8xsb0asWtM1FiIYAVBwUoRK0gRcNml7C67bLl7y8x53j/mzty5ZSmyC4vuj89y75055Snnec5zzpw5B7rQOaCrKvyyaKRYyysk/OZQAWh8KF86qj6jowr+IVBW8BDRJrrmrebME5YqADF1h9XXuZjvf+ccTI0qPSVfdNRoerJExLQ6rL5OxTzYmtYrn5DWVwZbYlrknDrD11F1dTrmfQfOVWJqxLSQYOvNGX0P77h23xnxXTgsi5c2d5ijc9DpNA/QY06U3P4ZTP5v5bAdTct2hdYyeMO3rbLs0GXyqf/TDtV+p9P8xicbli/tq/nvlAKsDvT00AmZD/QPUJD7PRbw6pqB/K6yssMk4O+ogn8ItNYlX4VCBBCO6bGaoP3PeKqD6utUmq+7pa4mkLeKOXU9eXN9X3Tsn+iOMX3VIaX+QFRGItKUsQyN5v2X8llyaIAa06RWa94aOLDdae00zIuIMau52aoxTfYsqaTFanWaPa20Mo5x7U5rp7H5zxpaXuvZrZJewPSa3tRaFtkvbmDYpd/Zjd/SGL72tdJOo/n5LS1Sa1n0K1hNmDBBWnm2sj812qLGsqi1LL4eOrRd6e00zC9ikaxsLKPGNOlx0TryXqhLaPZBgpzHee1Kb7u2o4EDqS8q8n1mmuZW5dPaHrsMKFhNr7818+WDJby2Zheer9yTSHflev1oa7Q9ye0YzQcCgTuuvz56lQg88wyhxYsj2RkZGW2mXxgMRoNa+4vyvkejbX2rVp6s3IVa06TWsthoWSjgm113bTeaO6zZh0Ih+vTpM+SyyzYs9V6fNo3QnDnh7MzMTPfaN3wjdU39qbVMakyTC0pK0FqjlE2eiGAYBn/jb/yJP2FZlnsPwDCMH8TLNjOfmemfcu215sk/NP/HH6PvOrza8N+4EYC1M9dy5JFH2sR5mHdQV1dH9+7dE8pQSlFVVUXfvn13nA8Lh8NceSVSUWH/TZqEnHIKMvpw5NPnEOszRM9FZC4i8+y/9x9FPg8G5d3GRlFKiYiI1lpERM466yxRSonW2r12yy23iNZa3njjDenXr597XUSkrKxsq0JBZZomfv+2d/dZWVn/8qnQ6c2zQUjTpByyVOyr2Gne/wxuetzH1W/Xc0xenp1EKVfrb7/9NkopRo8ejYgk3AN48803Of74493flmWpLeXHyMrKvqmiAjnkENW6tQz3798/qzAPMecirXMSGReJ8/vxohjTyuXfloeCEXvBxeMs7jy2wGXMaebTpk0jGo0SiURcodifUDMHioqKSO5Z/H5/05bSb8ycOX0iwAknSJbTXHNycn61qUwiwov3Iitf/r61fiYYZTcz+dUcJLnRxQRwyDGTkvLH7+ccDj//MxTkJ9r2ddddl1Bf4ieUZEH99AbG9DwRny8+x6mUytlS5pXWmkmTjDZt5YYbzORmJHpuUiFlk2yNV493VS9ia0gEKJvE5Eef4vfly+0MheWQdyiqejwvTrcvjTsGODA+V+ltAd7fSin+foPi8p/HylZ2S5o2D8ZcoMnKyjoqEonMaouf/meWff39P6v2AjBi3UR6NMHNN/ulogI57zysbvmIzLOZsgmKMYjgNnJP0xZA9bwCBQwYMNhNr/IOAWDym566DLt7TLZp72/n8/JTPFXFqh07HJhvsCnG97tsd8nNydlz9/OGSKzKVIbxNEtiFvTYYxgbZsZt2dVqzHEp15N5IICvEIDj9nzHvW87POGCG+DVGKkvvg0Zi+It1tFyMm66NE1v5qEjOj+FCgCef2yo9CjLpqRPNspQ7H7BLr9JZT4faI4z7UDPizezGO2uExPgsYdvjctMYs5NASi+X7suyeHZTSDghz4lzjXwCchC5QY4IpLw9+xdihvOxu0x3DocOpRdhmEYyx26h10xqMd3b+wp/452o7RvNt17ZpJfFCC/IPOZuDFHgRCJ/VSs7RotMck6jOM0d1Aqj1nTKjj3JHGvTZoWF4JhjGfGDDBa4eX7ocgHSuCbT8az8SOYOiNelwgoC9RnPkIKsg8EQ8F9VysuHif85ihP/cmC9lwbUN578F775su6sEH3PllcslhR0idAca8sDJ8ia32Ydd+3esbzgdgfQKOnJMCy4hW5lcYEgG7mf/aPERETUE31YZT2+dA1jaOPtvPc59r4eLrlwp797PR3PQ1/PiteHwJZgJ5r06Ecx6cSktiXFKxszeIPn+wJhsIwYK/jFFNGKX7xAWTl+TEMyMzx4fcbGIbCiPmeeLNvjP01JVYSa6Fx7ThEOE2P+DVH8w9UnMAWQcE/XoVLT7d/vhDz/OKpT3nqFUANB2M4/G7Z4Zy9/Ai0MZxJ60bQe3AufQbn0nuQ/fmHqhx6D87ln8MiPJFXibagpipIy8YokbBGGbGZHBFQBR6iHKen4p9n/BX+9WePADySd8rw/v7wvaEcdmTCmAaAe+6Ghlmxov19eOeli1B9xgPw/O0uzyn1O1/1PPuLMeIDAJ7GbiFuDzQ8XoTWlnH1JydEjb7djaKw5pu59YRbLZo3Rinukan9AD4faKeLbQRysMXiNH8Ddt8dckZCy+w4geIw7QjAJVJ4886lTJoGCz6DV/5vEoYSpHoCE070RH89LoQYQ6dfD7vt5gmAvFr3SFs5rW4e9B8Lq6bGFVIwMs44gGH4NOADuHfx+f6vrLpo3ZpWwq0WXzz4rU8BnHmmsoYOlUTPH4kJwHAKgvHjUd26dcuoe7c+jBknxonVvQQmXCubZFNUPT4e1yuQPvZ1qR4fk1768rwtILklICAG+A5MZLwtHHjFnjLvr18rpZTN2gsvGLNSUmXYjCsFFRWo8ePtguvr6yPG/ihjBNqh0TVRjy9wSYndnPzoUwn8pAjMw6Ty5PUGVO69pDx/eOTCwJYwDjD/nm+UEz8YAHfffdevkxM5TE+Y0GahPmMEKuuwjCuPudhDpPPnECrw8j8r+P2Y5V5ZxOoQpr5YEReeEwTF8hrDYzc8QUyCx1fw+MJHff/4xz+2bt7Mqc+uTJg40a5aKdgEw5tESUnJibW1ta8F50KWt2k6DHgElOAgnYDJe0/FvxsjoPZDKA7YaS+4HR5/1WjWWuf/EDpTUFGRPizcFoTDYbKyss5QSgkgg8uQB8cjoU+R0BdI6yfI2lnIF/9F/nUPcsQBiGHYf8AarXWHPk77QRreWkyYgKQJ09OiomL70AQdzPzEiYjWMGeOMmfMkKGRSGRlIBBwTQzsZv3uu4dnzp79QaQjadnhyM7OdidMDMO4f0fTs92Qk5Mz5qSTVMcutfgxQEQ61bqBDodec7cARN7fXwCaHu9midUxbqBTSVZl9Meq/Lsh0dgEsiVG/S3d/tERdXUqxkWiSPVTFmZsZtbSFI9vubAj6upUjBslZyoxLcQ0aX62Z4cuMu500FrTOmWgND1Z0u7RZaeGiPiro1FZGFi4xU9Yfgg6VVMHWH/t+hmF70cINwzN29G0bFesi0Zl4/MbZWHeQtHWT+QtChHxg/DvY6I09oM5vjkdZuedivEl64OfmWfXkLnIZOas3rxYPaTD6tpuQ8ItQU00KjOam9mzW6W7qmpj5sYDTwmfsqC96+o0GhcRuKkBS4SZNb354p5uaDT+sH9+R9TXaVZTbqwOH7L60yb2Lw4RJsyLa3oz91e7UWNZMKD96+s0TX3tn9bKvIpsak2TvbuvdJt6kCBNRtPUs/RZJ7VnfZ2mqdffW8/gwiospZi+vh9TqgcjaATB0MaJ7V1fp2nqtY39KM37noOLqwkSZO7Nufyzci97ybhlQTs7+E7R1L9WX7daB2VmLX2rhBrTYv+SZSlrZpsym6ovDl9c1l51tltTtyyLG29EjjrqqK0v8+ScrMAnUfYoqsZCeHPdQF6u3o0XvtwTSwkajRE2+rQXrdABGrcsi5tv9okI+P1wxx35ZU1NTdWbyrOwpUVqtKZv/mpChAgS5KNbC/n0NwXuellTpPOvlQ2FQmRmZiZMKYP9cPKhh3rvtmbNmiXOtX332pd/ff0vqWzsS61l0e/kNUw99EnuuOMOwO7fP/vsM14+8GVKKf34zj53HlJVVeWWWV5eTs+ePX1PPfXUVgX228z4DTcg27LYsvc+LzHqF3siCKOKR1NTV+UuHHKWjTnfDcPANE0Mw0hZVubz+bSIbPELwu2q8ezsrFuuuirkrvKLRGDGOzD6ALjyHOgWeyYG9rO0SBQW7xOkVTT+M9ZzwKsDU1ZEv/LKK5xyyiluHV999RXDhg0jNzeXhoYGAoGAK6h7771XXX755e3J0qYRk7zUzI4v+tWeBcAJf3Pj90MfIX84FVnENwIkLPSNiUimTZsmv/jFL9x7V111lXvvgQcekJqaGjdPr169tng0pyoqbLo/+uiYwNtvz9jaR7Gi59uPft0VkU7BsVVMqudVsO7ONgQGyyrh5Znwl79b7oJArTU+n49p06a5acvLy+1ylYL5CjUcpk6dilKK8vJyrzlsUStWyU9OLQtuummzJpC4PLTPRKieECuRxBUOZRNBGaiqG93FAk9Oy+DssRF3JVXYgsyDEpeFKqVcxh2mnXsyP07ekJ/BskrtzbdFjKf0uT6f/Ri5ogIpKzNWee/17dsXPT+JaWVX+PwMX+KqBneloL3Ey7u87JwLbrDzDQffQfDfmXDmmWfGGRNBa015eXkK01rr+IIEYNmrwHwDn89HOBzeJLN7/n733Xc/d0gegJGyetmD3/9O9/esjj6g8tXV4u2glAJlFCLAmNOvSRSGh1jvKh9XH70nMvFC8Pvs9MN6/CuBweQ/Bz6fL77wIGZeSoGeK2RlZbXJyz4X7yr+DFkEqqns130uN1K6okbP91D8a8t7wfnexT2OVqXXlSDCG/++Pb5Q0OO5JbZMOLEB2gl2GwgPXm2Xdd1vaJNwp9t68sknkXnx8t2iYqutZF7iUlCX9rcHfl1alkNp32zyugXIy879m/Hhh0kmUYC9Js4RQCNUVODarMQU6Kx/VTGuThvtLJkEKZvkpkMUas0Ed7WkFJwIKB5/4hkUsG5DvNzQh5GU9a+2ABWGYXD2sHPcxYfOp7MG1llOYn6iB3vZOey6YRLIzN2zpE8WpX2yKSzJcBRnPFVRoX/rLvj1LnOKSfaUQ2AfT3EJ/qvPJHu9ewwTnwRKPNJugaeegL/dAKePBKP3RDtn1XgGnATfr4UXbreJPnV0vO6Rv4cPPoP+/bqx8uX6mAASFe1dl+u9PuKfe4BSlPTJwjDAMBR9h+bh9xtULm1i1eIm1Icfzs55++2RLQm5HW3HCm2pgzsviRWcvCYtpi3HqQnxxb+bwoQT7TcdJl0EA3rbGU89NmkJnEcJ3kVEyd9P/WAfgpYfZSiUglcODCOtUc6q6mavd/UpCoozyMg0WPVtE6sWNWEccsjhQaLYzdv5c9ZsxSr4/FsvNSRQ59DmrIEDWPLVfptlXAQeuHEwH38Jp11LwmooN03smiNs/0F2T2CMgLOXH44V3Y9I7RAK+hXSZ3AufQbl0mdwHpds7M4fo70pLMnkmSEtFHbPYGNdmA3rw4SCFtGItutJ6Mu9D2482u2RC//7s8RlXd41r27wUnopBEqY9MiEFGYjEbj+FMgxYmn7TCJaNZ4p0+HpafDfv6U25wRBxOrpPxYq13muxxyeKOAArQzDQET404KDR/nMovcCBnz5QR2WKWysi1C/Lpw0A+Ms9HUcnAJygWZY74N3v4aj9iKhWXvXrgGoQAmWMnjtBTjpV1D9NTz894mgFKp6vOvkiBUf6DORU4+dwC1P2prU8zxxQFIzd/D9tFhLUKB03NH1OKFk39paOzSJdYHvO6X85rnDZNHceloaTQpKMtJo3EFjTAAx3HNPQffGxsYNJEdtDjye1eUKUL2uR1QGjz/+OOeesCrRM/aeZOfzrIP1luVe8rSoBEtzutbhoLWt6U1h78sHrfJLVt/P7l3ka3tAGWP6b38rHLBx48bvPR28UsOFnt2VrHs7tUv1/lAKMOx3VM8tXxXnWYH4+qAUzPl4Lkf0jzHk4SpZE8m/nfTOku7NMQ3w5d9XDHC+t8n47bdnHRkKhd6HjSn3Ys1IxSoV61N7ksEh0AliJOaZ1JoJKepSPS8C4PD+r3kyejQtMPMrOHrvxIGPN43hWce+tUhp6n/9a/6ZTU1Nz21tQeFwmMzMTGvkfhjvTU6txY30sAXz8CvFXPTzDSnNN9l3/P42+M9bUD/T/i1+8O0HIrKl45G2MWECkp+fN37zKbcORx11FD6fbw0xX3TyaGThK0jr10hoAdLwAbLiHeSD55A7/4R0y4+vb+3Ro8dB7U2PF9soss3DMNRV48fLHVuS9s47c64PBoO3djRN0IGMFxQU9LjiisZ1SsF99+U8V11df6Y9AZkwVcb77xvmu+/qQNsldQw6XONeOL7EMOCGGzbf/fwoMGECMnTokILNp+zCDodojf56uABYS68S88sLJfT2rqK1PTUp5s656vwnYGc/DLLy4iNoeE2UsoNPCdega2ZDuOkBw7BDv+anelkbH8yT+tsLjtuRtG4tupTeFkov+BAjE7EszLn7W7Lx61O1pckYs/KPAOGP/uwXyzIwLfIv+nz6jiZ3a7BdO/SdDbLoiOd1RP9KgkF0KIIORTCKR5dFvn3xIzGlv30tqrtdEe6wbY07Al1K3wJEZ+8tOhRBYorXrVH7syXSWPSnYOGOpq8LHYTFja33t77UR1r+XSo6+tPasvsnCdEyuPmtZqmORuX7cFieaNiwiYevnR9d7n0zEJGMykgk3P0DEwSsVovvDvLxjgrqv5SW7lR9uYOu6H0zWHvlui+zDIOGIwLMX9vMyhNXYvVYzMjS5casjFlv7Wj6fgi6LH0TEEv6Nr/TXKkbNW8cq6m3LIJaExQhqDXNhvCX1kJf/4G5O1Un36X0NiAixupo1PIDjT1XoOs1JiZRolSfHOC9R0potTRBrZncu4/y+XceT9+l9DZQfWH13/JPzL/8gyOFDTEL73XbRnrfXU806Z+JyVjG7jSy3GkI3Z7QWnIa32xuqfvzeiLf2PPrX7xUSPWogO3aLSvm4oUWsRj4RA2D/rHixvOqxt28g0nfInQpPQ2WN4dko7JYY5qE6i32HLjOde3OZ5Qoy8dl8fYDZYRDdiN4Y8BAn89Qnb5/71J6ErTWeSuGrWiKfBOhriKP1X/McwO3oAhH9lpGxDJT3Lvz/QzO6PQy7fQEbm981hKUoNYU51e61zQa04jw+royglY8encjedOiMcsg8F0LLS3RxZ8cv+8eO5CFzaJL6R5UX1KdVxs0mxru7eYq1FoSZfeD1qa1avt3hJWjs5l+XV+qBmTSouCrgYOVvxOvDul0Sg8EAu+sXbvm2O7dSzafuJ2xiEUisUV6CviqvnfCuDwogvo2zGGjlrXZCJxrF3FRp5Otg05LGNhvsBQUGO9dcYWMcq5NnmysDoWK9l63bl1DINB+a8s+/3rjKAb63zOfbSbnwg3udY0mSpQVF2fx+Y3dCErcrbfoVFcfja2AC7dGVy/fZ89+7UZgO6JTKz0dDMM4uaJCT9FpYmSfD55/ntCaNcW7VVev+d57LNDmsIhFEmoZQItHqWW/qCFrRqtrwQBjGUsttQApbwTfM/hJfK0WGWtaCCnNH6OXKcNvoLUmJyfnb+Fw+HLvm8ZKKbKysl5uaWn55fZcLLhDlD54sCHHHCPk5orOysLIykp6ncPzBoQX27rQGWDmTCILFxYetWHDhg+d406W91hxSWR9yN151CpTLPm6F0Gtueess1j/+edUVlYmrmNNoCtR+W+99RZjysdwO7dzpXllwrEqDpKVLyLsvffeLFq0aIHW+sBt57RtdCpLHzRoYN8ePVatKi9v/00+nfeA/H5obobly2HJEqishF+d9UcOKS9n6H77U9xrA4IwnelkT87m/PPP95SR/iCR5OveBuD3+2lsbCQ3NzchXfJRNN68q1evZvDgwbNM0zyqXYXg1NcRhbYHTNMkLy+vVyQS+VZrXZDhh4dvgt8di/s6LuC+uJXASPKbX8417y0FrWF45xN49g248eI6WkZnEtSaXwweTP369W0quC1X7D1IKfmoHcuy0lp8UVER9fX1m6qn3XWkSkv5/LTT2Oexx7L3bm1t/aq9K9gcotEoeXl5/wyHw2eMGQlT/xYjjNTXlxLeFPRcg/g7m8nveqnE7G7ZYO80UFUDM+fBvG/s73fPXM5Hz37EGWecESs3bpne98K7d+/O008/ncJPwvYIMTjbKHjhbJnglDtmzJgUl29ZFn6//5fAy5sU4lZCAcMrKkj3Kh4PPBCYs3Zt68j2OKTOQc+ePfuvW7du1f9NgItO9Fhs8Vm880E1o/ewj+pRkkbpMYpTmn4f+zSw4Krx5Dg7mKjEF4djWVMU3xCGLAMamqC6Bi66FT75KnH7B4hbsWPljtIcOPfHjh2b8Bq5txz3bUzsBjrwJKhcp5g6daqrdCetpz73pJH2ggqFQtx+e9YWLf8RgYUL0XvvfX3g5ptv2eI5ZsMw6vfdVRcteDaN53Uu9JmEICgUUjU+wXK9yby0QOx+n4kOOzQsH09hdvw9v3jLCUDZjTz3xCTOON5+WeHy+8AKwz3X2Ec/zZoMlg9GnmWluHCvyz755JO58MILExrEkUceSV5e+s1ZRYSMgEH04zRdkYcfYwS8+OKLjBs3zs1nGMYGoHuaLD8Ybb+iuykIYOG+7unzwZ135k5qaGic4LixsrKy4urqqjrr01hFKjEiT3DDAqpsklv0ku++Z7esR+OK3oTV4+8PPc6zf4jw1bffMiz/uYQ0SkDKbrGJFuGV/77JKQd9hO9Ae++DX11jfwKcegyoEfEzf5Mj7LbQ1n2lFH379qXy1So3lkjmx9sVOadQGcMhPz+fhoYGlS4W2Bx2P29o/K1ngagVCX731Kpcp76Ut+pcWNgLqtI1Te/L60moqACZG2vVXhNN9q3OvZJzkIyBqNiNRctXsUfWY4lv/HqyJgisbFL8iijeeHU85QclegYBVNlEQLnXcweP56mJsKYGFi6F4w+10+7SDw7czX3XO6VP9yI5Gk/3PTs7m+CcECpZvl4PlibIdHg2RiRIbLMY9Nv+Nb3KCkoMwz5YKxK2CLVYmKYmEDD4/MFFygCoq2ujzNiGN+5+FI3EJe58NgGxTXw+/xwuPS5+UBzEW67EmEj+Q4CMgbEi7W1Vdo8p3GVVefp+57unc3QmTh9+6AHKD/a8Hh77U2QAjiXa6YMhWyjvzoOR+8WL+y72nEXmwbr3DNfNb0rh3vuO9dxxxx0MG6ponROKK9LDQwIcOtOkkXmQlYls7nTy6Mf7hK35w2W3fUtKSvpkUdo3h9KybEp6Z9OtRybZuX7MiOagv+xtq2TAAFadcw79N1lqBFe5KRYLSA48/ywseiHpujc9qW4egJi1vvjy65x68CcpVZeeAP1KfZx3djnnnn0w2VU32mX6B0LpOTz2+DOcV74s3lUkR/B9bkJcbyCwZgK/vAp+fRxk+OHSu+Cvf4rXt+cQ2GtAokc5+c8w9T2YNWsWo0aNSnH7oVCIvLw8DKWJfJzk3NJFkNLGCEWRlg9nwwWtNX1O7TWusLDgxbyiAAXdMmINxt5hpkffbDKzfWRk+TCjmpbGKE0bomzcEGFjbRgzKi4JJ1dUMCVF2s2AJrVlpumQDB+cfjQMKU3lMXkrjmQm03bYSZHbLW/Ej7jcWmgNmZlQXQ3rK+GF2OYDani8T3/+No83ERh3bCLJaXtzj2KSh5PphooOUrqoNOlCojj+tWG2B4l5gSkjo+RmZ2DVt1C+IJeCbhkx76Bi24gpikozyM71U1iSQbDJpKEmTENtmIaaCA21YVqbLbu+UChk3H57VqpITSCYRFk6TmL33n8fZjyUlCypM/a23pTy2uhlBKD3RG5+bALp5ty3Bt1y4bKj4ooyRtinWZ6WpPgD9oTBvT19bBt0eYdgXmX+32tw/V+htNi+uLzK/vRlKHYfW8Yux/Xhhd2bUIYPq6GZs2p6unV7FR3b5MR1/U/23sATG7KZHc3B51fcUlhHiY7yv8HeKKXIzDaIhDSZOT6sqNCyMUrjhggNdbalh1utODubjeCTDpZN4TrG+MR77H4o3RDLK8A2h27p4CuBHpciCm6aPCHtvPzmIAJffAElfnjk6lh9ZZN4ZPKTXDjhO/59K/zvbfb57efHto469VgSLNjlI6n7SmfV3lHH2D/BG3Ps6394839cpe6qwlzkq+fDVh+vZPVIsFrHzW+qAYgWbjNqkIjFgiaL5/P7UFsdorE+QiDDQGsh3GoRbDJpro/S1BClR9/sLVB6srIF+1jfcBLHzvd8uOMO+HYq9C30XJc4I0KavA6SywNwThsVoTkc5p6n0+9NohQ8/rjiyQd/z5E9H0nY58spy2Wl518QIx+lYN2GDfRo/TvGCPifA2HhEmhphZXToLczQk7jpZItPaWOJPYBWkzIPyR+/9jD4a1709fR63hoDuX2bGlpWZ+WYW89Itzw+XEbfYa/4IsP6tiwLmTvHRjRhIImrc0moMgv9g9y6bv6aiQ721OK4+zTDRG9J6l7h2zNQGx+IraZ6qODyjh/+askKD5FEt5rLhfxW5RNYvKjj3N++cp4IJiBHVwCZO4OJWe4DSMCZKyZkNDAEvpeQGLH2brVOtt5Ob/FMwrwkOTGKB4Ft1mHSmVtU3XkHgHNs+0uZ/To0YHp06f/oINRAY6s2EdQsHZVK/6AIifPzyXlV/p+N/o87bI0bBj148ZRtNnSkvZV8+Lhh3v2W7t23ep093w+39LMgDWkeXY8gt+Uu3cE645h01iRiz4TwTMGl+rxadtRvHBiIwanrtiOX948QuLej0kKTI6utwbp6nu/3ZUAACAASURBVDBGgN/vP8o0zVlbWdxWw51U//prrh03joc2lRhwFW4Y8PDDvfevrl6zMH5zXfo8gGVZQ4OWzZxpmgQCgVYRybI+ByOa2r+7FuW91qZ07RsLPv+KA0tfaHM47KLnFYneJqbwhDwqsVF6y1TDY8eUb6qOTcBbhzEccnNzy6ClenNj8faCW/9TTz1prFhx9iYHRbfemnFSJBKZ2hGEiAg+n+81rfWJ/XrBsmkQSKd8B211nGk+EyxTQJVNQkT4dOYEDt7NU5Ynn2vlKtGqvWkmPQUVD0BwLmSrpDo8n153IED+SGhpJQR4O9TtBld0lmVx002+BPHedJPvj5Zl3bf9yUqEaZqUlZUdsGHDhjei0WgJYBy0F9x9DRwxDHtoqVKtTjxfXOFD4ojDueTtX5P6Wu+wUzSQA0++ApfdCsFWO6HP53vzqKOOGvvhhx+e4Pf7/9rY2LhrrCE3BAKBm1paWu7z+Xyd4kWIBDllZfnvDYXMP+4oYrYVhYUZr1x+eeSU9lhW5cXateh//7twaEPDxu/at+Qdg3YWz/ZFdnb2qGuuaX2vrXG7CEQi6DffVMbJJ8sWrbF76CG1uKoqukd7riHobNjplO7zMX/YsH3Omz9/wUJlu9U205qmyc03+9M2ifp6ePXV/gcuXbpsQUZGRofR2xmx0yl9C9F3wgQqnWDqn/8M1H77bahnZ+lTu9COyMjIuD8rK/ME64c+melCF7wQHTW0NjvvC2pbgR8FEx0F+XKfK7Q2sT4qK9I10yxz1j5W6PUhP+BxT+dCl9LbgF76M4v8w/6qAKyIIZFaRGt8ZT93X6Brmlwk9XdnPbHjqPxh6FJ6G1DdTjMIf4d8uf/59PhdA41fgNYE9r3LBNChekQLRkCdvYNJ3Wp0Kb0t+PIQMYGcfxhDbtcSWgs67tlbntnzGtGC6J3P23cpvQ1IZDXKyEW0NgAktD7xGYAvfBuikW1dyrMD0KX0trBx2gNkDEK0YH60vyXhWu1YesvUYzLQYlt+xD9nB1O61ehSehtQQ/57qegISgtoDMzwStGWffrlhi/CojWihaKrGo/c0bRuLbqU3gaU4YO6//a0latBGCxaE3y+TFwr14Ly+Xc6/96l9E3AGFG9nkjD73ECNi04Fo4WCi/euFNOY++URG9vRN7sPUZbOdN0KIK0RrBCEQrOr++S3Y8ZIpK3uv4bCb7YV5bu9XLXxP5PAc1hc9SaSERWh8Oy7MBlos2drhtPQFefvhlorY3WO+tn+prt99Y2vt+b//x56b2bz9mFnRYiUtQ4pVGaZzTLuqqQrAyH5R91dTvfNJwHXZa+Gaxriozx5RoopchdZFL4Ygtlfj8zP6vbaddTdUWgm4DW2lgejVgFho/c98I0v9VM7dO1hJvChEOh0GH68B2yhHlbsdO21u2Egjx73wa+O8yH/+QNRINRLCzEfqNvp0SXe98EGp9rHJ3/XoSICN+EQ8xYVcqM7/rgrJaf2WPmqE2X0DnRpfQ2oLUmsiTyPAZEbq+nWWtEKcw8xdS1A3ilehDTn+j/3o6m84egS+ltQCmV4xuXZ1h1FuY9DRxesg4RQYugAa0UdftmYnY9Wv3xoGZN+CDZI0DDFyF0g0aL8D+l1Rzf83v89bGnbUpxzuLvZ+xoWrcWXdF7GogIKz5rtnKHZRpzW1sxnm1mwMUNaTfzjxLlBE7YqeTYZenpkVH8jWXUr48SEqHm19m8X9cT8fwD3O/a2rlcfJfS00CHdC+j0MA/cg0lf21CsN+UmbG+jNdrB2AYOqEBTPFN2bijad4a7FRuaXthSX3rmuJHWnrVXFcT24ZFmFHTwz7Kw3N8RwtC5jdB9rmjkj9MP2ankeVOQ+j2gtbaWGOa1upolPzcVe71KFHMrChTvu9Hq6Vp0ZpW5xwXrRk2taHb7Zfs17ADSd9idCk9CaKloCoa2bg4HKZZhN2KqhAhJYjTRoRXXh9A1bBMWk1Ns9a8N3jwTiHPrmnYJFSfVX12dFkE653uiAgL6nphrTLZZ//qhH7c0oryE5YnNISdZaamK5BLQuS7yL2hBSH6F6xGsHdJbe1nMLOmjK/uK06J3L3/ni17dtP763YSdCk9CY2/zkaitmr3KFpDr/ua7egdqDotj2lrBvPSuqFES1Xq8K1KVm2q7M6CnaIP2l4QET4NBsW4s4G8iY3u9ShR5v2nG1UjM2hJPmdVa5p8QiRoYlSHeO9/hnV6mXZ6ArcnFja2LA8ZMjgoQqjWYuCgagBMTCJE7M9ck3+v2sU+PtsZunmO5TQ+qTtqwZkHz9qxnGwaXUr3YBGLpKG5n23Bln0m+t4l1USt1PNUnWnYUHeT2Zf1YsEvu7MxWxExYPGgIZ1arp2auO0JK2KxJGOJAKxuLKPVsWARWtAcVryCyCYO1fU2hHMi5yh/RucdGHWqQM6yLIqLi3fInjGL+iza1QnMygpWE/jajE2/CmiYvn4Ab64dTKSPkRK1Awmf/+j7j9HbnYGtQKe09H79+g654ILVS+fPV/qdd7LPbGxs+vcPObFoa/BZSzCambvS7xweZB8XBrPretpW7wRusf67Bc2gh9dxwM0rCInl9vmOxV/CJZ1SttBJle6gV69eOWecsbalILYJ8bffKl5/Pf/SuroND7T35n6ftwQlKkJu3iq8YokSxVRR3ljbL/UY7TRHaTvbwH6+yy4qsB1PSt4adGqlO1i1apVx9dUDrN13j18TgcpKpZ9+2ndza2vrhG05S11bwpfhVonElNl9n2r8K+wnacn9dyQ7ygvf7Eqzz2P5saCvVWtX6b3m1Bz+7rmHf7jNzHcAdgqlOzBNk5Ej/dHjj0+dPhaBdesUTzwR+L+mpuaLt2YXyG+yvxmjf5Y7Lfhod3f41YKwV2FVgtJnMYtruTbtAX37dj+Ms4suJLC2FRUMERKLK7lSAVx//fVZt956a52I5CSf3VZYWLhHQ0PD4nYR0BZip1J6KBQCICMjg0GDfHXnnCPFbaUVgYYGeOyxrH/feOOEM6+++to2VzosYpG9q3cOrF1bluiyw8IzfU7iY/UxoVCIQCCQcuieo/ju3bvTUN/A3/k7UaJcG7j2j9Fo9N4PPviAQw89NO0x2lVVVfTr1w+l1JsiUr7NQtoCbHelZ2ZmfnTqqdFDiotFZ2QI2dkYPl/iNtvpNvjd1p2dRSAchsmTM94ePfqU8ueff8FpBMY3fGMpFM5Zr8tqehP02677nOJiIpEIfr8/7dHadtmJyjcMg1u4hdO/OJ1Bwwal4SX1iE7TNIl5pw7XyQ619JKSkiH77lu3dOTIHfdq2P33s/C91a37+bJXgEfxAHuwh3vmKqRXVlvX+vbty/G9L+PB2ZeRmZmZtktIl9cwDCKRiOrITYo7jXsPh8MUFxdOvuyy0PmZme1fvtYQCNgeo2o1rFgBi7+F4h4Hc+p557DvIYcyaEw2UmWiUOzBHvaKV49Sko/OTueuk4/irKyspHfv3gm7VScf2ZmcXymFaZqqo7Yf7zRK9yISiTBw4MCS4uK1q8aN0zmQ6PINw/69di0sXwarVsLIveGIw+yTHgb2AEOBcuZ4vOewSPw0h3UbYPa/f8auD/4Ly+nHEc7J351Kq9JVgANHOaZpkpOTg2ma9OrVi+rqajdNcn+vlCIUCpGZmYnWmv32249vv/2W8ePHc9111yXk8dbTEeemuzR2RKHtAdM0yc/Pv621tfUqwDh4H3jnUcgzYkdveE5ScpF8FosXSee6iMDKNfD4FPj1E1/T2jjQHYefXFpKOGwfLJtslSeccAJvvfVWCr1VVVX06dMn5fr7779PaWkp999/Pw89lHoukvfIbi/Ky8s55ZRTfBdddFG7L7XtVErfY489+ixevLhSRIzLz4a/XrL5eeIE/Ur8KC3veS3iUbj3jJa1dfDidHhvPtw2cwkbninilnevZsqjj7pWmtz/Gp4Jl8svv5xjjjkGgJdeeonHH3/cTetFugCwV69ePPPMMwBuGcleJRAIBC3Lyt2MCLYaqqICefhh/+Lq6sgexg6YQTr//PMzHnvssbCIsPQN2KV0E4m9GvaexERi6013dhqpWWlphQWL4b0F8O1K+OWnj/PzunNdRXsVDjB48GBWrFgBwNSpU1MaxXHHHYfTD3uDtmS5Tps2LSFNeXl52vgglq/dDdPQGi66yNx90iRDxo9HsrIy/tzRDzxizL4IyK8OfTRszRX0vPiJzBA7/yzpz1Gy9ztAsPTGWMHxvF537v5OGiRkZcIeg+Do4TDqAPj0pHPTnonu0Lxy5UoARo4c6d7z9vu1tbUpvCqluOSSS7Dm2efKH3sojB07lurqajdfS0uLVy7uX8+ePbdMoFsJw/scwzDgmmsid02a5JNzzlFW//79+rZnZVprlFJ1Pp8Sc56M0/Pg2H1jSukzyT3pE4mP171/yqM012oFcgIBGgqucrLauvV4gZQBYcy9+wzolg977QKjD4LjD3PKTIzaHWXce6+91YwTgCUjWUlOGb/+9a9Rhk3T2/fZB/mNGfp7xo4dyxtvvEFubm6CZ3DyXXTRRejY3rTtibQeXSkYMECMc8+trJwwAdljD9W6rdbv8/lm+AxDrE+l2PoUlMYVvsT+M3pPTJmYUR7Td9J6/wj0BYSivDw+WpSYN+Fstf53IiqxQVx5v312enYuDP4Z7Du0bfpFhEsvvRSwHwGnu5/83VFiXV1dvJHG6u6da1v+7b97AMMwWLp0aUoZpmmmjOPbA8bq1ZvuMpSC006TrJtu8smkSYhS6iknst0SFBYWZgASmmsdrefF+1jnaGgFYBRBzKU9+c6Q+D1v2jSfAKr4V+73Q064FRXzCN5+XgGG1QplN8VNX+Cep+D04yFzhH12ekFuoou1+VcJv7XW/PznP0+wSK01Y8eOTcgTl5/i7rvvRiybLqercfjIVSBzYf5ru7kW6NT30EMP0RGHDRmLFskWF6o1TJggv73ttky54gqkqKhg+KYagGEYn+8+YGNY5oHfsWwP467bLv4ZiCACZ//urERLTnbzeKxVgfiLcNSrTDM1aHPz2GH8O0uOBeDDJXD0iPj4XylQPicAjCs03QRNOBxmzJgxlJeXU15eztixY9106Sz+/fffB4duPO3O4U/B6Ufalm8YBpWVlYgIGzZs2FLVpMWA3/R9qe+ve9+V7C38DQ3F38GGIVtVWiMUFMDllzfOvfXWTEaNUmZeXnn266+/7j0hVurmaApjs4muxaaZW5fMIST3vu6R2d7fxPvphPx4QlxvggQp2xZ87P8cAdXvcMSZ8O/b4Kmp8NC1drJPvoLPp0BNTQ2lpaVp+3WblsTP5EaR3D97u1Bn+KjEw7GHMZkHh5/Un30OvQjDMGq908Bbiv6/Keufk5m9SmJS2f38Xf9sWqby++yRhfHFFxte3+pSFfYZ6tjKOPpo8R900OvRigqkuNj/ASB6ARQGcAWfMFzyuHblXBV7zluh2nzvxnXXHqv3NpYEAcYy2HVkuJ27UrDguzgdr38AxbFFGpVrYO8yOyBL5+IhUcEuXUkzd958o0aNwnROYPZ2aZ6uyuHJKeGDR2FY94cRkenpJdE2jrtmtL+4OH9VZo6fQEbsKYIIwy7YwyXcMAzjpTZLaGrjupO9MfVWQ4N5mP7MDtRcBj3W7Yyfnd8uJa7MBKLxS17BJPtuW1CxhuI2HBL6bRRQmLhk7eMvihKLU55GJDDtYfjww/TrH9p60pYMx8rnzJmDsuJ8O3S5bcehMW4BAPzhFPjlcXJ6Tk7OsC2qEAhHwmzU1dGcPD+5+X5y8gNk5fhcmsvO6PU8gHHiiWPbXt2Rj634ZOX7iUvME8jW1sK912HPeSePlbzWpxJ+AmIPx2L9ujuh4ggiSUhumkC/hAqefvbFxPocV593aDyjxIlWpEluwJjhcMQRh29z5GwYhnvOujuvoOIycEtP6o6cCP+FmyEYDH65JXWJaOTdYZJTECC3IEBuYYDcfD/ZeX4ys+1xeWlJ0a8AjP/856VNdxrO9nhe5TtP/RTQEk/6wANwySlxwr0Gl0Kkk98oBJSb5rHHnkhQtMQCnbUNiYYuAN1PRYgHUL89+qtEZTuJ0cRbm+KEw5vwGR5Ze7qEz5faeZ2gKhqNxtJseQNwZuH03LiivXU4AlDK5s3lN5k/bDqUUpscLzd/eHKWfHWYGDmZZOf6ySlwLD2m9BwfhgGtzSb3/vdujM0GCl6rFmzFhz0MKCAC0SgsnhZXlNtvJXtDD3MISPG4WDm24s8rXxlvEB702usm/u+lQltIDi0+O3JXStG0ckJCHm+j87Y6EWFwKVg6qYpY4qUrcOuQedC/dyaHHHJIysSJU1bytdmzZ7sKdypIiidd+hLYVIn0JAxbRdJO0GitOfAvu9YcP21Fq1nfzCcbhOxcP7n5AXIKAmTn+cnK8ZGZ5SOQaa9UeWzGQ/8wsrKyNh8eFsQJA2zv6DXjENx6K+zag0RFp3HLXiUIoDIHOhJE1k6IN/NYmjv+Bb2OhfOumsJ+R59JZX3CSVmgFFb1ePIz3GISRwdOxBar+9HHnk7lTyX+uYGiwJq34YOHPkEpxaBBg7AsK63yL774YgzDwFo5yla4F+IJ2JxRiCTRmtAwPX9A3Rw48MAD+wDc89LdxqDf9lu6+3lD5eib95eCguySzBwf5XP83FeXR1aOj5x8P7kFcdceyDTwZxgoICs7cIHfqcRVVJMjKA8hCvvJrklqR+go0NsXJ+okQf7JP0Q0369dT395MO6ZPVZwzRlgdgPLmsf0D+fFswsoNR6t4bvv4KOPINgIZ5bD/54OA3sRm/Xzu4K1gPPHLE9goaTQfvbubSjisToR8Fm21Yus4tXJAc67GhqabR78Pjj9Z7vyxPVLeOAcj1K94ku26tgPbx3OtQRdxMrQhg9GBav2H7UHb859lO6l+fh8Khak2RUoBVk5fnwBRXaeH59PIQLhoIU/oPD77UKzMjPseisq0nS7GmhOppREjjycvT8bpnseF3uZThxIt1GON19CfwzXPQJZqY+qtwgi9jMFFMyfB1PG21WeeSMcuhf06wW/HQ+P3hgX9j67wW790pOe0qiTriUPNBKJ8RiGR7mSJt8z3/XgsW96xctUMP1YhUSifL+mhT/VlmL4nNlCu6yikkyUYX8GMg0aasM01ERin/b3XgNy7BGxzwcp08kGcbcewh1GpXAU49qKTTO2JSHnXsKEC3EBOG41naBu/d9Sbplak0rjFsCd5BE44IC4a/3nJDBGwAu3Q1Mw0bo+XxxXOh66nVGHJF1P7o9d952UPk0bt9MbcP+S/rxWWYrfkFg9irzCGF0KlFIYmbYt9svWZOf5Y8pWbpdqxPRoWQIRjeg4744ulFK20uvrFQUFaSTeTBtNNplD2GUX0D4wPBFC2iFtkuvytnzPhyshpUC6n86KxR/Rf+g8thVugIn9aDUcgQkXQMUjUHFBYt2SktHz07HSJDftfO99AgT8kJcDGzbaS7OUgrxeWRx60a5k98zmxb2CSCjCmSuLQEG3YlwFxwNh5Sr+1dWtjMls4fyWfmRm25qe3G093zYLf5deiEA0bNHabGL4FJGQxjI1liU48bqI2Epfvlz0/vth0II7uknbJNuUIvTvByVHQt3MBLmlGn5S3+96ea8XSI4D/KU8etdJ3DR5XsoU7g+BAPT8C8EP78I40H7Y8s13ca/gWqejWA8jyTFiwjVP3/2X8+HKOxLr/c2/DrfvK8XAgIm/KAezXrisWwNPqB6eYE95LNwuUSl4W2XwtlVIfje7UdybX4svt4DdaSTLNNACG2sjtlfwQSSkiYQ0ZsRWvgBRM2qvRlq5MrsWBeRhu/R8z2d+Eqfp+uaYUPbd3XZVritJShqLOdx8Ctw5aKcxeGfxnMBOxczu83l7sS246y4PHb5c6DWR+k/gtGvh+dvh1KvjDe/7Gg/dSV2PSvPp3HfyX3GqHfyFFsTz1X3bSH63DPK7BdiQn020tgndGuY/3crI7xaI/WV4vtu/C5J+O983mKAjJqKFzJzYuDzfT0tTlJZGk2CzSThoEQlrohGNAppbgxMcul+rqODEtJIKEh+ipeuvk4K6intsZh33qBxXqZKSelxhcutIMebeE3Fa+8RHxqclMx3efBPGHQVX/CJNV9N7EiihMRTmqcm38sfb4IU7bMU/f5tN32nHeehJ6ruT+XB5TUYsYQjIHp6eztcegrEjiHvB2GfUgKzhRqPWutBJa+kIPiODN6oeKZq1/p83WuHsK3xKuwaz4psmGmrCKENhmZpQ0CLYZNLcEMXnV3zx0CLlB8jIyPgXRFKVLsSnWdtSuPMZu1ZRAWp4TPGQ1h0mlyfJXzytw/UEyp6ifetlOP4XqYITsZdEz/+kjDmPV5GpYfyJbcSVrnAVBVlZXDIOdh8Kx50L/7kDxjmKJ+5tSOqSkvlIjr7dOpz4AXvFTOAge2LIgZ7v8SKue7fLyTgAIK5wAJ9hT0iUl13QAFwZ++OKBYf2yfMXVWVkGkRCFqYpaFMIhyxCLRYiUNg9A5/hs/v044479lWYlirJZs/3fM9350GLQ2wBCQ9fJk60Fe/OSqUTjKvMpDqTG5K/2G39b75cwQePwaQYqVrDfffCkrnXU5Kb4T5YWLdoPD0L45aYMufgwr746JQczj85iJ4PxoE23f6D4ZflYHhGLenG25uvgwQvaX4K1zwMGT6YeD6g49lmfAHH7Gt3kb4DQGuttnSx6j0HfFQNqOsWjq5Zv7q1pLG6FcuyAzszKuQW+gkGoyMgtsL41VenhFJKaSbep3sV7n34kkt8WFeAO0+vNZSW+hYbIzx9vHfY4MjGK0SvGXlMSYrPRBs+zDUTOOEQ+0Y/H4wfAxUnw4YZuAp3shUXeUINT3/sPs4N9I7dsycwBu1xhH1fcB+QWJ+CYXroayOQa7MOldDrJeS77SJb4cpjEADHnQ+PTAPfAYSALVa4F7fuN710l/3y9s8tDCBaiEY0hSUZaK1Z+Pdv50HsybVpmqm589oo1Wvdybf88OhkVV1VJWVOv+A7gKYjDiBv9iPxMaNKEqDXUpIXT1B3P8qKP2JXCs45gRTLcmcERfDruNCT4wMRoPtvYt/txQ6RYDjRYj00JIw0kkYe6RSawI83j5e3NHX4Yqt4LrnJXw7mm6nS3XI8OPr9hW8tmOa74bmrooZPGXV1jfOWPVo5wrnvB8jKytIVFVtYYh4pbyCIwDPPqNply6zSiRNTWmf+Z9/mZqjhLeEV02FgYdytpwRySa5dgb22zBGac9uxIlfx8cLmff4lI3rEK3e7FE8Z4suPDRPtu6ENH7iJ0wWXydfa6pES6nDYSJM4ubzXPgVBaa0tX3u9e3D8AWPbfC3KrWGLx79JND33nGoYP95S330npW0R3NLSEgHULscZ5WoErG7A7dPjK2DSBEiORZD4PcFtZu4Wf3IlwvAe/0npWr1z+XZeSbDenx9lprhi7yIP74OipJ5qE3WkerJ0dbQK/OxihYi0m8I3B7eWLVwQ4mLKFBW58UZLLVki3bZ0EyCt9ZuA2qU8cKwxAiqeiNVN0qdHsir5tySmV8W/dH9HqiZ440YX3gjcneyIlTt91gcJedy25lGid4nTsRfDqAu2pI7EstLVsSECOSNAJMUfdChcpW9JIxOBN95QesIEUZ99Jpk/dMenaDQ6HVCDRzzp8x2ktBoOtSESHie6wZPnt7tuXTyeychiY2sQqR5PpmdhRJzoeBkJ3wHxGRy721spmdxHnkn5AKY/CBefgT0sTQo+E+pI6egTfx71Byg5nCCp7afD4VZ4/fXIpvbqmT0b8403IoGOelk+Ly+vb0tLyypEjH/eA6ePIsGHtiUZT8yU+MPjS903XBWIrwzV80I2NDfTbeOdqf44Vle6AEx50ghgDIeD94GPHovnT8hDatnzV8KIcZCbmzu0paVlWTuJb6vgrjutrEQPHpz6kuinn6KnTtU+wzDoyN0RmpubVxMLPHSPZw3/Qb/9SGt9kKHg1QfhxINBOWPapMjdhdNveqPnpL5jVfhIileMp1smiYryFJvumbbXNzt1yDzQAfDta1979FY4pxyU6bF0BV9Wwv6/sBd/FBQUnAqN/3HeX9sRcFk76CB/05gxpjtQ+/JLePHFLZ8c6EhorTEM417gMufa1RfBLRfYAnZIdOXsdAne7sFpBJvwHuL5otpoWAJ83wAXT4TX5zgNROmCgoJf7r///v+dNWvWY4Zh/DZGs+H3+6cPGDDgj19//fU3HWk0WwOXnZwcPr/qKvZZtgz91FOWr6N3aNxWRCIRo6ioaEg0Gr02Go2ege21DKUgww97DoYTRsIhB8DBe0JRNxA/qChgghmFkAmtUWgNw8YWaGyCxSvhky/g4/mw5Pv4rhdK4TyevPG0006777nnnmvs7DJqC67S8/Jyr/vDH/5w+5133rVzHTIWw7XXXuMPh2+PFqSZNNpWPPCAb+G6dZH9d1YlJ2O7R47tDdM0OftsvwzZuhezNgkRmDFDmTNnRgLbshNlZ8VOrfRRo7COPjr9DiUi9m5SX36p9FtvCZdfvvkdr2tr4eGH/fubprmw/antPNjplK61ZuhQf81ZZ+kSp6+tqUFPmaKa/f5+l7744n+ePeCAA7XjirOzee/qq2nznHPDgNtvz7izsTF4dUdt4dXZsFMpPSsra0pWVmCuzxe4Z/XqqmB2dvYm0/fvT82551KS7t4jj/iXVVVFh27pu2k/JvxoOT7qKOTII+O/ReDTT2H48Bt8N910804ZrLYXfpRKP/dcpH/shLTWVnjoofxjGhub3t2xVHWhw3D11cjEiUh2tvFER+zX0oVOBK01Q4YYa15/fev3WPip4Ufp3ruw/SDaQhn2SEmvHJ8hG2Z/ICp/uGhDS/0XSNRslGh4llj+q7N/XrVkB5P7k8WOf5jShZ0OEvrONZ4LrAAAIABJREFUkMVHN8nSX4gsOkREx/ZOXvtMAd2OHa7KLoBosyEqw8DIKhKVscRr5CJC06Pdwo2PdFvX8NfMX+0wRn5C6DL0LmwV9NcH96f+JYteV+WhDJSRAVWT7InMnr8LSaQO2bgAHVoLWpBoayRz7HdXJxRiRcHnywDpYWRnPL/x/hwrsmJ6V1vsQPw0Zpq70G5QWUP2kcwhKKsRMTegRNB1U+pFR/PBFzQX/kzjKzGwLNvQVd5Iw0h8TNn0RHEPVADRGrRGLDFanv/Za8DYHcPVjx9dXrQLWwcj9yskiqgMUD5EC4qcPD1vv6uUYWgJrvxQQutABNFaZ435OmEXCa01CrUILcT/NBIO3bKjWPopoMvQu7B1GPB/K1XTeya+XJS/1O61tSBk3mHOHjTOyD/4eMK1iAZEGSLxN3611jRPLngIw1/s7IUj2nYIRTdGO+WRtD8WdBl6F7YKyvAj+SOzVf0UJGMXezG5E4Kr/Bd17cx3JLThXbQF2sIwMjWAjjQTfKZko8rIvEi0a+CgNbrJf3hnWGT/Y0bX47Uu/CBosxkWjxWJhpBoFDEtxLTAtNCxTzEtdMuGazHybsPUbpqEv6A5tdu10ZN2ND8/dnQZehe2CeZHA45GFc9Ia8SOwUfT39PN1tPF14Z/t6N5+Cmgy9C70C6Izij7jaiCZ+KGrBHTBFPbhm55DD5krje67doz/7ef7WiyfzLoMvQutBtEayP6xRVj9Or/vibeED5qIaHWL8gePCL/N59HdjSdXehCF34gRAQt0v/LYGu0KhKR6mhEvl8flurfV8mi7otkQc6CI3Y0jT9ldE11dqG9UFB3S+1fe1TjN5RCCfiKFK33d6f6yz5k+gOzl4xakrWjifypomtlXBe2GSKSYa4zDwj0C4zzr7JQqzTNB/rROYoMpehbnMnSyv4sikRadLH2Gb6u/mV7o8vQu7BNEBEE+ldVhmZ27+UcOQ95801ECZEihd7Lz+CMDMJg3Fq5fpW29IAuY9++6JqM68I2QUSKvmlunV+c6R/sCws5n0ZRKEQLVoNFeGmY0OIQkXURwk1Rpt9TwOpucvNdu/W9cUfT/lNCl6F34QdDRDKq1oV+K92MyZmx41M0EJgXwZrSQtObTYSWhTCDJpZYaDQW9mfGXhn5w78e3ry5OrrQPugy9C78IIiIgdC/9ubaFfyxEMlRWCI0a83KSITVpkkwbHHIgWsxqs0EI7ewsJTFEZEjlBHoCuG3B7oMvQs/CFrrgnWXrPsg99jcYb4CH5YhVB/iZ3kkzHrLIixCVISI1kTB/m5Aj5ea2OeG9ahak6g/Wn1U61FlXcbe8egy9C5sNUTEX/dh8xjfN+aUwKAAYgrhL8I0PttIU8jk04+7E9ViG7jWREVcY3f/YvfMevP2yXsPvHYHs/SjR5ehd2GrICKISK/vzMiaQuUjY0EUc04rG5/eSPirMGLZO3JqNNEizex3e9DcxyCKTjD2CGDGnMA+3+qyP44eUL1DGfuRo8vQu7BVEJH/Z+/M46Qo7v7/ru6eY+8DWJYbDxBFQRHQoIJ4a7w1kMTz8Y4+MY/xZ+KNSIwxeYyP5vF4YoxJjMb7iuKNCoiACoogl8h9CLsse83O9FH1+6OnZ3pmZ3aXcxX6w2uZ7urq+lZV96e+36r6VnV0SUPLW2WFodEG0OA4rLAsii6soeSlFgQCmfzn9ckzjoWDYzhsPjDEN2cUs+zkErb0Mfh7dS9hBEtVdxoCogfoMKSUmrnEHNj8evNCLiuhOapYaVlssu1Un9xuUYzcaz3SzEN0bzDOdy6RmMJccWr81L20SED2nYGgVgN0CEopBKK09ne1n4X2CaG/HIPTvqXlkzgOpKbWnChMXVfN+5t68E5dbzaeGU19rFqhkMiMc++fprT+LxW+dHanFXA3R6DRA3QIUkqjZkLNxaG+oUdFkaDp+Saa3m5CNbmktfoKPp1XhW3L1gNvqcE3hakUff9ex5CJG5CJtF73jnqd3ysy/J/DgxVuOxgB0QO0i+QAXNUqy/q2QAgSN2+m5dF6nHrH9YJDpX4lEqdIMm1WFbEqDZMcpPeNumc3CnGlzDf79IvoRmBs7kgERA/QLpRS4WXftvy7qNI4ocFxWG/bxKSk8G/NdP9FfTqeR3ScrH65Q/1QnZl/qqJ2YBjbVlj4ptykzGgQ1Lr4P985Yv8LOq3AuyECogdoE5423/SrTd82TCpjo2PT7M2NJ6fJLBQDTq+laGoiD9HbG4xzAIfawSFWjixm+ZElDPgyXnHz/4za0tnl310QED1Am1BSRVces3Kx0cXoG5sWw9lks2ZpTxLdhEt0vymePO7yXDMDr96Eo1ROsrfVEPh/f2z/WGiBCb9DEBA9QJtYMqP+APGTjQvkZonT6GRck9015i/ojqWnTfDsPrepIPxNgsN/tBp9rdUhgnvX4uH4jEvMS47onJLvXgiIHiAvpFR8Ho8pW0Hohs1EH3IXm/kH3wAEApDMfa2CmsPCWMpHeHzEz/J712ptDnhwPf3+XUt4bQIblaK7R/p4l5YfXFF75czOqoPdBQHRA+TFnI2NP6VIezI9aKbQ32yh27gasl+dbI2scFj+s2I+/00XHFNmDLylyO4P8zcKpEfkTQHz9t5H6CJ4VbcHQe0FyAnpSBaOXq7ib1W7I+RJAqZWo6Hof8ImCmbZeUfbc5njSndYe0wBn1xfxbdDC9xGIN+il2QjIBvtVfOGDOoXCla5bTMCogfIia9KvrpZNIq7AMzxBWz5S5fchEyG9Zy0hR73NeC00wfP5wLb3kBdS0XLsdfWXTulc2vl+4uA6AFaQdpSWxxa7CS74CmoIsXy9b2xfX1uE7A9Mzxpgps69L9rM/3/WIu9FWRuK0wJxWWJy4Qe1jujSr73CIjeDqSUVFRUHN6jR8OHAwcSnjpVn15f79xr2/arSikMw5CdnccdjS9HL3tCn5o4X2S9Ht4gHED8YJ0FH3bDdvJ4vPm0v6kgYSi6vdvIodevxlhvtnJ97chIfILEup/Hf95LjwZk31oERN9KSCkZOHBA16amFR9deqkz0DBACHAcWLhQ8OGH2qJNm5x7RowY/uzHH8+MO44jI5FIZ2e7w2hZk9CWVDiWQmn65TUYT8VaxfET3ht4W3R/GWvOK0xvOJGaXsvj/po6d48TukI1O0Q2mJQta6JwRQvhzQlQkubyEFv6R/n2gFJQnPzJ6IPe3LW18v1HQPTthJSSY44Za8yePePvF1xg/bhHj8wVgSpp/uo6LF0qmDpVbFy5Uv5h2LBD/jF79ic1lmXJgoKCzsh6Tsxd1zhNK9OOVIANmEohV9l0GbwuVRY/8mlhu1wx6/HurD+iANtSGQN62fPtZp5GwM6dRTm9tEeosnvxbmdJ7UwERN8JkFJSXFx89ejRLQ/+4AcqJ0H8UApCIVi5UvDhh8SWLFH/O2TIQQ9+9tmcNUopGQ6Hd0m+14xfY2xRtuU8XoVC5VyQEn4rTq9xtZCcR++Iye3FW8xi5vE5q4vXM2+0QhREifToQfGQIRQdfDB6jx4k4nEs4XrdZbjnKAUKnIhGaHnjks+PHLKfEcptwicSCQAtHA7L0047bd/JkydXRqPR8lgs1nTqqac26Lr+1fPPP4+U8ntlbW0PAqLvAti2TSgUGjl4MB+NH68Mx2n/Hj+UAsOADRsEM2aI2BdfqKeGDx9+10cfzVgVCoV2iGaTpmRh8cIvhCmGCARyWIimaT1ye7uR1MqOYvDobwktNFNk19C4jMuYwxwAhBBcddVVXHvttQwcOBAhBEIIVLL1E0IgpaS5uZl3332XSZMm8fnnn6OUQkPjaq7mAA5oPTjXS+1/w9obFkkpKS0tvaq5uflPSikDoLCwkOuuu45TTz2VoUOHEo1GU/KklCxZsoT333+fBx54gKVLl6auhUKhpxKJxHnabrjTzR5D9Hg87h1qAOFwGE3T5MqVy7X6+nqtpaVFu/jiS4xVq1Zpzc3NRjKe1qVLl2i3bl0rCwsLK0Mho3L27M9KlVKF4bBeXF5eWlZSUlS4du3qUk2jUggqhaBc1yksLtaNwkIRLirSwgUFmuE4ZjgUwigowCgoQItGJYMH75iyKQWaBo2NMGOGFp83T0zu12+/SXfcMWHeueeOk6IDziZv8mZhX/o2AxlLT0Gx+fFKGs8uTJvfWQNvy7/4gruPPRaAO++8k1tvvRVwSezmT6XI3davP653vHnzZgYOHMjmzZupooqbuMklOoobuIERI0YwZcoUioqKtlmGl1cpJbfeeit33303ACUlJWc0Nja+uiOeUWdjjyC6k1Sh1dXV4ZaW5mt797auHzvWqu7Rwx1E292drryug1Lw0UfC/uILbbphdL2rvLzig0WLFkkgvHBL01J5dW1vLTn45h9wS59Dw48K+ObRchwF1x18MJtWruSuu+7ipptuapdoHrLP/cgXVwiBZVmUl5cTi8X4f/w/hpwwhHNfPtdrtNtMp6My/L//+te/OO+88wCabrnllrK77rrrezsusJu/4h2DbdtomkZhYeGFVVXWxLFjnf777gu2vfs3ApDs/iatgjlzBPXLDuJHC67gWI7NjJecWD+f85nDHKZOncpRRx2VV1u2L7d13HzaNju8qqqKmpoa5s9fSM+e3SkqKsIwjFaE3x4Z3nF9fT3l5eUAMaCoQ4X7jmEPeI23D5Zl8c9/PsF//dd1JxUXt9w/apQ18OCDFaa5cxsBP/mEcAfrpIR4HGpqYNMmqK93f2NN0Kcr9OkOVdVw0ADo1xUqu0OPMqhMvppKgpDuryOhKQZrNoI87ltEYUlKtpMyyxXav2NU/NT1bRcIBjGIESNGMGvWLCBTO3ZUo+ciX1v35JOxZcsWKioqOPLII3nllVcoKSnBMIxUPL+8tmR1tBz3338/1113HZqmjZFSTt2e57urERB9O+A4Dm+8MZlx48YP69o1fF/fvltG19ZCbS3EYmBZYJnu1NreveH80+Hc46B3NRQZSZNagfC/h8mvkQpB2jHNO1eknpjAd578FSp5j0gHe/enbkqeJyzYuBkWfAOfLoRjn3+L4kVHQtSdVsvwbVeKuo0b+cmAAbz11lscf/zxbnJtmMep4iTjTJw4kYkTJ7YZNxKJsG7dOiorK3MSMB/C4TC6rlNXV0c0GkUIwdtvv81JJ53U5r3jxo3j6aef3qpyWJZFJBJB1/WHWlpartlVMyLbi4DoHYBlWYwbNy789ttvXxyLxf4AlLq7okJVJfz0NLjhP6C6FFJzQsJHxqzzFDeTte/jbwoeif2ETR2r1vdmxxfJi0r40k5eUAoSJmysg/nLXKIvWQEb6zX+9PFCnAM16mf3wEp6vQld59iiIl555RVOO+20Ns3cbDz00ENcc801W1PdgNuIeiP07clIeijSt29f7rnnHsaPH79Vsvr3788333wDkFOGv9EBME2TSCRCNBr9RTwef2CrhHUSRDgs6nU9+vOmpqZ/6Pqe7Vpo2zYDBgzovXbt2sdN0zwOXEKNHAx3Xw9jhoHYSpM9m8TKp62zyajUVqSdpc0zGgO/RZBsWPA1DCjXdG9ogtUbYdEKWLLSNePrGqAxDn+c8RVCClREcpAcSu+evVi+fLkrI4/pmy6je+2JJ57gwgsvbJX1Xr168Ze//AUpc49tefeffPLJ7crwn3dkWuzJJ5+krKwsZzlOOeWUdmV45++++y7HH388V199tf7QQw995wfpRO/e3V669NJNZ3qmoa7D/Pnw0kvi+X322e+8hQsXmh0dXPm+IJFI0NTURJ8+fX7c0tLyqFKqWAj4wUHwxO9hr65pEnoaEDK1qB8Z5GrFbFKEFGRpWN/1Bd8eQFXhV3Qt8VnY2aa6/55kYLaV0CpyrmPh9tNtB5pbYNMWWLcJ1m6EDbVQswW2NEJTC+ib+/H3mSupq6ujvLy8XRM3lcWkls2OP3ny5LxpZDcew4cPp6qqqk05fo0/ePBgVnyzkLoZ8Lu/w6T/dRs0gBEjRjBp0iRs287bHz/mmGPI5UCTb+AuEomglJpp2/YPOlQpnQhRXd397Cuv/PaF9rgci8Gzz4qNDQ3l4zdtqvnAtu2clfJdhFKK6urqqo0bN36slNob4Kxj4Z/3QIGnRT0CFAzjb682c9Hxi9G8aSnSJM71m5bTTrwc2tc7Ub0mIXC/PvrVR3cwdJ/MxiYlgxzhXhr+froPQmTFId14SQmmDbE4NDa7BN/c4P5uaYTH/w0ffSFSpnSuwTVXRuvBr169erF+/fpU+NNPP01xcXG793nhxx13HKFQKG/cbMI+9dRTnHfeeag5gMzq1mjw0nQ471cQT4Cu69x4442MGjUqleZJJ52UYRW01z25/PLLeeyxx4jFYnpBQcF3WquLgoKCnrfc0rLWzuNY3BYMA6ZMEcyaFf3vk0466ZZnnnnO9EY9Oxu9evUqX7du3UKlVLWhw8sPwimHprUq5FF2PSa5c8YCnn7+34wf9UmruP7BslZpqA7IIOslJAQ9b814kZ5/aTLnHDaztSb3p5urrw6s2QS9u7bOY6txAAHaodCjK6ye7PoU3PEY3P0XmPJ/0K8afnwTfLpQpHwR8jmdZPfbvXCPOEII3njjDezki5bPmcVDaWkpRxxxRLsy/LLmz5/PkCFDsD4DXbZdVyiI6zByPMxf6oY/8cQT3rx53kbF37jcf//9/PKXv5TxeFz/ris9rampaUNLC9vUGtk2jB6tuOGGlv930EEvJX7zG0PdcQfqqqtQVVXG3D59+uzrbK2/5zbCtm10Xb8C9zmqy85aW+d8oqrVp2DOgh8e6sZL9Vs99ijfi6AAX1WMP+dUnJ53UtfinguVJosXX/nCUlqzLRleBL/5XXZ8q/Kce9YpvLnguIxGQiS1sScv4333yeo9dCL0nsTDL6anfP15AVCGS3KA/7keNAEn/twl+a2XwpD9oHcVjPmBV960tm3LESX7XErJoEGDUEoxffr0jAG27F8PRxxxBEcckXtPyHzdSCEEU6ZMQQjQab+uhICoA/OeAvUJyE9gTK8LKIhqaJrG4MGDU2MIufIrhGDu3LkAmpTyO+8zKwDOOQd10EE7T4hSron4+uvEFiwI3zBy5GGPfPjhh3J7fYqVUhQUFFwYj8f/rgmY8xIM6UW6T+wzbVOEye5zK5/WKzwUyk9PXhMpLWBKCevvIOTF86W71TJ8+U9p2l6TcBuYTPWslOLFp+7knKOdzP51OmY6vpdgqA+q6+WpfDmaxvp5t9K7whdVS5P8uXvcvL7xMTz+Ctx0MRwyyA370XGgQqAfDPPnz2ewz2e3LbM21znAxo0befbZZ9l7770zNKSUkn322YdBgwblTacjMkpKSigINbPxHVIDkG3WFZkNtddFQ4Gtw4Fnw+IVMGjQIBYsWNDKrE92K6Y4jpPpWfQdhDBNk6FDo9b48XLn2tzee+yrYE2DJUsEb7wRerOgoOtFy5ev2NiRecn9998/vHDhwnog+uqDcOrIrL4yrc3jtvrOqd+ebj/Zn4Brxguefe4lxh0xd/tlZPXrURqq54T0S5siuZvulKkzGTtgcqsptFZTZ14eqm9E6YVuOSDpuAqfTLmdEYPc+/Y9E75ZC8/+LvlolGui79cf7rwynb8Tj4CSAjhoPCxeaWCa7ifRck2v5Qr3ruUyv7342XGy43VUxvTp0xk9ejRbZkGZ3sG68j0/r+rxnqdIWkHC3aCy8kh34PIf//gH559/Pk888QQXXXQRDz/8sP6zn/1sl/XPj/yvI7purN+wVtO0FFG8MjTHYx+sfnLt2Fz3CYCystAr111nnb7Tc9mQ/I0k/3JAKbev+MwzomnlSmN8S0t8sm/ab19gaSQELbNwvbx8BMruk/lVaOoh+zWjr6+NAtHrDkBrTV5gc1MTlU2/T1n22yzDr0kEqLLTEEUj3OipNibpbCoE875ayJDyf6XNfzJlpbSQd9Jroj8nKVmmALHudmpj0HM0HLo//Co583Xh7a4DzXP3uKT3j8yPS/Yq9BEwZOhQ5s6dm7eP7GY5P6nzHfvjt4V893jz2n+8Cf7r7MxHkLeu8snIvierJfh/D8If/+aehsPhs0zTfLntFHcMCk8uLN27f59670VyHIXympes9zBuxTcs/8eKHkKkp8uTK7nKXsozpZkfubtpHUMCl/Q5ZArhDvKdd54qvvlm6/VJk3R1xx1urzYaZqmcA/GPSTmmpB6cSBsM/tZciDTRlC9uRvYVUDAcpTTvcmaeso63WYYvLJXvopFpGcILTx0wc9q0jAZCeBkQSa3jNXLgmu3KJYBSbiZdcijCSvH05AjjfuFGve0y995IyCX5kAFpLef1bzUNmpJ+A85n8MUXX7DPPvsk01cp4nWUtLn65/742eMAHZFRU1NDJBLh1qvgunPSz6LdulLusdeueY/Ia1BdGaRMeQ/3/qfbn7/jajBN86VIJHJ7q4LuQNiOzYD/2NsafED/+oIinYJinYJig6KSEAXFBpGohh7yaTgBhQUF1ftfNkjd+rebUla6BnDUUaOm+2YxOgYBtOAStpGOEV8jkzXNQFP+6ErB3/4Gd9wBW2ZCywxXi0P6oXl/+I9Jn2dn2Xu4qZFz72FWnoHXL/aIIlCpNN99/S1wtlOGSpdLKVdjCiUzy4GvgdZ1LvrhmlSdpRoJv0x/ml1+4msoVLLRSRILQdwp5+Mv3JB48sPEUz51f88/OfczeGNqMl/SfcHtluVompYaPc8emMvl0+6ROB9ps+/P18fPPj/rrLPo1q0b37wNky711XtH6grfq5j9HLOeMWSSH2DCJSA/hdLCxERA9ejRY4cOyEkpeeQPPb848Mr9VXWfIqOg2KCwxKCoNERRiUFhqUFRqUFhkvDRQh3dcHMpHYWuC16e9YL13LRnNEgS/cUXX/06vVx7K1AAlOJWRmPWXy7iZzcmyRcoZdJnYdIkaNzivmBlRhbJciCjJcenZX0POCW31bnMaM0huTBTgIXkrCO/2AEykvd4/5WfnpLhRfDMS6VprJlzCxEfyXN1FzLKrxen5AmfqvLWl5cVbsaRrlOUV84V69zfqspW2UyVr8VKn6/6N9TOcP3LS0tLffFyL1zJRdL2fMvzecN54a+//jqaplG/7mXkJ9C/kgwF0qG68oJVJuGzo6eeB62fuQC+fRtefRjWr1/vRCKRA/MWqoOQUtIyY9AyZ9Yw9R+Hlg3pu08RBUU+kpcaFJaGKCxxwwpKDJfoRS7ZQ2G3vXFsha4JJvzr5k2OdFyim6bJN9+IbR9QKAWyh/I8wjfgam0FZI+z+Rt0H9mVgjvvhJ7dYNM7mRWc0R/Fd82fpEo/aOEze1NpZMcvHJ4RzzVf3dXYlpQ0L0+PuHdEBn3v5rHXIqkbUkrWn4YCUXxYOi3PpFUwa+48WHsrfbr68uvTLBkDTV4dhPqm8uS+iO5qM898bTJNzj3OZazts0zKk/4rcTNtGXn163Hx3x/4yiagMgzqU1j9bhOa5k5H+VezZZvofs2eHe4d+3/96fi1+7Bhw9A0jb/efxryE5jyYLJ+VNpq6lBdec/DM+d9xxndMV8afhneuVffpw2Hz1+ARCLxZZcuXfZmK2E7Nvtd0/voY28erJyPD1bhcPHeQhfEhCBS5BLZJbpL8qLkX2Gx4ZryRTrRQp1IgU64QMMIa4Ai3uJQUhytHHvLYYNSu6189RXbZ3oUAp7TU3ZLKsmt6bNb2iTZX3zRnY5b9XomgbwWWEHqKaRGT32aL2W2ZTNaZN7r9d2oOA1Iv3gqefz3J58ltOEOyiNty1C4+U3JshNcduUt0PNOnngjlC6myOARStnJYTfXXJ2/aAmNK27nsO7Pt248fHluFQ6ILuN9pkLGIVLTaFx2F5qEkuTUeii5e+2Rw9zz92ZnNaS+Y02DuJPZLgOUGy7h5Scw89XD0TQNIQSXXHJJhsZua+47X5hSigULFlBRUYEQgopSjamPzEV9Ci/+rvWz3aq6ypbZKhOZ6YistPx9f+9vaD+46CzYvHnzMsuyslNMQUrJuLt+VNj/gj53j/j1oPqjbj9Ijb1zmOretfJ9K6xz7Dvwy+lx3lnawq+WFhBNkrigxDXTi1Mme1KTFxpECnQiBRrhqE444mp1zXAz1txo02TWv5UqY69epR9edlnDaCFwiZl0EnE3VPL9ieRvRicnC02kp9PaMJ9aVa4CocGE/4bf3QC/Ht+OnBzIFT17ZD7juhLQ646UbaaARx5+mKvOWJ9XbLYMKWDQePjpecmiJF8Kx4GWFti8GVauhDVrYOO3UBKFbt3KOXzkIHp0D3Fg12kcdQSUGKAr3L476bQ6VOhed/psUa+wsKm+gZKme4kmm/E358DJV8AvfgxHHJyeWtM0+Ndd6frJLqOmwdlj28+PUiD1pK/5w+4qOfd+jd69ezN69GgGDhxIeXk5zc3N1NbWMm3aNJYuXUpdXV2qgThwX3jhARjQLY/MrXwvtum+PHEzNLtfERmgHQyGYfxkzA2jXlu6bslNRZGia0NGqNjbocdLr6p3Id6z8oenGxNBZXUEXRdounAJHNHQdFcJOZbCTDgkWiSJFsf9iznEYzbxmEM85mAlJEopuvUqlKlsVlV1++XPfrbp3jYfZAvgNVbZ5G3Frhxx8t3nq1Ah4P/+BlOfhr3LaE1MX/Legb/PlCtLKteN3sWikcz8ui+rvnqRHx0nM82+rZGhweDzYCtXSOaFvwsrhEs0pdzNJlatgnVrYc1aiDWDjsaIYQMYOqw3R4zszz79KqjqVsjiaXcyYn9aefTpI9wyePPo730C//cC3PwfcPB+ZDwPf+N4xjEQ0lo3BNkNaOpckfatT9Zj6pqXvnSPF6+F/fqQUhDbIsMLz/UOZ4Rn5as9GelE0u8BCtBgaUOUSTN7saSuAM+fRgjQBbx7rO3mz3ZQCZOxs0vRgcJSg3BES1s02dYGAPvkAAAgAElEQVRCMhMVVRE0AUITKdM8FNaQCsy4R2zvL0nwZjsjXCmo7luQLoau6wdMmOAs2OppNou09m9Vc75wfNfyheO+0FOmwG+ug1H7peOJrPRythXZsn2y8jXkOdshkbsI7crQBYf8h+Kss3II6iRUFMG1Y0l1eYSA2jh0PRIqS+Hhm9x4l9zpOoQ8d0+6GyLIfPnDBpw+prU2888qeDJSg4K+vKSqLut6RjdIZR53pgwEWAgmr+nC08uqWN8SIZRc6ZTu4vh21vNl5PUjbPTCCGgaMpZANsWRsRhnfd2NolIjVamttblIpV1SEUIIgVSKaKHumulRHSkViZYkuZuziZ55joIe/QvTWVNKaRMmCEvTtrGvbuPOj/td2/MRnBznPkydBi1x+OivmQ/BD38Fedf9D9GL1IaY3D0LX0C2ZmhXRtEYqDyew0+7lVNOySN0F6OiCH4+tjUZpn0FYy6Efj3g99e65Rp/k1u2F/8AltP68QGcdVzSl5zc9UCOe3Ioxpztvf9iKs5WyvBPt0LrVw5AaIAQWLX7oKRAWTaXraqkUQnf6LrIlJdBSjc0YzwjI57gsu4tHNfVjaRMC9li8mhtAVMThRhhLTnY6N7iINCTWt0nmnBURw9pxJttV5tHNIyQ65ptWxKzRZLwafYM8idNeaWg516FmXV8ySWovn3JDRuIk3ZyyfukaP/J5kMyjqa7Wv2nZ8Blp+TXxN6D9bfM2eFeXO8gw/TyJZxN9lxptSuj190gTQjpHHnmrZxwQjvl3QXwNLr/EXyzXrB3D8XKzbDXCWDo8NRdbnkuuM1dtvp/N0NFaesyFkXhlCOy6iO7Xsj/DHK9NrnMZ7LTTt7U4yT4trZjZQ8XGZz5v8OztKagq+Fw314JtEgI5UhX4zbHeaMhzHNORaYSySBxVn/aHy+Zdut7vHii1T23lNTRN+pGkKaNajH5MBHmeb2bGyZB1wUNm03CEXc0XdPdinYc5ZI97mDGff30liTpYw6W6fbRe/QvSvu3Syk5ZrQu+1YpLWNo2Pv1jjXfMVnxvELkVJUdOPfy4sCRR8I9f4biQvjx0ZlJ+sWmiOurfH+473llLEbJeJl8CXojqipHWm3KUBpCma7Zb0umv3wXR597C8cc07p8uwqpGQkyq3rv4b8FafLJ7Ddw5swkNBzG3QgP3ABPTIJ/vQVX/haqKuBPv/YSc8sbi4PS0uf5xi/89QV5Hr3vAWU3vqk0s2RseCsd9/OVcPylUFufo/ACLvjnqAyt66XbQgjlxFC2hpKeCQAzSyopEUaG5s4etc+45k83S0Yui8Afz4xL+kQFWlHU7dA3J5C2ZEyiidcKq1PxG7dYSKmINdkYIc21RgDlgG1LbFNiJtw/y3T/bEti265GLioN0dwS+yZDWXbvHv7kZz8zh+eotvbhTZ3la7L9Bc6l2XOFC7jjXhi6H8z9J5mVno3sViD7sspqgXPFV+TcY61DMorGoEqPzYwe0Tnhx7dw5JFt5Hs7oZTrMrxqFbzzDnQvhjuuhRMPBxK56syAHmmvTSXgxScnohc6nJXc2u35e9zfH/3aLfL44+HsY9JplRTCSaNoG7nqjjxh2eEdRZYMacBPb4Jn3kiHRUsMDhnXF6RCSlDS9RGXjiQRl4RbLOrioOI20pZcfobivJMVBgoDBwOJkcyoSP26fyY687/VOf8WnR4HFj8w+IroO12ivSpB9RRC7aNQvaN68b4WLb1DIhLWhKbhrtDQENDUYHOntZawAGyHGkvxx/L+6dUWAr5d1YySsPnbBLoh0DQ3F0oqpKPc79qZEivhjrIn4q6Wty2X6N37FBLWi7plVK9hGBNvucW+vUNTOh5s0oNx/gfg1UgO8rZrwvtRCn//OyxfDotfh4HdW4tKJdmWOZ593a89/PGy7M9WGjGfjJ6TSK8ySMPWdc685FZGjuxwiTPg9TlDIZg9G6ZPh7OOhhuvgH26g3CyNGoeGzk1Ol1yIqr4iFaF/svDf+CyM5q492m44V439H9/5XrMeX33A/eB2y93r517Iu54TC4Z2XXVVl2SvpZxS3vlaEcGCl6cCef+vP061oTr7VfmjZHlkZGRfwElyRVt77//vhg7dmz7gnLAlhYCtKe/uVv7vO69czXN+LuhhcIpo0DAV7Pr0DSo/TaB5llAynV1tW2FY6W1uZWQ2JZbYV17Rmlqaf78s98vPSSD0qNGHX74iSfO/LgtN9MMeN5s+TR3AWmPuey59WwI3G6BzLpeki7wb37jbqG8ZDIMqEpWerLmveOURs4iZHY/MvsFyW4DMhqC9mQoDXpNSMrwrbMWgk/euY0hB8BPJsEhh+SuRi9vsRi89x5s2lDC9dcezcU/GU6x7hqJQhPUL72NskIy+r7pRHwvp8osi/DXea/fpBskkVkvX396OwN6upfqLKg+yu2v6xrMexUmPADPv+1eP/s4eOEe0ls25bLkssqXr9zbVI6tkKF06H6MuxeeByFg2pMwakAHZPi7GAJ6nggbaqC6unrwhg0bvmotdfuhlOKGuUeOK9BLnhFCMOf9TQgNatbFU9elBGkr14S3FLYpU2XuUh0hYVrm7Hu+iui63tpgmjAB1a5GjwNJRwg0XEK3tYGsp/VzmfA6rb994fd9L6UV/vQnd+/0X1wE9/2c3C1ujhYeMl8GLzy7P9/KolSk+pw5ZRQfjSo5JnVnTUMj6+b9N0P3ScuIKbj491BWBm+8Af2r4Le/hNFDAROEKED1uBGR/Ug8MmqC5uW3URTO/VJn5D+rIU3PXIQQPW+lFUuSMp7613P8dMyXraad4hqEFan5eAW8Mh3OOCKXDDK7SDny6K+/bSvHzpcxYykc8RP490Pww5GwqRm6j3GvVVRUdK+rq9vYWvrOww1zj7z3s8lNv9Q0dyCuZl08Zb5L33LtaJHrHdcYa1618MEV/VLl8idmmibXXhtxqqvVjt0ax6/585G7A3jkEe2b4uK9D/nqq68aQqEQkUjkONM03wFY9Drs192n5cnx0JN5SJFX+LS17+XJGE3259u7niVjU9F1vPLcC5w5ehVdi7dRRsU4KMi9JkIBK9auo794JKMaveMMyyW74L7rovREVNGo1o1JMurUj2cxpv/rGYN4Wy0DX/1kacRWGvo7KuOtT+Hkq+Cff4QJf4RlawCYqZT6QWfviDzoF917VxZ1Ww1Ja0UqpALlKKRUOLZk8drlRS0vmjH/fRm5bmlp4ZRTCtWYMVnN3PbAI7mB6w/fASjlOs48/rjY2NhYObSmpmZDWxVs2zbhcPhaKeX9AE//EcYdlaMlz27d/S+HX6tntRB+RwqP6N79O0QGpHaBzZWWAuZ9dDtD98pIMrfc7HTxhfeahFISf12mGxzFo48+yuU/XNPKwtkqGdB6N5ccaW1XOXaijNFXwPTkRkJCiG+uvvrqAQ8++OB3bodXx3FYtPYr7Yd3HNdfSeTyv65f4SiHkJ57vXmruundO7LwsssSg3ZIbmxar2rLAa/in3hCbF63LnJILNayaltbTtu2iUaj+zqO86VSKtq90u1fdvN2tEk+2FxztCnT3B+e1MjZ3nLZLxlZ92ydjAii582pPr5bJ+76M6UJZr1zG4cdkPtF9ucn20pIWTAKIITqdWsyX5kyECCFoOHr2ygv2A4Z/jrLUVdZivk7JWOzCV2OAE3Tmmpra8sqKiq+c+TeHrSioWWVvKtUYtAOsVDykNzT2M8/L5pWrCg+pLGx8evkFSDO9phHye2mv8YdOWBDraKwsPCnLS0tTwBaNAJvPgqjD2hNTC9vHjzNlv0lFeGL5/dmyna5zG4w8sqoOCupsYQvXDDz0885rNeLHLZ/jpdT5MiPSKfp5SNlUZQeCwiEbyeG1FJRBR++fjtjD9lOGcmA7Ke39+kwfAg8Myl32tsrw183uRrYtmS0AEUj3GNd18scx2moqKhgd0MuRh09cSLvd3jkvYPQNHj1VewvvgiNMU1zRmf1daSUVFVVVdfV1b3jOM6BAHv1hBf+BAf3y6GpO4CUNvGZ7SpPeDaUwh0J91wOleKpp19k/Jgv0uOb/nSVr2Hxy8iXD0/79XT3q0/FVi4rbCHYtOB2epTvABn46iyrcbvsd/DXF1z/+k0fgrB3sAxfAu2WQ8E7n8OJl7uNXTgcrkgkEr4x+d0PrV6//v37GxdfvCL/gtqOJizgnXew58wpPLmhoeHd78qHHXLBtm169uxZVV9f/7Bpmmeq5OZxY0bA45Ogf1fafamSpzmvt2owfAFK6MzZdA6LPnuZn5xkugsN/PflMFOBVHcCL1s+jaY8zYZ3rCF6TUgmlXS4EIIXnriDc49xdpCMLA2apxx1JvQYA6YFfXvAktcgnLWIZntl5CwHMGUenHCZuzRXCPGslHJ8Zw+u7Sq0KuXxxx/LgQe+p5Lfoet4QgJmzMCePr3wJ42NTc9v757t3wXYtq3ts88+pTU1NZOam5svITmcaOgwdgRM+gWMHIQ7FuGHT+34++cZLyTkNjGzM5FH3WVoNrJO/BcFUPpDKBqJFIK/PfZXLjxpBUa26bK9MrKvdaActganXwtvTneDu5S701mHDQLhbIcM5aZ999/gzofcfQGEEGiadmUikfjzd1np7Cy0qi7TNLUzz4w6I0e2PxYxZw5MnmxcblnWX/aUltGD4zg0NjZqlZWVZxuGcZ1lWaP8u6qEQzDuZLjoNPcrrLpIvrzkN+NTyLYe/CQhR1fAT4bkufLkJDWjv5+7U2T4jjsiI1VVYViwGiZPhUefgq/X5K4S7/byEne5rFKwuZGMOeR0gypkJBL575tuuum222+/fbf7SOi2oFUNxONxDjqoZPV551m9/eFKwZIl8OKL4V/HYi2/39M/sdwRKKVobm7WKioqBpaWlp5dW1v7IyHEwd41D0K4q8IOGgCjDoURB8DIodC/R/IlTiR/fTv7ZPAnm5TtZoxUAn7z2M1M6/5wPhnuPC4QBmGAmYBpC+DzL2HKJ/DlQvc7cFlmikwOAsbC4fCzUsonfv3rX8+87bbb4oZh0Ja2NU0TTdPw3j1vP/cA7SPn6xGJ8PiNN3LxypXw5JPab03TuSVoFXcuEokEoVAI0zQJh8PahAkTor/97W97h8POx1dcQaWuu0Tz/2la7vPsXlO+R5cisk8bAq0HwToIbzbls8+EnDLF+EdFRfUvVq1a1RC8O52PnE8gHnenuILWcteirm4zvXtXP3jhhebVVVVbqaU7AbEYvPCCtrGuruzy6dOnvzZgwEAZ2uoPBATYFfiOv0q7N5KLX3566qniyeHDt0J1tpnmjm8gdB3mzYNXXtGeHzp02EWzZs2O7Q6DrXsSAqLvQiS/Fz5wyBA195xzKGxrfz6l3D/DACmRK1cKbfFiJVetMtasXWtP7tev3yuHHjps3vPPv7jOsizKyoqfuPFG8/zt8X/w7n3mGWGuWVN4Xn19w/PBWMzugYDoOxFSSvr161vqOOvmXn653FsIqK9HLl0qtK+/FjWxWMnnq1bVv77XXnu9Nnr0kWsef/zvcYCt0ZZVVfrSq6929t2afHlaf+lSeO01/e1evfa76IsvvtgQmN27LwKi70TYtt3mKPK2YvTo0Vp9/dTEmWditGemK+XOI//73zQtWhT++cSJE/9xww2/koGm3rMQEP17hJ49e5Yefvi6+iFDcl8XApYtE7z6qj6lT59BF3zxxbx1QV86AARE/15ACHHgz3+uvqz0PoSo3AGyV18VcsGC6PW/+MW1D0ya9JtgxDtAgO8bkg41/zlhAurKK1GVlfpnlZWV/U3TbO/WAAFaIdDoAXYolLRQ6BqAwJFCC6yM7wICogfYZijHhpoHNdH9FxLA+XTYrUrvehNal6hsXI5qXitRkUUy3vB29PR11wttz1tM8l1BMFITYJsgl55eyKLDl6n691I7vCu9+AbR/YJC0eUEDaFp6EWGQhyIdOoCkncuAqIH2GqoBYdcJjCaMcr3FnpRHFyTXaBFRbgrqmU1WI0pr5/ICZ/91n9//Z8LDmx4tKK54aGiD5tfOSl4B3cBgkoOsFVQX428XxUf9SjFRwECFfv8BAChhVBK2jgJVPNi97taSqHsxHQK+2T4AAoS/YUmCtGN0faa6VbDY/sH7+FORlDBAToMJS0welwsSk8AFMgEQkQvkDKRjGFsUHYDJDam9qIj3OU8TctyzrH06pSPr1KaU7PihV1clD0OAdEDdBxKaehlpehlYG8AHJSIDBTeLqBm7VfKrEHZMVebKyUjY95a1SodvfAMvIZAAYY6UzmJVtEC7DgERA/QcWgGGOVSIVAyltwWS2hq1Y3ujv1Ke4fEBpCWq62lYxLu2ioZYaiDXWXuanXXjVcP3sWdiKByA3QcykG53yREINx91pVC1b75DACRXh8QX4enrZVjrsk225VjgzB6eqa76xikcDeFCrCzEMx5BNgaSKHsBqBUadHkPnQKCJ8qHQuhGfPs2Sel19gq5mQnEHthaLFCaX7TXdlSqhxfog2w4xBo9AAdhtBCYG+eqZQJerlvR1uB/OSgn6JslFkrVVJTK9tqtdWjrF/9jEi2AymtntBma0Z0F5dmz0JA9ABbBy36B6xvEXoXXMXsae/QEwodrMbPUe63lIXQMyxGp/5rMEKnoBTCZ7orad7bWcXZUxAQPcBWQfV/bIqIfSqVXgoi5Otna5rz4V7/paz6iUg7uVNkpDh1n1LEXhj+SorcqNSXVEIDTn+580q0ZyAgeoCtgqbpkticyVjfgihK97MVKL3kPhHtOR3HBhTKiQ337mv+a/QYoYdOz5hWQ6Ec4sXjn8v+BEaAHYxgMC7A1qPslDNonu0oDJ/pnvyzY7VKOV7fva+SFs1Pdh+FCL2HnQz3x29R/63p4U4u0O6PQKMH2Hp0v17SsvRKrM3+EfakGU9q2g0RKY893f19YUQ+Spn4numevEff67CJnV2cPQHBMtUA2wSlFHLu0IXKCQ3CdlA5/lLhVna4RNkOTkzNKL+h/ohAo+98BBo9wDZBCIE+bN7+SKvJb74rn4b3a26vH58OB73nkDEByXcNAqIH2C6IipPKULZUGSY8GcfuCHt6Sg2lUA1qTNmFs4JBuF2EgOgBtgv6wN9L0e3sENKx3f551uBc1p9SoKzQGRW3tUzt7LzvSQj66AF2CJyaqdifXVirpFHp9s0l0rbxjpXloEyzQTnhPmXX1DZ0dn73NARED7DDIKUsjb89ZKUwm8v9A3LSsqVKOKcVX1Y7OdhnvnMQ1HqAHQIppQZULx/zSbldPDBlqlvr9+Lryz64pvSKuoDkAQJ83yGljK5uSlyxIpFQ601TrbFMVfNwg1o2Ypn6MvRlQlrB6rTORNDEBthuKKUQiNI6Ie8KCQFCoClouCRCeFgUrUQLLxi4oLyz87knIyB6gB0BTaGqev0l1lXzffUxJAQ191WQOLEQa431707M3x6PgOgBthtKqWjDUw0nGNUGJdPTn4wSQLGmseGRLnzycY9R0pbB+9ZJCCo+wHbBM9sTXyYmaCUaQkLJR6a7pgUIC0FXQ0ffK6z97+trftqpmd2DERA9wPZCU1JVh/qFSkUoabY7irKPLBQKIQSluk5Xw6D50PBj0gkG5ToDAdEDbBeUUtElicQ1ehcdoQkU7m4SQkHFNAthKVer6zqlUSP8xuQNwaBcJyAgeoBthnQ3bi13BJeYoyKAu9hFKJHcM05R8mYL4Q9bUAIKNI3Z+/Nkp2Z6D0VA9ADbAyORkD0LdU2T3TVUcmdnhUIlFNYqi9j0GOZDm+l+8lq6/08dToV+kgx2dt7lCFxgA2wzpJSFS2vjjxWXGT8OCYFEUfKhibQU5tcmzdOaic2NYW4ycSwH27ZxLAfTiB812jx6emfnf09CoNEDbBPcDSFFqSwW5xrpc7YcFcZeZRF7P0bz1GbM5Sb2Fhun2UElFEoqhNT/Le1Aq+9KBEQPsK3Q7A12dWFcGJ5ZqJQigWLe+WFin7Zgb7LxCJ3c9zV5o1a+9r61wX6FuxAB0QNsE5RS4br/2Xxl+XsJ3GF2gQPUOQ4bLZv351Sy+PelCKEy70v+W3rH0l91Ssb3UARED7DV8JxkVEJdrBVoGOsdlFI0S8lG26bJcZDA2gsLeXtTbxbfWYow0hodQItpE4M59V2HgOgBtgWaU+tUhvYKRUVYEF5qYycUmx2HesfB3dU9ueOzVCy/qpTX1/TjjWV9+faUAhASlDCm7T2tqnOLsecgIHqArYZSKlx7T+2VRpUBGihbEX2okbpGm7hSSKXSW8el/hR2oeDjx6p5cc2+PPvtAGZeVfEvO5hq2yUIiB5gqyEQhdJRV2ilGiiQ9ZLEFwn23W8DBXMtcs7aJpevKkAKELZi2YVdjiZ4B3cJgkoOsFWQUmrSVqWJ31UUipCrza0VFokvEzhNkoOOrWXombVIzb8hbFrD+6GU0m6YtfKYXV+KPQ8B0QNsFYQQxvIVsSvDQhA/OopslCS+TGCttlCOS+WS6RZjK9ex381bcAyRJrtHeJUelqvprv/LCQbldjoCz7gAWwUpZemS5sTayqhRLICGJhtx9HoSCxKQ3KXdwUEm/zk4mN0Vc++sYOU5xTgJBxOFBVjK/f3hai007gc9gz3edyICogfoMJJauecqy1pbrGlYSrHBtlm92WRAn3Wg3NVrfpJn/koUDokqWD02ytdnlrLmsAJiTfaEZ4fsfWdnl293RkD0AB2GUsqo+X3t+dZ1pY+HhaBJSlaaJpsch7hSHNJvA6JB5SG506oB8I5tYcdOjp9cpEWCnuTOQlCzAToMpVTUXJC4peiNOI5SNElJs5RI5fa4Zy/vzobLC1KOMdm/2WHesVCicOGNC4N3cSciqNwAHYKUEoEoNnoY+2qGIPR8jAbHwfQG1pS74cTS35Xy4YYeyDL3vlwk98MLW/rg0v/bBcXYYxEQPUBHoTW+2jgw1DcECqwvE1Qe8S2OyHSMAUBXfLC0Jx9/2B2R/FhqLk3u/9Us7ZJgRdvOQ0D0AB2CECLc+ELjbXoXHafewZxvwlKLA6rWpebMwTdnLqBp/xBvru7LO/P70Dg0DHlMeAChhPZKt1cCl9idhIDoAToEpVSxViCOExGBtcLCXGyi4gqVgEPK1lM02/KRXGQ4yZhdNT54szcvfbsv70ztx8bjCtCFRCWHgj0t7zQ6/+rEIu7WCEbdA7QLpZTWssYaWFeqFha/Eafp1SaaXmtCNqTXmoMgMUDj45ldsaV058m9X6VSc+Zm6prCNEDbaFMxv4nqKfX0nLqF8xaeLDQj0D87GgHRA7QLpVT4m9Wx+4qqQ1dbjRJr7DrXQcbJjOdNma39jyhf/r48TXiP6CrtKGMqha0Upv+6lFTMbjr+yfEHvdsJxdytERA9QLuQUpYua0zUlhYaRp1ts77Rorp6jbs6xR8va55848lhZv+5K6YBlucNl4/8yXB7i7lm8oH79jECrb5DEdRmgDahlAKHwmiBZlhK0SglVhS+ruuFKs4R3zfg1uWNFk7os4JTey1jr8e2gKOS/fesJaw+H3hZHuodqJ8dj4DoAdqDtm5xbLSGoEXK1HpzgEWre9BweqRNxxgAKQWDb63hjN5LObfnIk4btYR9n9mM0SRxQu78nBIi1Qic+fKXP961Rdz9EbSdAdqEUiq85tw1n+g/Lxvy7UiDOschkexPeya4vsjmoB9sws7r497a/TX1KyQCm5YywbqDC1gxtphlAwviL/7ooALd0Du7+LsNAqIHaBPSkeXrL1hfRxhqegk2/brYHUyD1GCbqRSWgH0u20zFC83tkj07PFdDMF6OF0ILXs8dhcB0D5AXSikaX2qsBDDnm4T/UE+34zeikt9AV8kdYwCQikV/rmDq+p7E93Zfq3wur7lM/ezzfxT944odXZ49GQHRA7QFreb2msutNRbmchNMCM+y2Kv7GpSZvSdcclAtJJgxsyfvrexDbH8D8hC7vYUvIi7+FOwSu+MQED1AXihHYdfb/2UuNZFbfB9iaIH9uq2l/KmYO5BG640gZYFg2vu9eX3D3qy4ssz9vKqXbgdWt+lKD0/58ZTorijnnoCgExQgLxobLeNr3UwUlK/SlOmGZZrbAlUKny6owixw58pNfHPlGXPmIGMOI69ZRbd3GrFl7rXp/t9mrfk3V8orb9v1Jd/9EBA9QF58sb7paLtUvG/ZUFa2EnB3kBFZr41C0XCYzqevd8HO4QTjOcZ4XnC2I2mJCnq9toUDHtlAxWeNKCmxlET5iG5rtnlB4oKIHgpG37cXAdED5MWcuqa5MiwOdl1Woap8FTitXxlv+ygHhy1HGsx6vgpL5Hd/9Vxg09dca6AlDLajCNVYaHUWpgH7f9ZY8uh1hzft8sLvZgj66AFyQkqlaRExJB2iWNvQB9m1dVz/SHrJ9ATHVK9k7IGrKP4ykdcDLjsFACOh0CxFvFSnvm+Ehp4RZg0rvHsnFG+PQ6DRA+TEgnVNxVa5aLRk1mIUFN0urKXo5Xgqrl+jt54zd9g0JsKM+7vT1E1vreVz+bz75CWUsufvtW8oFAp00vYgIHqAnJivfXmxvWnvx81IVn87eSyW2gwYuRGlQGb9y+8s49BSLZj/s0rmX9iFhJ4mve0350mHOwr2n1ZX8sKlIwPzfTsQED1AK0hTsrBw4XLNEf0b6vphG67La8aSUlyPuH3PraXovXj7rq65doEVDo7usKVfiBXHlrBsTBkb9o1SX2Fg6ZAQ4CjQ1rc8svDIg37W2fXyfUZA9ACtIC2pLQovsoQSGpqitqYPVijT5E6RXkpko+SQg9fDlq3wcW/zWvp/iYOl2ebl8csjejgYfd9WBB2fAK3w9eCvi4US7rshBV0qV8Mm2XoTSAAhcEo0Pl7ak5lzeiCLWru15nN59YdlXvNvJAma1MIf3fpReMeUbs9EQPQArWCtsSZmhgiq915H0RPNrWA/ZLUAACAASURBVL6flvoTkOij88Hyfry/uC+JXiKLum3vApvvmnf8+cOf/2knFHWPQUD0NlBSUnJtJBKZdPrpp1dZltXZ2dklkKZEJMQlitb/Kq+po8+xm1DJLZ5JTpNlkl5hlwve/6w/r9fsw/JrytFo7bPeES3vP9aatMsc02kVN0DHEBC9DTQ2Nj7w7LPPTnjvvdfvP/vssLP//tQXFBTcN3z48GrTNDFNs7OzuMOhNIFwKBWIlAec/zjymc0BZesonG2mzXiRHurxE17YMP/Wbry0dhAvf70fK39S6u7+SsfM+4x935WmfXDlB8H7uo0IBuM6CKUUhYXRe844I/H/DjgAbcMG+OgjvWHxYv2fRx111F333//AukGD9kfTvt/v4rx/bjpYnVI4N1S5EpF0eQUyjkmGyO6CWfO6YenJPeFy7Prq94SzcafmEhpUfNrE4IfX0+vtzZgy/zy8PyyhJR74pfzlLzqhWr73CIi+lZBSUlJS9J9HH91y/4gRaEqBrkNtLXL6dGLffFP4YteuPSeNGTP660ce+TOGYXR2lrcKc1c3vqF10U+SMUW020pSm68n4fd19xxlmg8SzH6rCsvA/SRyDqK32vI5eWxLRUJzGwq9xqJobYzy+U2Ea0zCTQlaCnRi3UKsH1LKpj6F8suh++nG97wx7QwERN9GSCnp1q3r6YMG1T13wgkqLKVrwSoFmgaNjTB9uh5bsiT0akFB5V1//vOfvzr55FPkd1njS0fxRUtMiWQf3FRQ0n0Vojl3fIXK0L5mN8XMl7tTv6/Rmuh+bU/uPd+zfeBlhix3pesv14qiy8buG9u5NbH7ISD6dsJxHPr06TOsvHz9++PGqVKlMrqseOfxOHL6dOxly4relbJo4rhx42ffd9993ymNL6Xiy5YWBQoHUuQrPXYDxiwzpymfaysohWT1T4r4/M6uxIsElpKZc++0se2zr1HIGMJLDvxpG1oemT96aOA8s5UIiL6DYNs2BQUF1T16yM8uusjpqWmZhPfgEV9KmDZNyIULo1Oam/W7Pv54xtQDDjiwUzX+54vrz6RP6CVUkugpUiq0aXG6/3BTqpcuEHkdXvzHStisO7GQOb/uRs2gCI6l3HXrSbfXjAYgi/Dpr7S6n3gSQmAqxaIBA4SRq3ID5EVQWzsYSin69OlTGo+v//jyy50DwuHchE/HTxFfzpwJX34ZnRGLRe6+6qorJ//mN3cRCoV2Wd4XhOZ/aG/ca7SKCJwc/WpTh37DviW8xEmNlLc3gObgoKOzkY18yXyWia+YPyxOTXeHUJcuRPv1o/Swwyg48MC06Z7U6O6HnvCWviENgdIEv/v9ishZDx+Xd8rDcRwA7ayzzgpv3Lhx0MyZM4t1XTcqKiqajjzyyDUvvfTSBiklur7neNoFRN+JOPTQQ8JLl85769JLnaNLS9smfDakhDlzhPzkk/DMujp535dfzntx4MBBUuwkTSYdySJ9kRKAubkfViSr/+wztcVii/1/sKnVLjH+XxOTSUxiClNayfLK4C1XFUmNDVAaqmB81cUMKR6J05JAxCwiNa4vvYXCQZKIJH5zU+KmjJ1nbNsmGo2eopS6RUp5eDI9zS8vS6YUQqwqKSm5b8aMGf87cOBAuSsb1V2N7+7I0G6Azz6bazY0OGMPPPBR/Q9/CP9j7dpUV7NdaBoMH660q65KjLr5Zuu5J5/c3znnHOF07x6aW1RUdOEDD9yPZVk77PlZyy1NICQIwpUrYZXTeh158i8x0OCTmmqW/qOSTP83mMUsRjOasYzlffE+Bx98MM8//zwNDQ04joOUEsdxUsdSSmzbZuHChVxzzTU02lt4dO19/HzxT3hw1V0U1oCDhu2XZHKztN17R40aVahp2lzDMJRt269LKUcde+yx2jPPPKOtWLECx3GwbRvLsnAch9raWt577z0uvfRSTUrZv76+/v7Bgwc7kUikrqqqapiUu+eGlIFG30mIx9312kopDMNA13XWrVur7bXXXpPOPtu+ef/9ty1dfx9/8WLB1KnGVxs3OvcfdNCQv82ZM8d2HGebNNNCFv5YoVKfLRZA7L8raLqyOGO1Wq7R8pI3Y0TOm8U4xiGRlJWV8d577zFs2LCUtm5Li/vjKKWwLIs77riD3/3udyilGMQg/pP/xMb2rAb5WPFjRYubFy9WSvUVQnD99dczceJECgoKUmXKJ8OfD6UUTz31FJdeeqnnAGUWFRWNqK+vn/ddGijdXuwxRE8STwPQdR3DMKRlWSxevFAzTdO4777/0T744ENtzZo1BmAAmhBC69+/X3lJSUl5JBKu1DStctasTws1jeLi4sKKsrKSwvr6ukLLSlQKQbmmUSkE5dGoZhQVCaOoSAsXFmrhcJiwbVtGQQFGNIpRUCDp0QOqqra/XB7xlYKvv0ZOnaqvqa0N3afrob/W1dU1KKU61M//mq8XWliDvHnylFdaT421C3tikzkq7g2gOcCEww9nw9KllJeXs2TJErp27bpVBPfgj+tdu/vuu7nlllsA+CW/pBe9kEhe4zWmadN44YUXOOOMM/Km2xEZ3u8333zDIYccQmNjI0KIVdXV1fusX7/e3sZH853Cbk/0aDR6sWVZ9x53nCrv1UtpkQhEIkhNUxgGGAZaKJTuP+cbKfd+PVLlQ2cPBnt5EwJWrhR88IG2ceVK577u3Xv8dfXq1TVKqWyNrwk07SvmJ0BkdAXSzjGKjY9VUndOgesBl9TmTY2N/Gf//iilePXVVzn11FPbJHb2eb642b+2bTNgwABWrlzJYAZzERdhYnJD4gYMw8jog2+rDP8977zzDieeeCIA3bp1O2TTpk2fb/MD+Y5gtyc6uM4tixYt0n74w5MPXL9+1X1jx3L08OFK2xMGXT2O6TqsXo18/31hrlkT+qOUPGya5jpA+/WZk6p++tfr14YqV7Ta4TUDhmLx7Cqa++usXbyIX/3gBxQUFFBfX5/THyAfyTv6m33fvffeyw033EAFFdzIjVzTdA2hUCiD7Nsrw4OUkj59+rB+/XqAC4B/bkv9f1ewRxA9G47jsGzZUm3o0EOu6t49cdNxx6me/fopzbY7XyPvCij1/9k77zArqrOB/87Mrdt3WVikN0F6UxRFEEPEgt3YWxJ7j0YSjd1o9DPRRKNGU4wtGo0lJoLYGxYQFSwgTaTXhV223DZzvj/OzNwzc+82QEWz7/PcOzOnvae95bynQTgMK1bA66+T6thh4qwb/nrPuE59emKULkMkguva8S173RjfyPjG8XTt2pUVK1ZkwwSkp+7eVremCPKtt95iwoQJlFDMw6++w8TdexKLxTBNs1nJ3hYcejkmTJjAW2+9hWmaZyaTyb98V8ft/wPdumVIp9PG2LFjes2Z8/GN48Zx/L77SiPyP3TMgW1DKARr18I775sM+/gEfmKdQRVVvrXtoAh9EIOoqKhg48aNOWNeHZobozcXrylww7733nuMHTuW8oFD+PTlGZSVlRGNRr0NRTsCh/59wAEH8PLLLwP8APLMF34HoJ3QA5DJZPjyyyXG6NF7HFNQUHvT/vuLPoMGSSOd/m5IeynVzzTVDyCThppa2LAR6rbCxo2wfr1aj19TAwcf+2P69etD90GD6FjZiU5du1A0p4jCYzf5VsIZGAxmMJZQ02NBgsrmoenxsOufT5o2RYz5cDz00EOcdtpp/Pa3v+X000+nuLiYcDi8Q3HoUn7XXXdlyZIl9O/fP7xw4cLvnIHuO9B1v13IZDIMGjSwy+LFiy8bOpRLDj5YEo2qXWtfF+G7xCqE+oVCimhTSdhapyRvzRbYVA3r1kFpHHpWQYcOMKAP7NYLdqmAykrYpQQiIbAlCBukpdJOpWFjDSxb05uSEz7NWhmF0DaiQOWQlRjLVYc/j/N4jdfYtGkT5eXlQJOLUZolNNu2fQRpGEaL4+cgDoB99tmHd999l+XLl9OhQwdisRhCiBat7q3FoYdxp0mllAnLsuLftVV17YTeBkin08yZM8eYNGnS3uFw3R0TJohRI0dKw11j4fYV3fKtvxuG+rYsqK2F6k2wfgM0NkD1Rgib0K8rdCqFHv1gcA/o2RnKSqCsCApMtWtU2PgPbxM4tnHnLkO9VaUTR3taEhoaYeUG+HQxDNyrDmsPQ+WX3A0nclGGkj0XsmdmL6677jquvfbanLppSnKrsiv3t956i5NPPpmVK1d6foZhcNhhh/H4448TiUSa1BLy4bBtm1AoRFVVFV988QWFhYUYhuGFaWxsZOrUqTz55JNs3ryZWCzGqFGjuOeeexg4cGCrcOjl+Oqrr+jduzehUOiyTCZze4sdZieCdkLfDkin00ycuF/Zu+++e1bPnvZN5eWENm6ELVsgnVYSOGNBh1LYbwycehSMGQpVhYDtCFDNVuQxBpcwwUfEgI+40dxcIvV9a0QvyH7bFmxtgC9Xw5z58Plnlfy071wy15cjRe4lCikpOaZbN1INDehHarVkuXbd6uvr6dSpEw0Nze8uPfPMM7nvvvty4jeH44033mDixInMnz+ffv36EQqFsG2bESNG8MknnzSJKxKJsHDhQnr06NGqKUBQBD9+/HjefvttbNsWO/OW4yC0E3obQUrJXXfdFbrpppv2W7du3U2GYYyybTsEirg6d4BjD4RzjoO+3SDkjuZcgtPpwK39fG553KXUvIPhgi2ZjyE4kLFgaz0sXgmzP4O5C6HDgsM5Zev/kVzQnZTwr4Bbv3IlJw8axIsvvsgPf/jDZmonF6qrq+nQoUOrww8ZMoR58+a1yXgWi8UoLCxk/fr1WJZFQUEBrV3K+tRTT3HUUUe1GperRZimebtlWZe1KuJOAO2E3gqwLMvo2LHjbolE4qaGhobDHGcDYOwIuPR0OOIHYDRmx9WQpT/pfASlblbfVk4e3btSXfd2Ve9g/CbiuOnpuN1olgV1DbB0lZLocxfBinWw/6JfcMDq02iY0ZnE3mFPdf/x6NGsWrzYI57mVqGpvGTV33A47O4mazVMnTqVW2+9tdU4pk+fziGHHEIymSQWi+VoFS3BihUr6NatW7M4dLdJkybx2muv2el02vyuTLd9N3L5DUM6nWbr1q1Gjx49jq+rq7vLNM0KUIQzZjBccQ4cvh+Q0AxyScDIL5yF9hGUyD7i1bykQ9guuATrk+w6kwhQuIdbz5Bm4DMMiEWhpAjKiqGmDl7qcysGBpMmn0K8u8m6T7tgGIJVixdz2WWX5Z2n1p9B90svvbRJIu/Rowe///3viWjzmEIIamtrufDCC7npppt8c+PN4T7wwAMRQlBZWdkqIj/++OM57bTTME0TKSWfffYZXbt2bVX5hBA89thjVFVVGV27dt0d+KBFhDsBiOJi86Vddx16wuzZczZ+1yyJOxISiQSRSIRYLHZOOp3+nZSyACBkwqU/hat+AkWm39IuNSkdlLqeVT6fWt0C+CSyrgm4BB7QGFqdqJMfW0IiBRu2wJIVMP9LJd3Xb1Yq/cC1R3DqFzcjgE8PWcGPnp9MOp1u02k4rpU6nwr9xz/+kV69ejU5zy2lpFu3bgwfPrxVeAAGDBjAokWLmg07ZswYrrvuurzMYOLEib4NMS3hM02TeDz+YUNDw+gWI+0EYFx8sTXp8MM/3vDDH4asSCTyG9u2v5fHGDcFlmURi8UOjMfjawzDkKlU6t6CmCx44Gaw50LqPbjlzCyRu13ENZS5fcY1ggvdT3u2+JOahV7PoM5IBE0SebDv6kZ5UAzIU++FYmBFMehYDt2roMcu0KWj+l7a41mu23s/DMLc/by6tdidAvPhkNLnpn83NjbmJfIHH3zQR+TgV5Vdonct883h0OPefPPNObh0OOSQQ7jmmmuwbTsvoeuGOx2HngddtZ88eTINDQ2j2jpM+LbASCRUBxg/XhpXXJH65ZVXGnLo0IINFRUVR3z00YdGJvOdWxvQIti2zZgxY4qEEC+ZpikTicR005Cd/3AVZD6ErW/C6QcAKbLEpRO1Zi0XwhfECUBW+uYBV/oLLeyfno5ncTg/rw9JP27fu5umyH7rTMBlIkHOYDqqe0UJdK2C3l2gTxfoUQVdKqGocj1XH7Arb4s36d+/v2/aSidIlQ+ZQzzOGnEfTJo0ydvZ5sbTn+4ceNCtKRz694EHHgjAghkw71kY2Ntf/xMmTMjBocPmzZvz4nAhGG/q1KkA9ty5c78TpnejtjZ7Bp8QEIvBCSdkKi+6qPqZ++4ble7YMfJRz549erTVoLIzQiaTobS0dD/TNGtmzZq1FSknHXsg1LyvJPeFR0BGU2ZcItbBI2hNskrdE7/hS48TlNQ6jnMu+CWPvDZYjcuFZtSTWj60MbabhggkqePRn3rfdr8jYSgphKpy6NEZ+nSFvt2hd1f13b0TZKTNxIkTtToRvk6vP3VCyCfNL7/8ct93U+PvpvyDOHT3goICAF55G4Z2hc+eAOtD+OcdUBhThDllyhTuu+++vNqJbmgM4siHc7/99gMwRowY0S9v5ncyMDZsEE1ypM6dMS66yB7xk58s/+rww0NWcXHkz0OHDi36rhG9ZVmEQqFLwuGwVVNT81pxgSx59SGwPoDHb4QSxzQhJDR0+CWzFgSkN2St5pp+ntM9NUmsG8dy0nKTcN3DPRFCcPKJx/LPt4ZnmUceye3i0Y1snr9ukNMhT36FUFI9GoHSIqiqgO6dFZH3665+fbupsPvuu2+z0s6HyiGErl27+tyLi4t9c/BBlbipX3M49LTcOe135moM1oZjx8HWt6DmPRg/Gp577jkOOuggLr74YjKZjIcnEtjc0NL0npu3Pn36jGm+RnYOMNatk83q5m7n3n13aVx6aeqMo476ZOvo0aFGwzDOmDHjBZLJ5DeV1zaDlJKCgoJbTdO0MpnMHYP7SmPzu7DlddhvYJZYsuNsQVlhnN0n3ci090QOgUr80tR9eF1COMY4bSyfj9iD6jcFQ9TmESE4/tij+NMzZYphkAcHmnousxq5bgz0xvz56gQtXQPMiGN9L4TKMqXK99xFEfmuPVS4Dh065KjVzRGjlJJ4PO4jliFDhjRpfNO1BPfXq1cvH658OIJjaSEEGzfl1hUoZv76n9TQ7LoLYMmSJRx++OGcfvrppNNpD18QRzAPwWHG8uXLcyPuhGBs2MD61gZ21cYjjpCxq6+2//zSSwfK3r2jq+Lx+O47k1HCmb+9RAghGxoapk7YAyM9F+Y9DqXuIRMOUUL2WxhRAAxbcuAxNzBvaVZN96zpZDtPzlNmv/V4Phyafu32dREf6GgCqrOefcFlLFrtDxvUyb30yLp7lx+6YbX86NNybty/TYfQaHhlnpLsRUWw29FwxKXQtZNafgtQUlLiq9umlo7q/kIITjzxRM/ftWg3FT8IgwcPbhUOVbfZ9FLJZupKgGnDtaeD/QH89ddQvWkjRx55JFOmTCGRSOTgcNPX392FMwC2bZe2WJidAIzNm8NbtoVGhVAd48wz6XLFFY2zjz9eyMLC0DNDhuxW9m2p9s6Uzt5CCJlOp+8YPRhSH8Fr94Dpnh/sSlONYt1vGR2EcKjHsG06D76UtMgTT4+jP/OFDYYn2wddFV+GKnydU0ibNakp/jS0+O5TbzdPsoe68O7Ko6hPa+m52dDoyzbgDOcc1cl7KTX+pKvU92H7qbX1leUqimtYyyeJ9fcgs3/ooYe8MF9++aWvnZqLV1VV5dty2lzYYHpFpbS6rn5yIGRmw11XwYIFCygoKODUU09t0uinGyHd/BUVFW3KydBOCIZhFCzbngSEUPuZBw6En/88c8SPfrRg84QJISsej11pWZZ3SOLXDcOHDzeEEGsymczMsmLY8i588He1BFVoHd7Ncz4DFYXOvK1Ue7A7lZfy9+d7ev5NpUMzfjk4pP9bSsDOgBTOUEL1zPHj9mR+9kwHX5yggPfhLRjF2N2HszlyHltTfpuAHv70a9XzjCNg9WqwQvD0y8ptzCClzsfjKrtLly51ypQriYPSLkiYixcvBhSht0aam6bJqFGjWo1Dz5eUkv49/XXSXF25cMERYH8IZ/4IHnnkEQzDYNq0aTmzC/mGLxUVFUubLdBOAkYikflwRyXmjucnTZLG1KmJm375S1MOHly4plOnTgdYlvW1TEM4hphL586dawno/NIDUP0qlIT0MP4On7OizPEQkW7OODxLpWeccxbVDVr4QFnbjEP4VXswEUI66qXqkkKAkJL3P++dTVBjKt40nKaeu3kgvitCQLddOrMscSp2YLUeEmwBj/xHfR6wF3y+BI79ufq+/my1ai4Ugoih5tufffZZX31DrnTNJ2mFEPTp04fly5cD+E6j0dNwn0VFRRxwwAE5/i3hcP2EEEzepw11BVk7hwX3T4XGD9S6gilTptCzZ09v3r0pK/3y5ctn5WRqJwSjtrb+y1YMmdoMQkBhIZxyitX5/PPXzzjzzJBVWhp6q2vXLpU7SrXv0qWLIYRYZ9v278aPVoaWHwzRVGM3L2iN7TjoqnS2M0SyRi3HmiUsi6de6ZxD1L7xb1twuEFc9T7SDRA+A507sJ986KFqRb2ejhPXh0/PhNlBaQfA0AF9+fu0Pn5KF3D30+r1J86q/Zo6ePYV9T7Q4S21DaoNO5bDhx9+2CyRtQTdu3fHtm2SyaS3F11PLxKJsP/++7Pvvvs2Ka1bgkWLFiGlZP9RtL6u9PZwXqLAV/+FF/8KK1esIBQK8eabb3p43Hy/8MILAPb8+fOXtyqD3zKIwsLCEZdfXv/RN4FMSiUtZs4UmZkzw3/s2bPvFXPnzku09RzyxsZGevToMWrDhg1zAOY8BSN7aAE0ju6Ng7WGdr9znl1vcNrekVqoSwPWV2+iU/IP/lv/thUHAbormYIsHuN0RqmJfwnCILPqasIas/A6Lf603Siy6w1aFiVSGHzw6tXsMSCb19hYSGXgyVvV94cL4Ja/w/EHwFH7q3Bdq2DsELhvGpx7LTmHRXg4RO7+8eamxfJZr3X/fGm0BsePf/xjHnrwQTKzs9pSs3Wl+TnB/bMqKDtGvylqO+/kyZOZPn26l59x48Yxc+bMb3y7qm3b7HXx7pFV69dcaoaMk4CNRZHi2z75y2fTmlvCbvTq1XPp1yHRcyCVrey995ahn/88dcnRR89vHDkysrW4uPj4//znP4Y+z9oU2LZNaWnpjRs2bJjTpROkP4RRzrhMHyfrDew9ZeAbTZUWUTXF5UhPgdO5gE6VHVlfsyNw4E2/ee4FA7VOJrLjSWfN6tJVWXzeHL2XgSxOT1C5mogEKQXYkvrooZ49z44pIu9UrmwrUsLvnWsbfuTsQJXAyrXq/SS14IzXX389hzjzGcd0i3hTm0Lcp25wa2pFXGtxPProowzsrRSgVteV8+e2j64KSsCwYcm/4fe/ghkzZlBZWemp8jNnzqSgoODFb5LIpZR0P7HbW7UNW5PFRUW/KYgWDCmIFexnG9bzA8/sb/U9tdegpuIaEydOzHwjM2NJYGv2Uwh1PNLRR8uiSy/d+thLLx1qde0aXhSNRgc1t9beMIyXUqnUVSdMgZXPg2kFxqD4vz1t2JG2Dh0QLLOMD8W9uMBreDeFTIa5i3cADk2N9BiFWY6rm2f/wZ3k37gxT/lEdmzpdVAJhHsihXDy7477JRPG7clXG1Sc3/9dpXHJidk2SCTVM5PRiMDhOEVOPz755JO1cuRu3wy65xtbN0WwTS1vbS2O9evXk8lkePDWNtSV8xA6Qwi6O2lcdAQsflHtrQ+Hw8ydOxeAUCh0Nt8Q2LZNr1O6zS0uLBznukmNawmEEQ6HP+twTNlh+eIbHTt2/GYM4yYqU7V+Z+Fw1IoKOO88+l11VfKzY4+NyKKiyKOdOnUq0eYrEUJ8Bkz68w3w6LVkLdu+BPFJ1aCVW3+6jS8ACoZpBKss4J5UMQw2ro/4E9oWHFpQ102QcsI70twZnwtnnO3WD9rTReBKKDcxWTDc6bhuj3U6gm3z0jvlSOCOh5RXf2eos75aPSfvlVufDUnldve1sHr1apLJpI/QdGhq6i24EEb3C4YNptUaHFJKDjtM9e3RfdpQVy6zxQ+6UVVvuL4V0DhH5WHkyJEIIezq6uplfAMgpaTHyV1mFBcVDguFDcyQxvicP+HYeTqWdvx31dFV3YJpGNdee51dV0frjuPYHnCHD4IcYtfBsmDECLjsstSJ55+/vmavvQwZiUQviUajs6WUg6b/GX56EDkU5X1qDej1d/xjNPfpYxKRrujVlz3XXLmmrfD24wi8SxFCUzazibt5EIIq7domtxNqQbIdGyDe1+nU2bGBm4dBoyYiJazeqOLYTqd/dbYKesg4/CDhs8Xqee7hymn8+PHZbAYIrqmxdjbvfgnfVJzm5unz+SWTSWbNmsXV5+Gj2hbrSn93vnWm6n2TZegxqdbPh0yQUhr9+/cvyCno1wC9Tu1+R2Vl2QGhiEEoIgiFDcJRg1A4e86f0lZUYUtLilYEDd6GZVlGdXVuwzQL28IWXEJ3K35rUwEVuMRy8MEwYEDyjnQ6vftjd8DkEY6/FtYrqPue7edeY7mE6KWtx5eAiHqcUTit7FrepZTEwukdgMMfh3AXD4eXrpawRNK7i5aO8KeTM3wwK3VVzoskJQwZtiuyWMXvWJZNxyX0Lh2zCoCrES5f65TJhhsuhNmzZ7Nu3TqtjTTWGFDPW1LdW/PeGhzDhg0D4LqfOvXT2rrSwnnSXvMLPt0Pw4akU2dLly6tb2kP/PZCxdGlJ1dWFl8Sjhh4v6j2ixi4ZgK3zU3ToPvJXR7U0zEsy7LXrBFtI10DJZXbsszdFVy6iGvFkGHxYvjkE7j+fDjOkToCTZLKrIR1QQCuMUY6XMCnjslsGNdNYGn5kw7XFx6yDh1T24cDv3RBgogP9XC4hj93fA2w5MsV6iJjjZO5ODwLspuWVwZ/QHesXlpcypYtym2PwXiEUFOnoOMcMQAAIABJREFUgqbSuQzLtvEcrjpNufXs2bNZlTqfEa05ad3Uuvcg5MMxe/ZsFi1axDN3KQL06rilutLDaeHdvkTw6csHGBYk5qjv/v37b/q6ln8POXPgqI6lnR6OxExCDoFH3J9O9BqxS8AwBeXFpacuXp01LBm2bVNfH65rcy5KUITeWoLXKtqDdOA7DzzyCAzrD1efnnWTTnqe8Uv7Fpq7L7xLlG42ZPaJEUOSleCQtbhLJIRCDOu7nTg0N5ehyIJhWRzCnUuXIBX+V6b9KxsvgIdAungpCY/xKPVVeIHnzFevg/tmVVLLzpV2ulaSymQ9lr0EqVSKKVOm+KRqWyR7WyR+czgymQx77rknXTrC4Xv5899yXWlh3bbQyo3A09iC3dNV7aMSvpgOUsoKwzDu29HEvuKBaJ/icGZOWccIoYgi7EjUJBw1HWluekQecn4ujWXSEjMsmDh13zvc9AyA5cvTzYyam4FCVOIuwTd3MI1Wib7WaEaFdw8N+fgxbbyk/UCT5vmktNAaL5AFLw0BxAc7HV94LFyXKes2rKdj6XbiEHnCmsVaPOn8QAiJNAyOmbQ5K4H0Mmp14SYvIz1RZJ21tgdV0rXOlFnHMn8eo46dMUgMEvhsaTZs9zK45VKYNm0af/7zn5V7E4Y13QCnS/Z8kr8pLaAp4x1AUVERQsDyF7JdqtV1pbvr0l9j3l7cXNQe9O8IZx4DUsqzCgsLd8Al2Ao2PlfYr1P3XktePdgiUhgiHA6o6wEiD0fUeD0UEl4fszOS0uKiS9yDY4xYLEZdnb1smxiSSXbsDUoVb4ngA5JQ6Y25wRYtglQKFvwX7wx0N3oOV87j7raoJDee9+6EEfFhmvRwpm7IStfnnnxC5WF7cJAr2aVMZyU4womjJPIT/3yKDoX+cnrvMk+Z48P8fs48vOu/buMGqh29LRbJSjDpfAutg+tEsWylH/fUE+CHe8PZZ5/Nv//9b5/kxa0zyHEP+uthmppey6cBSCkpLy8nmUyy4a2syu6L21JdaeG8HX+6v9um0m0n511k3dzw9/0SomFobGz8YkdI9Q1vjdqrrPOARUY0Qr0RIhYxCEcF4aiZVdu98bmpEbsy0glnJWU6bROJhhh6wcAe4Ej0iorO237/cwG5orY5gndZqjeAIu9Y/dFH1bFG/auy8fTTVzwicr2Fn4NDtmF0N49jC63Boj18otonYUyDY3+4ttU4pABp5MGhF06CIKLhktk0BCQtm0PGfOypid4iG5HFo6vXCBDx/v48Oh/CmRD+YPanhJxM2IE8uQtndAOim++Ma7zV8M74A4wcAEcccQS33HKLXrImJbVKs+nxeHOS3v1Op9OYpklNTQ3LX4EOsYDkbW1dZavHJ8k9DUhrZ2/kE3BzrfpImPUESCnLwuHwdh1CUf9K96sqCs13jVgYQiaPbog6RKyr61lpHo4KxwovCIUMTOepyiIQBliy8SZwCH3FinVLtieDFOFnmW5Nuiq9vuAtn0R3wzrg7IFg3rP+xvAaRVPR3F+Qmbpqma6e6eg8tRsQIuwqvVrWlGS//567KY21Hocwypi1+mjqMwEcmlQXAJEqR5K7nVp61ya98OSNFEUC+Q28e99unkLljtQTWlj1LZFs+PJNKpxt5QmXATv5a0z6JTr4icPWmLLLEOY8Aj86EK688kpGjBjRovRubvot3zy67ielZM6cOUQiEaSUVL8D3Uu8LOWtn2brSvrbUu9XOQzZbUNNLRBaHAEM7QYFMbBte3pOJbQCLv3beQy7pM/ctFlyo8xkkKkM2DbvbI0QDgtPPdct7d4zrNR2M2woYg9lF0wlGixiseiJGSujCH348GGfNzcWaREEECe3dt1acyW8xiFzdCmH0KWEv/9dnfPl7kDTVSrIqlv6T2juevLS4fJuPj2VVWTVMonlEaDUEK3asIkzDl/jubQKR3woe44aTm3BRWxNOemLbDxPasaHeolIpBNO8Ke7fsvhE2xfNenvejm8upCAzICj/mfDOgY+0+ToA1L07qX8Vq7TyiqV1La9xAMg1Xy6p0Fp5fjnjfCP38G8efMwDMO3TLY5y3xrVH333bZtxo0bx+67707HcrA/grKIVgdan2tVXQXK4YV129DtF5qbL47m77arAB6/HWzbrmjtDTEAlm0Zgy/p8cv3Fr8piwoLhh33msBuTGE1JLGTabYK00fkWdXd9BnhFKELjJDADAkMUyCkIJOyKYgVGEjHKP/JJ59uH6EDhMn2HrfGc2pd89e/3XBptRTTtuHmSwPp6+Jbi+IaH6Turr9rzCGIXwjALHI4s/QkHAgsAY3L78SULeAQIJ1LD6UACoYBki6VHVgtf4Kt7T7zScv4sKyHFGCa3HfXrZxzVG1+DSTfu6staFJcP53WfT7+6BMUR2B4H+U2zyFcKcFwbCxmU+0vYMlKLe/4y3HCBKibBeXF6mz00tJS7+jk5ha/BN/zqfFnnHEGpmnyzjvv8LtfwLoXQViBvLS5rvKXQ3fThz96OHR/PT0Bh+yl3gsLC6fSBGSsDJlMhvKjSyb1OqX7zAnXjrAqSsp+40rjRmHww9dM/vWlxcNLoSCiCDcUEYE5dOEZ4ExHipum+hmmInhXfTdMyTG3HVQRAjAMow52wNbRIrKr3nQ1XifmZjoUjbB2s/o8/wQg4ZfmPv4gct1cXPmmRgRkp+N0NS2+GyCQzlhWoO4be//Fa9lnSCtwCIjsBQVxdcBij74vsM8ePRk6tCvjRnflH9MGc+IPP0OksnEBxWBQC/XXVm9i4ft/4OyjNP8gXg23XqVSAJEeuDvtdCYngQySH46ehxDqhF+AOZ/jMbXuVbBstdp/nsr4m8fFkUpr+LSKdW0QBQZsehVmfgETT9vKsGHDEEJw9tlnc/vttxONRvNazoPLXC3L4t133+XUU09l2bJlABy8Lzz3B7/RTe8TLjNvdV1JTasKlCNYd4GkskMvrX95fpbqA2nLuhj4P1CnDhuGYYw6f1jBptrqO3b7ya6nhsPhSFVZFZ17FnjMJ/tUCf91lTrSrLKLgQC1Ei6SVcttC4SwkRJsS2JlFENwpblpCNKuAAKWrl+8uwCYM2dW5LnnxiQ9Y0QKNa428vyCLC4IkhZXveWtQQdefh9mvq1OaG2ykl2CzZeVvI7NZLfDaYhoX/UuJWuqt1C75A4GdMum1RKOmx+GTIXSRPQptFQKamrUtNaKFbBiuTpOurQQdhs0iL326Mb6Je9y+RlbKS2FQqdxgjesNp15Jx8lh0LhHjkZlcB9d9/M2UckVAexIbSnqscnHBva63PgnifhxnOhf8/cTo6D4qgfNCP1dZwSFm+EYy6GTxa6ar6grKyMXXfdlX333ZfKykoKCwupqalh4cKFvPHGG6xcudI7zCEahl+dC1eerhanNFkHbWnrNvaLbYFTroVHnse2bTu821l9RliW/ed4LDpKCMOnBRYUhygqdVRgrb9kn4poyztFkRKicdNZ8qq0HtuSpJM2qaRFstEi2WCRcJ8NFomGDIkGC9uGkoowdcktv1cMUUouu0xYJSX499xJoAEl7IOVlG9M5zIBffCTT0TkA8dv2ovwwWeQeQ8wAh1P0xJ06eJyZB9nlv4OoofVsyJ3uQFQ89Z/+8tfOWXyMiLBnYct4JAGDDgOTjyxecJ0hZceRgjFEKqrYeUKWL0GVq0EaUFxAewzHIYOgb0GQ6+u6pTWqCB7RzogdvkFiEKvbqSD7LHH/8UJEz7xjaBGnwwfLYDHb1ZnAyRScOo1MHxX+NVP/XWjw+BdYVBPf33mK6pPAzNgfS3c+ld1TNWajWovgzvGdeuyvMRg8MDuDO21hctOqaFPVVbqNofDK1egfby6Fvjui8+XXqtxkCuX9LLaAm55qYQnV3bGjJgIFGPsVWiztCE7By0EVHSOZdPWpLnHDASEIwalHSLYNsTiJpGYsrobBmQyknTCItlok2zMOMStEXm9YgBWRhIvClFYHHo9BJBMJo0tW4RRUhKgXoFaFAOK2Bv00jUBroqVUxuBWgwyAAfKilQHD/q7Y2RPVdM4gKuy5l2tpjsFOgPA5voGnn3in0zZ+0t+elAeidYaHDYcN0kRTnNTqfmYgJQQDkNVlfqN1txdqDfgtS+h8XNYv15pBytXwsYNkExA964Psc+e3Rk5ugejBnZily7lvPvadI77wSdKM9Pa4oaL4dBzYcZ7cNDeEHes+3MX5WdEbn0tWgYDe2pFb4ZCvGksG6qK4Y5L4PaLtfSM7DsSVm602aXTV2r6T7QBRzBMvrABwnf7Tptw5AkiJaSF4B8LK7l3bhWmUKsS48Uq3vXDMkzoBNhgJxM8sMzg0TVxQBJyx9CuRNcQuEMcpaobkLGVOh5Wc+WGqSrWyggME4QhnJ+qV7XPP1tWK2ODoIeX/wMPRO61F62DJNnpsCCbC1SWr5ZaoT698w68Ow9qXs+TflNstQ0qma4JKLZLy+aJ1uAwYPBJcNxxrc/LjgJ39sC9g2DrVli1Sg0Zpt8OpnZIpB0Cc4S6peXhG1SnvPpP8MUyePA6iMf0hLOS15ZwbFNXowcIVOZxb6rJ8jXtTofD/TBgfk2ce+Z1YfbGImKmyxmdh/PsEJE8Pg5EyATLwk6ksesTHPRJKQZQXJ6dO3XXUWR3HKrkwhGT4vIwqaRNvNAkVmASKwwRCguSjbYnuV013fvVZ7xnJi0xQ4KKqlgiBGoKY889jTqUOa1liDo/CTQCwSsg3BptSqrniNosxGJqoYyU+Bbq6xtCvEbUhwh50Aj83FtqWXMPJPCIPNALcmi7JRw2TN63H0Isblaqfx3g2gXca/LicejXT/0MC3+Z0urqpaWrIGND2ISfnQjn3AzX3Q+3XOSUSTpN6NSJgVLWzGD9CI1xojWt7t4UFer9QObW+beOw4BFdXEeX9KJV1ZXEDayhF1SiKea+CQycFzPDEYkhBGLYKcyiIwNIYOJFWnea4xjht0dkm5c4ZXHVeHNkJu8eyAJSCmx7WZZVRZENpwQGCFQ94FXV4dSUmaaN/7kJIZaGQeK2BvJX9lBgm+K7QKdO0NtLYgQSNcQkye+K2m8sRj4bi5xVW0PjcZ8ffxB+hmCXoVtxfG7G05l94Ou4fDDW6i3bxq0TiwEvPYQ9PwBXHMv3Hy+mhoDdTZayFAbXfKpxktXwq7dtPpzeqBbfzoOnYCAnH7l1q17wotPZedbwAGkEbyxvpzpqyqZt6WYiCk9HIVxF4HIsbG4dexOc67O6CfHZnvUBiNCJJ7dR+5G9IY6WjquWi5tkLbEtiSZtLo4wspIbNtdIpytI239M2r5s6MpCOwQQDQapaoqshqoYFtA4pfqOdSi12qeuNkyU1mp1rlvaoAO0UBS+RpK5Pr7GlDj9Fqb+Aw4bufJuU6pjTiELRg5eHeE+OAbl+qtAbdzdS9Rlu0lK9XFDbaEn58Cv30YfvN3uPxUrcgaQS1YCv265frlw5FPauatk6YY7HbgkHb2O8dkJECYYNVXYjVUIC2bT2vh+o1lyhLtUFthQTZvurR2//IyGIdI36g3OT9Vh21LsG1kJgOWzdpwjChquixL1JBCEHUFmpemwmHbEiujfumUjWG4U2oS21JMQNF1lug94kcoewCs9E4/FyL6MaSG5GmKXJCoMbq+zVQjqCYldz5pH0g3ElGZ/NVd8KfLs9GCa7GbS9qXFSee6xA0xnkdTeZmJ1+xmsQhAWlz/22Hs/fhH3DQQbkS5tuCYF0JAe89ASOPhItugzsugzGDlfsHzhy7FIH6Axq0PQm6stZUs3phZP5uEkyryfw679KA4cfC8jUQDinDrWkqZtWQhE1boK7RScNJJBQ1qBpaTu9xlZT0KCIcDzGxJMm53TIYhQIyGYaKFL8W1fy6rmM2D3kkdXOE79MWBJyxvIQ7qzZTKG22pGwure1CNKbSNZx5yt6hNFcWb1HEmkozNbULdZgecpcxWhlJJmV7w1nbVtLdsmwsS0l723Z+GsELIBQ1AbHcI/S1a7c2feOEjSLsDOQQs95awVbLEY0aNEMEBQUwS99mIwNJBHqGtxAmkLTPMi+aRZkfNDwt4giVIVH3tvXvOQLD+HinlOoSqEvB8G5qqm71RvhqDfTaBW67CH7+B/jx9fD361R4r5xuJ5NgCH96LeGDrPak950cgteYSr6u89VG+FQ7pHNTTTN4JRx86wiKOsV889MCOK9rChGLIUIGdkIgMjYDYo2EM2ZWqOZIa+EjZHLCBZgB8LOaSm/4EImLbHpOwX/VoR5hRhWhG4L/s1dzvuiF6YwzbUsZ0zJp21sHIQwlxTNph9gzDqFbjiZjK0YgnTXNkZjBlvrq9/QZ4+zZ7jZqvF3r/OrJEnlToKse7pghSFmtYQDA6NGqE76g3yETYPO+0U8gXZ901vx8qPJQvZem8+JT41vCUTDce3/gzqOZMSM3/W8LfOW2wa66go8Xw3LnCqapd6qlsN07q4sVGxLwyixtWEO2wy9f50+3qSaVWhzPX1eHHEeffGiCyN3gvcphw9swqG/LZS7oEKFDj0KicZNIzPSekZiSmMI0EOEQwjAU5xJGNlzcJKrHcb71d3+4kBdXD5fFG/KlF4oYTCloQETDGIUxjFgYEQ5ByGSAmVB7y8MGliWJRE0yaZt0yiadskgnbdJJm0xa/ZRaryS7K91ddR4gEjWxLGuGR+iDB3RfLlKoDSju1FkINf3kzsu5q+N00Fu6KSnvhtPD5CN2J4xhqEY/5Cyya9TzgNDjatLAWzyhofX55cmWb9wnsuFajSM20FHxJKZt06VyyLeuukst316Zw10oicUYut+NfPSp4PdXKucfX6/KdLuzx+C+p6G+MZcffrYo//Alh5HmYRJuuGCda1G8cHlxoLamfvo4ZObCT49uuuyjju+ZQ7DRuEEkbjAnGcZOpbEbk8iMBZZNUkpicYNIzCAaM3yEGo2ZROIG0bjrZ6h0PcJXfhHXz/H38HtxlF+swCQScg7mCJmqwxuq04VN1Pr2sCI025YOkdsOkVveew6x69JdZon9nEk/+9Aj2/KOPdaaBUAMtRMtjrKoFzq/Iu1XjDpKqkR7jwRaJ9hiNOGW51sI2Gcf1cC/vEd9ewqDwHcKK5o7kJ2GcwLokjdftjz/JsK1GkekC+54TgjBY/cfx2uv8Y2Cq15XV8OTT8Ljf8d3YQSAKByhxm5SsscB13DkeBi6K2yth9seVjvZ/urcsvqTG/AWt4Cj9jc0Uac6DrQ2k/74QWXPDeMxTOmv87w4hLod9y9XqOuPn/oDRLS79gBm3ruYWGGudI7GTB6inLrGNHZDEjuRwk5luKqob0BSGz5tICjRI3FDe88N5yP2QLhYoclLlGCnMtgNCWQq7TGcL+NFjkQXxAqUNM+k3CWv2V86ZZNJucTuqPCaZFc9USJtOHvyxXVe85x22qmxPn0eatymcaUNuKfO6dShg86a84rUXP+nZ8C8z2DTTKiIaOGDkG+YIGl+BVS+OLq325lFM+F1HF1uzEZyBpsHnvwwe09Y9LWP1W3bWWj0Dpx7Ilz5YyiLBsruQtXFEOrgfX7yxSKGlD1MfAwk07D/HnD2Uep02PueVoLmyVudpatOWY+eBEa++nRhWzSZptJrJQ4p4f0lMP5kSGszQMOP7EZBecSxgEtvDGulbJIJC9GYoTEhsVIWQkpe/ZPEkJIQFiEkYSyN4UiPIVkIktJk33NDJKVhT7yj/KC4WVJSFu3UKS0bewvoZxqRLkLQxyZTGRFRWxghQ21mUOPsXWu3cqK9WU3DJdP8oaAr68LO/X/OCrdVi+tJJtRiGMMQniaprPEOE0g5xJ+wSCYsUgk111BYEkJEMon3bp4f91XXVVchQwHO2CoInjiXhyDyEnQ+0P1icL1zbpw1B/8KNo0ARQtp510LDd5BD3qSXl/Sx+gt4bBBdrve5aFKhZeStGFw6OlXM3ZsE2XdBnCXzH7+Obz8Muy5G1x7AYzsDyLtL59eLleVFl1vRHW27M6x++6+mbOPSRLeXc2h7zMcLjoe/vkiPP2aIvYnbnVOhQXGjoBulc3g0OooZ5ZDLws+vui1iV63bcUhJTz8Kpz2izZUKrBLR1g1A28PgYsjb9d1Ps6/He75B0Sj0T2SyeQHTaVt2WkMEcKSadYnlhu3Lzi1X9ws3quuseGUMIWTbGzbEMrG6bf2w5JPajFDgk3rkpiGmymJbYNlKWmecVT5VFIRuZVRtdapW5y6hoYrPrxt8S1eldq2bZx3npHu3DlnFN48bCU/p21KqrcEerwIyChcfz3sUgmrXsj6+8baWucIEqveSjlKQ6BT5Sgjun9zOMyOUHWhL19qSkmy34/+zg8mf7nNUt1Vx2trYfp0qN0Et/0CjtlPXUeVj4HmLadbxq5K8/CuKhKwtaGB4tpbsIGCMWq7as9d4LaL4dFp8G/nMtG/Xg1FBVBcCAeO9ePSJXCwyqTm5wunaUS+9mipHK3AIU3oPhlWb2i5ji8+Fe64SEswgEPH4/pP+xgOORMikcg9yWTy/HzbcFsDlp02DBGyL5s1ro9phu6OmvEDvXIAG1c3snF1gppNKWxLZtd+2Cg1PaNUeE+qJxU3FgIqqmKM7T8h/NvT/pjxiDqTydjr1rXxwrh6fBXjtUiwU4fIrTUC3/kIwVmhdcEFaufTiBOzeJpq+LzpO25Sf+YJGxTUItgxm8IRH+IVQjpIpJPAiZNq+KBJXp8nm066lgVvvAF3/zFCYstE+hV04dOHYfl/4fjxisjdcbDHgPIRh+vuOdiaGFXP4nicx2cIDBsS70PnDmrK7fgr1cWL/3eJSuenN8JjM6C2LlsfOTjy1ZHuF3j3GHdbytEKHIYNK6fBhSc1XddCwOLpcMeFfrfgbIHbJhLFmN5boojcNM3P6+vrt5nIAUwjbAshuH3PmUtv2/2Ng64e9oxI0XCnuzmlqnsB6ZRNUWnYG6d7FviUY5hzjXJp28tneVWUhkSi7jcn3ZEBzYZuGAZbtrThDpYUflU6SKxhsoa6As0vKCVbAR06wOmnw7yFMMq568/tGAKyy1sDRBlcGOM+9H6mp+FzD6bVHI6C3Xwpu2H+/d8ZnHV4NdUr8nRQDdyOtGgR3HuPYNbM3Tju4J/xymM3sn7er7j55xMp7rCLx/jQ8qqXSepEk8890g13Halyl26OKe06SZXZhtUz1MEftg0nXw3TZ8KqN9XClGdfh1OugRU1zeN2333qufPLZwBtUzlai0PAnZfAs3fm1vnwAZD+APp2zDKWJnFr/fW1z2Ds8RAKhZZZljW4rVd+twRRM87/jXzz4s2pteGUnVpuS7V/PZ2yCUUMb3rNld7ppDtOl97QKhRSe9YbEo0HhUNhf50lEgmGDy9oPOEEO5Y3Bzroxjc3FYki7hj+lgA1J5/WwoKf4A2UZV+SPbRCaOmhGmDZMnjwQSVxVr9IlrkEJG9eG4Dunw9kgBgdtdKX16ZwdHHGvZrftBdf46BhryMkZAw49gZ1p5xbFsNQN6W++CIYabhq6g845siJhDPOIFHHBzz13EscvfvbOe4+m4PvJeAOUHwIFO+JdwunllZjJk28+tdqvYTjvrQaBh6ijFuJOao5DroIXpwJB4+H//4O/zSkXn351HUdtqcc24BjUwL2Pkkd4vjfP0HXYr8WEcQx+wsYMiDbnaWEB2bAT6+CUCi0MJ1OD9geSd4akFJy2Udjjy8Klz/2/gvrEAZsWpvAzkjNIJddNKM0SkF5pwiJRKphzu8WFLp3pnumt1gsRlUV64EeLeZAJ/IwaiquOWjq2nOJInD9AsY4ijH4cqc6Qu/ecNFFcOedYI6GrbOg0N3hpkm64I41N223A0ntW+/vQXr2iN/thPlweEOBrN55/31/4qzDVnlhQzasWgyDByvr+Mdz4PyT4LYz4Q+noKawOu+htpMBEuEZfNzO3FBfm8UiNKmoVZ37opfDk3QCiO/q5El4dgQ3rXgszuatUB7P4uhTAcl34dm31M0koI563mJBaRiEnQeH1l4e4Wjl8OV3W8uxDTgqY7DwaXIgHw6AvU9VwyfrA+V3xFR47jUQQryZyWQmfN1EDrir7R7/7fxTnu49pH7roo9rI6UVETauSWCl1ZJXy/I6IFIKyjpGsNKSDsWdurtEDj5SglCo5EOobZ7Qa8luU211jslV2U2yh1ro4GpCiWDuFCxdig2cKeGvRWNg+v0weWS20fW2zjHQiMC38+6paxKfcUi3ukMTOMCT5ivWrmfh7Ls561C8gC6OmX+H+SvhhmNAZJy0LEXkEsAoBplRjZtn4X166xof0qbW/et+HtNyGVWoI7jTRUEclsWGaijvmovjiOwlqkig1AgQuY5Dz1Mwg8JPTNtcjq8Zx0dfqvUED9wCtgGVE2DLVohEIpenUqnf8g3Dzwc+nLKlHZ04Z8gXWKH+JRURMmmbzeuTSEsVoqDYJBxR8+41dTXXzv7d59V6Gj5SWreufnFz0yGAGnO3BRoC30Epng/CZAnegXnzYMaMgvNramrvCYVCSCn/ZhjGkoPOkn32GQVv/QWEYzPwCFejGV2C6a0e5D++bajOizsu9oV1cYSreOXNWWxeOZ2jf2DTY7SWmIYjLGFYV5AZTTrp6ciMF084vU9qCXXqsCH7pWks+nSULqGDUlKlYmmnxObisLJZ2A4cWUmad0mr1Nx2QhwI2ONY9dq7G4RGqfdIJDI4lUp9zrcEhjCQUg4YeXm/9wsi8TESKO0QVSvgbLUaThH51ocW/3nVDeJ+PxH7CL1v375fSLlwxy7ddMd8AkXcbbhRWkpYsACefjp0eSqV/q0QgpAz0e+cINo3Ho+fM/PDxL3maJjzJIzo6cR1ExH+hheQ3YjiOgTCeGEdd59GKPxhyKxj/37PQz/cQ123AUfIl1/11NSBkMn+e2Tz48uD1vt1q7PHpLzKVH/Sp/uQYSYLAAAgAElEQVRqOISgoGAH4BCB+gqoP/p8986I4zePqo07sQjsdzIIIVaOGDGi50cffbQtl4XvUHBU+T37n9ft5NJ4ycMSFJGrOXW7urZ68ooH17+c98Rd/SMSiex+5ZWp2TssZ5Ksca2I3HXyzcCiRdhPPx29ur6+8WbDaD7iuHHjYm+//fYqoGK33jDvaQhlspJYHzp4Gkuww+TRZHK0m0AanoDYXhyxAdDhJC2+e7SQcnjlzffZv+/zgJYu5N2fn49HS0CEukOnM5vEIU2T1Fe/IiK2A0fQTeZpA/dzJ8Sx1YKSPbPfpmkenU6nn26p/30bkE6nGXv5yIoNNRu6jOk/duVjU5/aEjKbVpN9Ej2VSlWb6pirHQMNND0WbwK+/BKeeabw1zU1dVerucSWK/ntt99OSCk7mKZ54oIv7YcjIzHOOxH+eJnWmK7K5nL7gB7oEqzXAXQpLAJqn8gmKbXvbcYRH66YgOMvPC6ijGbhugCRi9yOmvMtA/mMD/GlEcSxeu1auphkrx7aFhz+asjNbxNMcGfAgQGV49w0xXunn376vg888EBmZyRyAGdarxqo/opnefKK5sbCARl7zTVXrW+GKbQd4rSayJcvh1//Wtx+2GH/Mmtr669uq1VTCIFt2/+46KKLwqZpPnHPP8DcXali+jU6OqG5FnWd6IISOCipwUlLS8fnvi044rs6hQB36ks9JS+//jb7jsgGRYvn+/Z75YgrER/oOQVxICWvvPCSd2PsNuPQnGTg6Q1jtrccXwcOYI9T1EUVBQUFYy3LGvvAAw8ET0L8ToOP0C+//Bd1iUQbFs20KfVckBLWrIFf/9r405YtR4lMRl529NHHbBf+O++8085kMscNGjQobJqhd668A4zRcPXfyG63xd/wOR2G/J3MR6Can2fV1VXItuAwCj0fgXBmBwRJ22ZY5xdzOndwzb6eqD7FJHWvcKXnpuOQDjfareuC7cehuXnSV+DdaaaPtXc4Do+zthGHhFNuULfXhMPhexoaGt7bWaX49oCvROFw2Ni6VXztpZQS1q2DW24J/+3uuzMik7HPffrpPJOc2whCCD7//PNMJpPZ58QTTwybpvnOTfeCMQpOuR7S7n1oaOq01ASu24Ok1mlkNqxvLBiI61MVW4tDqsPXpY7QELzwrxuocmc5nOGDqyFo/drr3LrK6g0DcDt0JrsSThtqCARz5n7KHrvtABx6PTl+81cqRtsgNZw7GAdOfXpurcQBcMHv4dH/gBDi5XQ6fT7fU/ARdSwWs9esaSro9oOUajXYb35jPvKHP6REMpn+aWibtsu1Hv7xj39kLMva51e/+pUZjUaffeQ/EB0FfQ+DBWuzDa4TZg6Ba51IJ1TvqUt3/J3TJfAmcYiYhsPtlYJH/nodh40LyDERwBEAbywbfKJulhCaaHPTkEJgbXzCRyTbhCPwdN87O8ewFe0Bq/RVjzsQR740WsIBcOyv4J5HAXjPtu2mTq3/XoCP0KWUbNwod/g0gpTqDrLbbjOf7dr1ZjOVsk6JuLcNfENw00032clk8kjLssxYLHbxsrWCgVPA3AMu/SNY+omzWXrzq+U0PdZz/byfyP68cbn7reOI9lJThU4CjdLmlX9fwykHWtmpLjd96eMTnmrqe5Ibh0hX8HDIbHwp+fP9f2HMbjsAh8zG0eujIgpb31ff3SbCwy/teBy+MK0phwk9psC/XgTghXQ6PfabWOn2bYKvdKlUijFjYvKII3YMrUsJiQT88Y/ixV13HX7Ixx9/vNMYOCzLoqioqFc6nf5PJpMZAmoL5m+nwplHgkhp6rVLlFJTy3HcNdXRm3YLPP2R1LenyZYfg4wPBcPgH489w5QxH1LiHBrhMhh3kYvU390k8/RPN6+eX/HBULSXT02RCN5+fw7jev7bGT5sJ448AVxvCdgmlO+rTrIZ3A/m/Uut8d+ROFqqKwksWAeDpngpXAzk2fLy/QOfRI9EImzcSHVTgVsLLoHfdVfkzZdeGhGtr5eTdyYiBzBNk8bGxmWZTGZoJpMRkUjkyLoGtpxzHZjDofIHcOfTkAxp0iQgmfNJk2DHkzIbVl+S6wqQOqMfDzz4D5bOuZoTx39IaUwLQzZN9PeAVqDj9i37dd0KBoLQbvwAZs7+kL26/1sdtLAjcDgvMk98gdo2WvOG2hX32WJ1LdSDL2t1ugNwNFeOjAmjT1VELoSwge78jxA55OGVvXqVvHH66bXj8wVuCaSEZBLuucd4p6Rklx8sXfpl4ptW0bcHbNvm3HPPDT366KOnNzQ03GrbdgWoe8qOnQy/+Rl0KQNhZ1V6XWBLzSEo2YPuoNxsnGOZyNUgdEMT4NMevG+Rxa3G3Nq3m8cuNyNl2hsiPPDAw5w2eRHGjsThSlftO185pIQ6G3pMUuvHQyY89Uc4dI8dh0MvR8aAU6+Cx6erb9M0H6+rqzshHm9pJ9b3C3IIXQgeuOYaTm/LkEVKdfXvvfcaswoKOu+7cuXK1Hd9ikJdJX2Zcddddx1gWdbvpJS7SSkNgPISmHomnHEUVMQ0ws9H4A74CB78okdo36KNfjkZz4Oj6/WA4MtVa1j8wZ/44R5yx+IQ+aO2hGPmFzDpx+qsOiHgrB/BHVMhFpDmbcZhwKL1cMjZsHi58jIM49OysrLR1dXVqTwl+t5Dvma85JpruKM1dCqlutjv3ntD8/bZZ/Iezz3339T30ahhOUsFx48fXzRnzpyrLcs6K51Ol4GqwHAYLjwFzv4R9N0FhLYt15VOQYkDWYYAmsTSpHpweK9Lt3ydX9cqhBPGwmTaJ+Owt7zBYRNQKsQOxqFv2fUkLK3HMXMh/OgiWLspW0fH/AB+eQ6M6KsYKZaG02WaLr4QbE3Cv16DW+9VxO3mwTTNF4cPH37orFmzUl/3DM/ODDlU2bNnjwNPP3359OboVUq1TPbee8WC4cPHj3z11TcSTYf+/kEqpYTCoEGDem3atOlnmzdvPlkIUSal9C4xGdoPzjoRDtgH+nUG6Rj3vGp1O6mumrruoFFFVl0NvudIvODT9dYYihf+28YhQYaVNH/tA/jbMzDtTWhMeinYgKFrSO41TKBWsW2py6c5CdswjI9t2/6Zbdtvfh8Fz7ZATi107dp12Nlnr5pr5zG8uxV+771iWU1NdHgikQie//o/C6lUiiOPPDL2zjvvHNHQ0HBmKpXaDzDU5hEVprwYJoxRxyXvPxaqOoBIgLTViTP6OBQ0wtGIyxujBhkEeWhQYyY+yfoN45Bhpfm9OQ/++za88TZ8vNBXfTZAKBRaLaV8aMSIEY/Onj17weTJk3u98cYbU4DD0+n0KCFEmW1ne6ZhGJni4uLlNTU1bxYVFT0zduzYadOnT7f/lyV3U5BD6Mccc3TF8OFPbQpubDEMuP9+Y7Vtdx6+fPnyje2V2TxkMhls2+Y3v/lN0S233DJOCHFKQ0PDMUKIkHPMsjc4EgJ67QJDB8HE0TB8GOw7EIywGgbINAgjIDFd0AnUeXrB8hEgeaRvS5AHB246BsiISm/xSpj1Ebz3Obz3IXy6BJIpv8Q1DAMpJeFw+J3CwsInGxoanquvr19mmqbdnPRNJpMIIdzNHEgpSafTRKNtOQHlfxfy1uwNNyBtWzWQacLf/iaqk8mqoV99tXz1d8mKvrNBIpHArb9DDjmkYv78+bstW7bskA4dOuy/efPmUbZth4QQhtQpgyyRdiyHDqVQ1RH69YTBvaCyI/ToAt2roLIQYgVgh1UkIQFLjXGlM861bXVilfezIO08k2lFmO6vpg42VENjApathM+XwcqVsKVWXc7o3aOuq+VungXYtkAIcX84HJ5RVFQ0b9OmTYuTSaWbtxPoNws5hC6lNC67TKRLSjAeflhsWbeuYPjWrXXL28c6Xy+kUikikQiJRMKYP38+++yzTyVw7F57NdzlHirprtRz76ZzDabut+7nQlPNFpyG0iHfrEFrwJ1efeIJsWXduvhxmzZVvxyLxb71AxvaIQ+hJ5NJo3v3+Iba2sjIxsbGdgL/hsG2bcrLy0ftumvNzClTaPlE3m8Z3E09L70kEh99FL72mGOOuf2hhx7Zafdx/69CXip2pUs7fHMgpaSwsLBHt26Nn510kiyy7TaOo79BkFJpDnPnYj//vPFEaWnlj9etW5doFwo7L7S3zLcMqVSKHj16VIbD6z8780y7U77Zjp0J1q2DRx/l40ikw482bNi4uJ24vxvQ3krfIlRVVcUymQ1zLrjAHrQj6KXN1vRWpplKwTPPGFuWLg39tL6+/ukdfTtJO3z90E7o3wJcf/11xm233fjS+edb+8dibSdOdzZECFizRthLl8IXX8jqXXah8oADtj9/UkIoBC+/LJgzp+CGjz766Pq+ffvZ7ePu7y60E/o3CLZtE41GHz7nnPTJFRXNE7grnSMR2LJF2PPnS2PhQiNTV1fw6po1Dc/H47E3x48fP+8///kv++03oaCiYubWkSO3T6IbBsyfD9Omhad16NDtxwsXLlrfvl7i+wHthP4NwNKlS42BAwfcdNJJ6V/2cO7B0aewTFOpx4sXGyxeLBJffml9XlsbmhYKhZ/ZfffdF7/22mt1oVDITiaTOfPPoVCo80knZdb07t32fLnTZzU18PjjLGtsLD168+bNH7ZL7u8ftBP61whSSkpLiy846KC6uwYNgnQa1qwRfP65TCxZYqxuaAg9Zxix/5SWlny6YsXK9alUypBS2q1dTBKPx0ecdVbjR+Xlbc2X2qvw7LOiduHC8PmNjY2PZDKZ9kUs32NoJ/SvCSZOnFj01ltvfRKPizdNs/Clurq6af/852O1hx56uB0Oh+1UKrXNhOVcvnDwFVfwfGuTcDWImTPJvPGGceegQUN/9eGHHyXapff/BrQT+tcI+VTt7QUpJZFI+Jwrrsjc2xoaNQxYvFjw9NPhV0eOHHP0m2++taV9Sux/D9pb/DsEUkqKigpvnTq1YWpLy1NrauCpp0LLVq/mhGQy+Z65Q2/maIfvGrQT+ncIQiH+efXVHNvc+vT//EdkFiyIX1hTU/snIQTtBN4O0E7o3xkoLOTdqVPZK3ikcTgMM2fCK6+Y9w8Y0P/ijz/+NNFO3O0QhHZC38khnU7TuXN4yYUX0geyknvlSvj3v0OzamvNExKJxNL2cXc7NAftvWMnhgkTxhsrV761+ZRTZAmoI7Qff1xsXLs2ekJ9ff3L7ZK7HdrhOw577713aNQo0XjttcixY43GsrKSS4888oiQvbPvemmHdmiH1sFBBx1UUFkp0vF46OHu3bsXuIdRtkM7bCu0q+7t0A7tsNOBlBIpJay6O2bXfhATxbt3lrUfVZJYH5HJDQlK9lhPzafV1sbZKbPHaRkiZanQ4JtsKSXti8Da4X8V2gV6O7RDO3yjoIS1hViwXwWy/lgy1QZDl94jjKxt2fr8xDKSK76QkZ6dRLQHmGVqD1bDl9i1nyOTG9V+DVuCLZG2jcw0LscoHhs7+NPVwmjfdNkO/3vQ3uvboR3a4WsH204jNj8Na2/bi/n73CWM2CgpTEPIEBSMHqhu3FIgrTT2B4NCRLqWiYIBiKJRSBGG+sXI1EbIbFWnlzvnkkopkZmGtcQ6D49Oen9LPmEupaTmjmhEhKN9ZGJryqwcmAr1nrA2Nv7ujES0j+rb4XsB7QK9HdqhHb5WkMsvibBg35tkqPwSCoaHhFkGVi2kVoBM2TKzcZDAXOBFEBLSNbYMd7GFdIyIqWqo+xzZuAKshCPMUU87XSftxsnxSbO36KP8IBhF1hgRDr9BYYUhrbWkFz5Gav6jtmxIPVd9feSUsqsSdYbZLtjb4bsL7b23HdqhHb42kKtuqKTxi0UU7vlzUXZESJQeAtF+IFMImQBhIOy6kxBZViSMCMR620AddgMyU49MrkY2LodMgyPE1Z3ZUkrsdM2FscM2zGtOmAt1U2gvpFSXnjoKgZAYIhY+wig1t9bcXjBeWu0L09rhuwvtAr0d2qEdvhaQVtqg4YMumMXdiA+F6AAQMcish8xGkBkAAxmaJD8ZuZu009nIHQ5NYKeXyvQWZHozJNch01uQtqVM7KBG6HbqQ7PzIY8bLcyZSytjiEjHkWCq+0Bdcz1KORCGAMN+csvv/5+9M4+Tojj//7u6e8492ItlgeVGUFRuREVFURDjEeMVlXgQj6hJ1Jho1CRqjMYY81MTE6Pxil9jjPGIGo/EW1GieOEFgoCAy7ns7uw1Z3fV74+emZ2ZndldjgXEevMaZrq7uqurZ7Y//Tz11FP9B/feFdFoehct6BqNpncQoHy7VWOWocw+IExQEZTThFIxVNLCVsIqRYkbVOO/0/cjc9jPo9jhhcQbIO6KOU4coWTa1a6klDLecqN3n/u6Navji/7sJRE7COWk3fUq9Y5KTSVYpaLRs5S0e/WyaDS9hRZ0jUbTKygMhIpZGEEwfCgEStmgEqAkIpUPTUnAOpaVl30jJaZSJiDe+JyKN0ii68FuAyXdSPeUde1EQtbgU19MHqDweThxEm9fsxeGnEjG/qnPosNiN4QRP0yhI+Q0X030D1ej0fQSDsjIRlTCEEq6Y2SFiRAWApF0m6vklGACJUoekO/uOVI5MQQSqo/7D/H6TSq2DmW3g5SZYixRfOSZ+KdGYXi7Pg1hGErJXyAsIyuYLiNKHuWeLr6aB1GJro+n0eykaEHXaDS9gmF4JUVTVygVW4psASQIP8oogZQIp0UV3MHmxjNyxVVeMDBH/S5OouX/VLwR7PZk+eScoEoY4PsMlejyHqakTeudFSdhGke5Fn7SzZ8WdTpEXcq1CvmEYfp0PkbNVxIt6BqNptdQVWe1CKf5AeKrwWkF4UOYlSCCoES2C10plAiMUvX/ett554BilJQ46jbijVHsMCqV91glI9wT4ajqYkYy5di03TdwlPAY96BUHuu8ox9dADiBf5Rd9MXa3r8qGk3voAVdo9H0GgKkKj/htyr80VpiS0HFUVYFyioHzPTwMVLCrBTKCI5X8dD/7NeHBa1DPl+NE/sLTkQinSxBFsKyCqW6VI5N61+rJyPiH2CYQfJY5ZkvGVVRo3KvG4ROnqn5CqMFXaPR9BrCMBHlx8eF0/JN2uZHRfRTd73Z1x3ClnZ5J9/BFXnh20sZxWsSL9TuJQaccrWKN7YhE6hUlLuUEmEPV8LTyT2ulEPbfWUXC9N4B2EG03nhs14ZUe5KIXB+V3rOm5uE6dmu10ej2Zbox1GNRtPrKOnAZ9P2x6p+E/8olPJAZAkqtg7lJBDJfOxuXnYFjkwvE29+XCnzbYT/RiWlu11KVDy81qqYNNB7yLOAq/Htf+23uzCdFzCsWqREOcmyyX3IqUdJCTH5mXfM0eOCRz8UF4ZvB18pjWbL0YKu0Wi2C0pK+Gzf3ZUoehOjokLZEUiEUE48j9hKcJLvyhX4tNgnBVo5dhRbHGpUTVng1L1yJoZ5oxJmRa6Auw8HGZO4ZIp7wokjvePKLmv5rKtMcxrNVwEt6BqNZruhZAK19FteFVvzGPiPwrGzLOgOwc2wrJ3OlrUryBLlSInCUDkPBFnHzGulK5Tj2Coqv1l+RfxZoYeea3YBtKBrNJrtjlI28p3d98Eo+rdSZnUn6zxlWSsFOYKc+55P7LO2OTKZiCajrC3jMmofUX555GVhdjOOXaP5iqAFXaPR7DCkjCHfHHIcVt8HlBLBfKLc0aeeabkXFvB8+7qpYpPHiSdWyLAxtfzn0U3C0LdAza6D9jNpNJodhmH4MKatfVzUzC0i3nwO0g5nDy1LRr2Tek9tIytqPXP4W+fhaSTnTFdtyvEfbfbdbUTFVTEt5ppdDv2L1mg0Ow1O6F2cBUeegFF6j8Iozeozd7Ld8koqRCpALm2dp7ZluO3j9nxU/LSSH8ZXGLqvXLMLowVdo9HsdChpG/H/DjsIzIcUVk0quE2lI97zu9yVVCjbtoknnlVSXlF6QfsipRwMPb5c8zVAC7pGo9mpSCaC8QohKhqi9sQNbUseHvr+GcVGtKFzcFsqYt2WqFjwZ2ZA/iE454s2PQRN83VEC7pGo9lpkFIihLAUlCqlhn7SHn0o6DFGBQwDU0bw1P0Lz5rnMTdtRDb2J/z+TFpfmEJirSIRS7xVOqt0+rDnhnU7P7pGsyuiBV2j0ew0KKUMpVQxULu4Pfory2McFxQCS7i3qlQ8nIPCWesQvLeN6LsRooujJDYkSDiJe8e1jDvL8Om+cs3XDy3oGo1mp0ApZQBepdSA8PPtMzYlnDvF4QHDg0BkCDpKIZXCASJK0b4qTuk1TdhvhknUJ4gn4udPjEy8w/BoUdd8vdCCrtFodjipfnOgwql3xjTe2viAb7RvgFltEp3gwa40QIi0oKcsdVspwlLS6Disj9sE7muh//WNcSPuTBsbmvCuYWlR13x90IKu0Wh2OFJKQwhRqhw1uOH6hpvMSnOWNcjCCBoIU6AMaB9n4RSLjplWcR8EEkBYShoch/W2zaaETWuj3XjAY/ER+/10YMg0dYCc5uuBtaNPQKPRfL1Jutr9KKqa720+BoNZZrWJ4TfSqa+EhOIPbFfY9zRJ9BGk7BELCAhBuWm6rnilcCqpeOMY+Zj1TMMRgA6S03wt0P4ojUazw5BSopSyFJRubIlPjGxK/NQzxINRbLhKnfQhuk52EA4UfWRTNs/G96WDEgBu0FzQMKgwTfpaFuWmiae/Z8arAxLXO1Lq+5zma4F2uWs0mh2Ccn3nhlKqFMWARZHoc0WGMbjitQSmJRBmxu1JkXW3Su6LkgrHgtbdLaKVBglH0iIl9bbtut8dR7I89u3Lpg583DQMuT3bp9Fsb7SgazSaHULK1a6UqlnaEv2FGTDODAgDCwh+aGO2KBBJ8RYkQ9zdd5VQqJjCaXNwWpKvNgfbUWycaLHqQC8NXknIdmiO2/GaNWqP8yf1X2HpIDnNLowWdI1Gs91JJpDxKkXV2qbYYS0BdV+JaRgeIUh60TE3SAJLnA5Rl6DiCtkmsTfZ2Ots4nVxEusT2I02TquDjEuknXxFHGzp0DTSZNXBvkV7h6xJU+7YLWpqUdfsouigOI1Gs13JcLUHZVxVNZvyxiLTNCyRHG+uXP+6XW3S0tfA/5mNtVYi2yXOeof4yjjxZXHiq+MkNiZwWh2cmIOyFVK5c6grkp9RlLxrs+e70TFxy/79hrEl39vBzddoeg1toWs0mu1KMhucH6j54pP2X6jR3jODQrjWRU5GuHQCGVtivhzFf18b0S9iJNYkXDd73EE6rnDn/pNkr5dCErfiZxzcdvD/6Uxyml0RLegajWa7IaUEsASiquXx1gMi88IPmccXWXI/f/pmlCnmCaVol5KQ49DkODRJCSsSjPxhE0VvxZCyeyHPXCeFbHMCztTpDdMXGQEt6ppdC+1y12g024Vkv7mBIihjsiL8Uvv13jFey9OoUB8kiE1ITnGqFBKIKUWblDQ5Do2OQ6vjEFWKxBCDd5+qxBZAu6T2vjYG39GKtc5OD29LkRL0jBXFhPnXqhtW7QHoqHfNLoW20DUazXYhaZ37ger6y+t/bASNC727ezHKDYQlwBRExntIBCGqFK1JIQ85Dm1SElMKG3CSgp/1rsA2QEpF2ZtRBv2jlZqn2xBhiQ2oHKs9IRJ/OdQ59HvC0LdAza6D/jVrNJpeJ8PVXtb2XNvktqfb/u2f5LesGgvhd4PhlFSoqCKqJGtmeGhUrpi3S0k82Zfu0NGvXug99VkqcAQkTPBssKl4P8LAJ1vp91IbnuYEMeGccmjisH8Ypna9a3YNtKBrNJpeRynlutrjcsCGH2x42DfGN94zxINRYoAJSJBRibPRIb44TvSDKM2mZNGfSolUCjedKxnijWuZp630jHW5ZdLbM8srRRzCpZ9Ep/2/WcMXGoYWdc1XH/0r1mg0vUpymJoFquyLDdFz4j8sHW9Wm4gi4d6BJKiowtmQFPP3o8SXxvG+HmPcqI1MHbSB/neHwUnOsqaSs7NBxwxsZGSPS0XKp5bdmdzSwXap/UxBMDTC89BP/7OiePtdDY2m99AWukaj6TWSrnYDRFnrytjYtRXypZKAaXiFwLfYxtwoUVGFXW8T/zROdGGU+JI4ziYHFVPp7HDp3u+Aou5UP19cVEx4gImUIClgqZPHis+19AXEG+2/3b/n4NO0la75qqMFXaPR9BpJ6zioYqrm89bow4E+1mSfEJhJK1raCvM/EZy3okTfS4p5vSvmKQtbIAoOScOSNEzz8sWZxdTv5yNaZaDsbkScbMG3BdKpi33vgX2G32vofO+arzBa0DUaTa8hpbRAVHzRGPmuLDauLzKS6V2F2y8el5JWKWkKO5SesQnvi1Fk0jJXqCwx736suUruI1FC0ryXh/qJPhom+Wgc46VliIdIqYFU7qQu0kn2twuIJqS9W53c45fThiwzdZCc5iuKFnSNRtMrJDPCFbdH5fA6lfhfsWX4fYaR6jYnrhRtjkMomTgmLCVxqeh/dQvVt7e7IerQraB3lUgmv+hL9wyEWypWaRAa6aWxUrw7vax02tgHx+v50zVfSbSgazSabU7SXe5FUbX2nLXXe4Z7z+SsEoxKEwUkkkljQo5Dc87QNOm6wfF/nGD02SG8S+0C8ty9mBcW9vz72QH710c2H/kz02vu2Auo0WwBWtA1Gs02JR3VLikN3RPaP/JO5F/+yX7L09+DKhWEJ3ho9ylCSeu8XUoSSmEX6ON2BPR5Mcpul4bwrHI2yyrvlM+9u2UhZbwyPv3Y9ce+YehZ2TRfMbSgazSabYqUEoEIKkdVrTt73ZO+PXzjvSO8iCKBDEvsVTbtX8RYfV6Q5kGCeGYGOKVwhMifNEYpHEPgXZFgxG+aqXomjIp2L9I9tdRTnx3TWa36qinHrD5mo+HVoq756qAFXaPRbDNSrnYlVdmGizacbfiM6317+TCrTFRCkfgyQeyjGIfSqnsAACAASURBVNEPoiRW2jhSUndLH0LHBrKHnymFFIUTykgFDu46/4oEQ+5upv/jbRhNDlJtvQs+EUg8fmzrscdrK13zVUILukaj2WZIKQ2BKG77b9vwlr+3vOKf5C/zDPKAAfZ6m9iHMWILY8SXx3FCDiSSOwpFy+E+Vt7ah1i1kSXYnfK2d/UO2AKCn8epfbyFmudbKfo8DjGJsxl96UooYp7Y909sP/F24dG3Sc1XA/1L1Wg024S0da4oW74yfE/Jy7Gj/D4Do8jAqXeILY4RfTdKfFkcp9EVc6XcoWnQMUxNmIp1ZwdZeUUxiRKBo5LJYyict73L8eZK4ShI+AXKVhR/HKXfgjYq3w9TuiRKcE0cM2QDMv1gIFHYwo46fjnhhPbjPjMNHSSn2fnRgq7RaLYJyWFqpWtXRGbH+psPBDyG5YmC+VyY+DsxYh9EiS+O4zQ4yLhEqI7bT0rMU5/TGJJNR3j5/IpSWsdYbtIYkZGXPemWz5vHnZz87eQJuEuWkTLpERDgGJCwhDtLW31sxRnPRff89iV7Rj0e7X7X7NxoQddoNFtNMiOcPxGWVV9G48/5Ssy9vEIggbCUtDQ4+M6px3gpiop3JI5JkWul5+vnVkicYlh3QoDlF5TQOsJC2XlSv/ZkAhfyCHu+bYCoi97+zLRR3zeFFnTNzo0WdI1Gs1UkxdwCSld/EfmuGmTd5E/eWqLJTHAtUhKVkkRcUX5VM31ub0PRWcjTx+ymrzu1jCFp291D3bFBVh5XTOsIDyIqXTe96LqvPWXRp5fpHFUvgZgBA14KHfnAmeOeNXW+d81OjBZ0jUazVUgpDSGEP7w+PnxdUP7X7zcGmEIQU4pWx6FNSsKpcebJ/mzHAP9rUQae34RVJ9O2eqbAb8lYc4lyM8B5FG0jLDZMC7B+/yAbpwRoqzRRAqQtkWS46gtE12e68eMRp+4bT7dO+slPxm+0dGpYzU6KFnSNRrNVKKUspVTFujPWXSFPLLrYODxIAkW7lLQ5DhGlSKSC2PIFrtmKir+2U3t1K6LddcRvrpD3xJpPLYFCehXxUkF7lUloTx/1w/1s3DNA4ygf7VUWMZ9ACpAyOUROINWq8OPXrvF/e/qpI/QELpqdEi3oGo1mi1FKGSiC7S+2D2+6rekD7x5eQ9mKtkkeGo/xEyWZBQ5XvGWGsOedDc2Bvve2M+imVoxNKSnetulde1YGt16hUCr1ECBlhMgZp4fP/Jsen67ZGdGCrtFotohUilclVdmXh395l6fWcywesOtsEssS2OsShA/30/D7CpwS17WdlQkuX1a4tKsbHBOK34ox/Oomit+J46h8sr3lmeK2ZD/HchrNAeaUk5aetMLwa1HX7FxoQddoNFuEUspAElzznTUH2KvtZ8wq03CaHOzVNna9jYookMn+8MEmG/9YQdshXnfaUjqs9NwgtU7DzuiYsKX/31oZfHszgaWJToliNie969bsl/AmXj8tctp0Q/ela3YytKBrNJotQkllKEd5l++2/H9mH3O8shVOo4MMSVSsQ8xTuAFvivBhPupuKyM+wMSROa73fNHo5EafuzOrOigqXwwz7M4myt8Mp4ewbWsXfKf1QhEPxC89vfn035kenXBGs/OgBV2j0WwRUirjw1D4Quu5yC3eixsgAjIu3XSuSR1XdIwrzx2WJgxoPdTHqt/1ITLYdAPQRLalnjfqnDx98ApsC0SbpO9LbQx6LETfV9oRMdnJVb9lwXTZ6xzhxJ0iZ8qZoTM/0v3pmp0FLegajWaL+Oizliqnv/mhtBggBXh+2ojvj62QJwNcPmHvWAcCRXR3k1WXlbDheB8q0ZEwpqvMb4XGjrvL4AiFbYK10aFscZj+/21h4EvNFK2O4cjUsbPj6ntqydvCXjT7hdl71hxcgxZ1zc6AFnSNRrPZSCmNhZvC1xslxmWOVEbamk6A/+omgn9qBUdkudxTpIQ933JaML2S0IEeVlxSSuNULyqZmjVvZDw5edszl8kzVC4jN7xtuMtGu4NvU4LiFREqPglTsjpKyfoowVUx/JtiCKlASvelXEGXQhEzEtedvunMX/iKPL16vTWanqAFXaPRbBZSKpZ82T4yWineU4LSvCKrIPCXVkp/EUJEIDMrXMHjItPvnRzilqR9pMkX3yth7VFFxPqI7kW+0AQumW78fGXIce0r0pZ8rss/6ig5dEHz9Ge/M+kNnUVOs6PRgq7RaDaLNRuibDDtB4yg+E6H2OWKoMJJZmMTqxz6face70d2l8K+ucPI8ChaR1msPKmENUcX0TbAcqPmnQ5Xel5rPV90fVfvdOURgHhLfMVPFzp7nz53r7BHR75rdiBa0DUaTY+RtmL57zeOapsdWCKGWh1jy6GTCGYJonT7svvc0071r1owGiTk9K1vTh923n5toUBJhCkJjfay6pgS1k8L0ribj2iZgXLctK+OEGmxzyvedOGuz93Htfald1307pfGjDi/qiqos8hpdhha0DUaTY+RCcni8sUPGe3Gyc5xAaJ3VSG9osP1nUfQO7nAFUgH+t7aSs3v2xCtbg/6thgj3vW+EoEk4YPGcX7WjwtSPz5A41AfocFeIn1MEqYAR7lj5ZVCyuSUqqnzz02EA6AUcYHc7cO2w5/61vgXtZWu2VFoQddoND1CRiWfBj/d11Tma0IJr2tdQ/wHJYR/VY5j5bFyC/RRpzPFJbeVPRFl6FUhrDonLcPbIr3r5u2nkv347uOFEO4aWwjsIMRKDCKlBomAQSwgiPsMbA+gkkPZYomVh1ZW7X3IP2e0mV49Pl2z/dGCrtFoesSaC9dYoT+GnjGkMStzfVrYjwkQursS6RfZM5jR2R2fKejp/uykW96zyqb2Ty3U3N+KjOefea0307tuzYNBzIj98eR3T/5h34l9t/O3o9FoQddoND1AOpLF/RcfJerFk0KJLnzKCnuMRcN9VUT3sLLmG+92Ypas9+S0pgL8nyeovbOZ/o+2otryOdK3r2h3VaeDgwqqQ85rOe9V09JWumb7ogVds0U4jsPs2bO95eXl8qGHHrIdx0EIgcejx+Puinx5zJdWy9Mt7wgpxmcmhgEKJIwBLGg5o4j6X/XBCYq8AXQFx5DT2Yp3lMIxQDRL+r7QzuC/NlG6MIKMFZ4/vaeivTUPBrnrElZiWcVeFVPmLJwT2r7fkubrjhZ0zRYzdOhQ/7p16/ZNJBKXGoZxUGkpccexl9q293WvN/hKc3PLR6eeeuqm+++/3zZNU9q2jWVZO/q0NZuJdKSxuHTxSSIsHkRhQPbQs5SwZ5KZLEYAqljQcH4R639cguPLsdYzAs26EvZOKWBTQ+OEQsUU5f8LU/tUiH4vtmI12ChHbTNrfnP3iwVjt18YuvD7ui9dsz3Rgq7ZJiQSCb7//e8b99xzzyjT5EfDhnHC/vs7FUOGQEODkCtWKFauFNFQyLuivt5+ORAofs0wxMLDD59V97e//d2WUkoAr9e7o5uiycBxJLEvE9ZST2KNdVVTtXlPK4VuGykrvbO1LrJK4YX604Os+XEx0RojnSCmxxng6MJ9n8oCpxS2KZCOonh5lAEvNFPzSgtlSyJYDbYbANdNjvetcd1LQ9pOP+fwH6764cta1DXbCy3oml4hHo9jGAZlZWUV4XD4vJoa85x9900M3WMP8HjcDJoeDwgB9fXIVasEK1dirFvHZy0t5nyfr+iVlpbW988447QVd999b1QIgZRSW/jbGelIPlzR9hOj1roJCcQU5nmbMP/ZTldJYnKFPNM9n71OER8oWPnTEtafFMCxCo/5zjsOnK4Tv+SLqpephDA+gWNAcHWM0s8iVCxrp+zzMH2WRAhujOJtTiDCEmE7KJEcxkZnqz+1BhRKSHeqVx+0VrG0ftqgKbf885st2/I70WgKoQVds12IxWJ4PB5mzjzU//rrb5wcCNjnT57MPpMmKUpKwHFccQdQSQ+umTRsQiHB6tWKlSuFbGjwrqiri78VCBTPKyoqenfKlMmfPP74EzYgHcfB5/PtkPbtqix6vrE6Psn3nvCL2tTdQiqF44B1QwjfTc0ou/D+2a73zgKfa+WCJFprUHdOMXWnFBOtNFC2So9zzxoGR8+yu/VY+DulhXW3qYw6HdHx2X2gSX5AIVTqc3KDIVCh+F8/mrDHXD02XbM90IKu2WHYts2xxx5tvPDCSzMsy7lo993l7P32U1a/fmDbHQKfS67gNzfDunVCrlyJUVfHsg0bjE/8/uJXWltbF9x0028WXnTRJXHTNKXjONrC3wykVCxc0forc6B1JQpDJS98ephZUiiNl6IUn70JUS/zutwhf+Cce6zu3dpYkqapXr48qYS6Y4qJlwiIy46EL/TQas8ZE9+t5Z/vWBnr3XZ0fRN1wDY+aTpi0bFTXhSFftAazTZC/8I0Ow2O43D//X81Lrro4t1jsfBFgwfL7xx4IMHhw1WXAp9LpuArBe3tsH49rF4t5Nq13rply2KLgsHi12pq+r0xcuTIBU8//YwthJCO4+g+/CTSUXw5r6W6cYK53LCM4tSdQtFFP3dEUXRTCyW/a0Yp0eVkLN31Qxfu13aTviAkkQEm9Qf6WXVkKetnFJHwCYjKwnncMz5vkfWesS4rDFCpLp4+QbUllk54eeOUv//kYO161/QqWtA1Oy1SSqSUDBpUOyAUajq9oiL+/SlTGDB2rDIMo+v7aFekBD81OVYkAps2IVeuFKxcyfp164wVhuF9ubU18ubMmYctqKysbHvooX/YiUTCEEJIpdQuL/xSKj65+MtfyWsrr8QjDCE6vMnd9Ws7ABslVZc2UvTvKNgA2UFyWxJo1pOHAJBIj6J9oMmmCX7WHlDChslBWgb7SPgM132uMvrUlcKRsrNoQ2cXfEY7VVLU0z8/ITp+WKnPQqCUAtPAWNz0u4+OmPRT0zS2Wa73aDQKgGVZmKZJIpFIb/N6vUgpSSQSJONNCQQC26pqzU6KFnTNV4aUy3fAgAGljY2Ns4PB+BXjxrHXPvsoq6jIvYduqch31NHxWQj3FY9DQ4MbuFdXZ4RWrXJWChF82e8vntfS0vLuySef3Hj77bdHDcPE4/EQj8fx+/1b2dodh4xLPu3/aY3RZCwWSpTJOUXYt1eBKVCigGs6rxiCI0C1Syr/XytVf2lP522HzZ9dLXedQBAlSh11vMd7vM/7LGc57bQTJYqN3Wnu9bwkBVh4PJiBAGZxMcHdd6fP/vtTMm1/AgOHgukhYYBtKmzcG6dI9j0IpTAchRVz8IfiBDbFCdTHqFzaQuUXzfRZ3IqnORI1rOj0S1dftsD0dR/1nhJjIQSHHnqod8GCBRV+v3+fRCIxXik1LBKJjDVNs9o0zWLAsm3bAiwg1VlvA7bH47GllPFEItECLC0vL18ai8U+79u37+vt7e2r33jjjZbhw4dLwzCQUu7yD6q7OlrQNV9ZUgK/2267eevr6/dNJNp+PHq0PGz//VWwujpbnLdtve57SvClhKYm5BdfCFatIrxxo1nX1ma8HIupeZWVFe9OmDB+7bPP/iecukHv7Ml3ZFyyqHTRLWbMvDilhUoo1Cw/8XurccpEj4aY5S0jIfhGjIG/biH4Thwpu3KvZ1voi1nM4zzOfOYTIpQl1CJpDffp04fy8nL69u3L6NGjGT16NMXFxZSVlaVfAKFQiObmZkKhEG1tbSxZsoQlS5awceNGmpqaaG5uTh8zXQeCYorZm705mIMZwlAgFePeg4Qz/sRHtYfWTjn5sZPjlr8jliM1ImTEiBHFDQ0NY2Ox2Byl1FG2bQ8QQhhKKSO3nZZlUV5eTklJCcFgMP0qKSkhHo/T1tZGOBxOv0KhEK2trVnHSH3dQggDCHu93vdjsdiDZWVl/znnnHNW33jjjdLQc7x/pdCCrtllSGWr+/vfHzSuvPLK4evWrf3RkCHqpP32k1XDh2d5QnuN3IcI03Tra2pyXfqrVgm5dq2qi0T8r3o8xfMaGhoWfO975678059uDxuGIR3HwbbtHRatbydslo1YNlLWyfeEFKWdSyhUf4PwPX2JH+jr6K/O7Ium6znGO1K7uhZ85cPtDLi9mcCncaTssNxf4RXu4A6+4Iss8fb7/YwfP56TTjqJE088kZqaGgzDIDfoLFO4MrcppfIuq5wvTymFlJKNGzfyyCOP8PDDD/PBBx+kXd3ginw/+nEkRzKRid0+mESN6M++s+I7vx4yeAiVlZUDwuHwmfF4/PtATaZwezwexowZw1FHHcVhhx3Gvvvui8fjQQjRqZ25bU6dez7SgY1Ssn79el5++WWefvpp5s2bx4YNG7IfYISwhRCvAzfuvffery5cuDCuA/t2bvS3o9kqUje35I0g63HeNE08Ho8E90YTj8dTm9LllFLpGxUglVIUsgpmzz6cQCBgGYbhtW3ba1mWV0rpVUp6lVLetrZ27/z5/7MikYhB0v3o9Xq9JSUlfiAYCoV+VFbmHPCNb8CIEdv0Mmw2mYF7hgEtLciVKzFWrRJy40Zr7caNar7jWK95PNaCmTMP++yRRx5rS/WF9qaFX0aZ8SEf3tNO++kCN2d7yr2dPvf0siJ+hJ/mWyqwB5qFo8Pz9LXnGyfe3hTimVtvZt7td+IoJ13fkCFDOPfccznnnHOoqqpKr88Vr3xilk+AMgW8OwEstL2xsZG7776bO+64g5UrV6bXGxhMZzqzmY0PXydBB8K3cEvdWtaOSu9jGIwbN47zzjuPOXPmEAwGC57HtmpHvvKp4yxatIjbbruNhx9+mFAoK3tt1DTNv5SWlt60adOmOtPUCXN2NrSg7xqMB2pJCpjX6w16PB6/x2P5TdMKWpYZMAzD7zhOsK5unRfwGgaWaeK1LMPr81l+r9eyvF7T8vksIxJp9TpO3Gua+E2TzHevYeA3DLxCYHi9Ao8HLIv0e8Znmfp7NwxXuCwLTBMjVS65jGEoaRhuOcty3w0DwzQ7BA965kJPlcl8z12XcpXvzGQKvhDQ0gJr1wq5ahXGmjXUNTR43/f5SufV19e/ddNNv114ySU/Dm9tel2BMJ7hmZG7s/uSGDH3PMgeQ565nOXyBsKnBGn4VRmJaoGUrvWd5XLPE2CmpOQ/f/oT//7tb4mHw4Ab5HX88cdz7bXXsttuu7nH78aizhS2zRXn3O1bUseKFSu46qqreOSRR9LBaR48zGIWM5iRJeqrWMVTtU9x+eWX893vfhefz5eue0e3I7cMwJIlS7jmmmt49NFHcZz0g1bcMIx7J0yY8NN33323RVvuOwf6W9gFiMViPPnkk8a55547OBqN7msY6vCystiMIUPE4BEjYMgQhd/vju0u5HLWf49fLTIj9YWAcLhjaF5dnblx9Wr5iVKe1yzLemvmzEPfeuyxf7VJKckToW+k3wXG4vltjznXbjzKfC6aFUqWz0LPfe8orIju52HDNWW07etBOaQTw6TEvKW+nt+ffjrL3n47vduRRx7JbbfdxtChQ93DdPOjLOQ6z/ycK1ybKzxbUsfq1av50Y9+xL/+9a/0foMYxFzmUkQRtrA57PbDGHvGWAzTwDTNTq70naEdueUB6uvrufLKK7nvvvvS0fNCiPVKqTmxWOxlndhpx6Jv47swjuOglDIuuOAC3nhj3oBly5aPV8qe2b+/56iqqtjgUaOENWyYkkVFGCmxBy3uuwK5gh+JpCP1jS++UBtXr2ZpLMZ8pZgnBPNRIvriE2/t33fGns9IU3hFTGBe3oBxV2t6vFo+Kz1dX0FLHmSZoOGMIGsvKGJtaAW/PuF4Nn35JQBFRUXcc889nHjiiZ2s1EIUEp/cfbqyRLdHHUopHnvsMc4666x0QFoZZZzN2fStrOY7b86hpH8JlsfCsqx0HEChWIAd1Y5CdXz66accffTR6S4HIUTUNM0rzjvvvD/cdtttUlvt2x99xb+GpNKwKqWYN+9149vfPrnKcewxsVjkcI8nMnvQIGPU8OHSP2KEMkpK8rusNV9tcrsf4nFoaoKVKwUNoTIchrD3lAOYPHUa48OTqPopqIasvuAuE8dk1YUiRIi5zGUJSwCoqanhySefZMqUKcnz6NwXnLsutT63fE/KZG7b3nUAvPfeexx77LGsWbMGAM+okZx0273cvPcILJ8fr9eLx+PBNM1OAX47SzsKlWlqauL000/nmWeeSR2rTSl1ls/n+2csFkOz/dC3Zk0nEokEhmHw5z/fznXXXV9m24lRLS3Ns0pKjCP69rVHjRypqoYPV7K83I1fS3retNDvYPIZapnfSeqzSEb7S9nxHo+DbQsSNsSiitY2aGuFaAQkXmJxH+vW+wk1m5Q1FfOL+M/Zh33c4+W43zMxMLiRG7mP+wAoLS3lwQcf5Mgjj8w4r85C0dGm/OtT21L759un0PuOqgPg+eef55RTTqGpqQmAU089leuuu45gMEggEMDr9Xay1ne2dhRa39DQwJFHHsmCBQtSda0OBAKHhEKhFXp8+/ZB34I1PSYej2OaJlJKPvxwoTFz5izvwIEDhn/++dJZQthHDBpkjh0+3KkeNkwZffu6AW5qGyR7+SqyOeKaKq+UO0lNIuG+bNt9j0YgEnX7yVuaIZEcLCAkODZIGxIOlJVA33L3VVYMxX4oK4M+lVBdBn1L3JfP6x47FoW2MDSFvAQOfAWjdkK6XzR1ciL5nsqqlopQlw2Sossa8T0ehgR5+9vrqOM4jqMV19189tlnc+eddxbsK85Hoe09dTXvjHUopfjhD3/In//8Z5RSFBcX89hjjzF27FiCwWAnUe/uPHdUOwod48033+TII4+kpSWd6fY3QoifKaW2WZY8TX6+ZrdZTW9j27aRnAjFmDp1au3HH3802zDMw6uq4hNHjlSDR4zAqKlR+HwdFuL2FPtCQpt6pZbBFVfb7hDWSNQV00RSDFtboa3N7Z82lBtdZiiQjiuygQCUV0BVWVJQ+0CwGMpLoboCqiuhvBhK/eD1gvLiKqMNIjmeSySFPn0rzHOe+RtK1l93+oFBQjwB4Si0tENjMzS01dJv9jyMmuq8LldFF1OaKpBxKL61mdI/tCJaFAKDZ3iGH/NjwO0nf++99xg1alRBC3Jbkyk4mzZtYvHixSxevJhFixbR3t4OuOPZR40axZ577sno0aMZMGBA3j7s3jq/5cuXM2nSpLTw3XTTTZxxxhlZlnpX55Nqo1LuePm1a9fS1NSU9rD5fD769etHZWVl+rvsrbbl62Y45ZRTePjhhwEwDGNhIBCY1tbWFtZ9672HvrKa7YZt2yilME2TyZMn1C5duvzgcDh8+JAhnn37948PHzFCGbW1EAy6Yp8ptFK6r5QFG4tBNOq+x2KuqKZe7e2u0MZibtmAB8qCUNoHSoIwsAb6VUBFKZT4oU8plJRDRQlUFrsvfyDpmib5EKBwBdZJimtSMPNZ3Znk6Gr2+pTmiIyCyffUg47KXL8Vdbii7D6cROOuZd7YDBuaYF09rA0Jxr54K4N/NAf7lKCb1jR50MzJTArOYKYUEoE04f6zLueRh28HYPz48bz22muUlJRkndvmunO7EoHcYK758+dzzTXX8OKLLxbcpysmT57MVVddxVFHHZU+164Cxra0HUop2traOOSQQ3jvvfcAOOuss7j55pvTfeq5VrpSitbWVu69917++Mc/snz58m4t8MxznTVrFhdffDGzZs3Ka/1vaTvyHUMpxd133825554LgGEYmyzLmhoOh1foWQ97By3omu1OynUvhODwww8ve/vttyeHw+GJUsppPp9v90gkMpKcJDUi/Z8rctUVMH432G0UTN4dRgyG3QZD31IQBggbN7NJcr/c+1JmUFimIBYSx1yy9skQ38zjZS5nnH6PK9mWdaSs84QN0Rg0t8GmZli/Ceo2wrpNsKERrA17cP7/HkbMKMa+oy/0Nwta57mzlCEEd195JY/edhsAM2fO5Omnn85MHNRtn20hcejyOilFS0sLp59+Ok899VSP9+sJ+++/Pw8//DADBw7MOq9t2Y54PM5xxx2XDio777zzuPXWWzFNk1TyFtu2+c1vfsN1112XmaBpq6itreVvf/sbBx10UPpct6Qd+cpk7v/aa68xe/ZsYrEYQohGwzCmxGIxLeq9gBZ0zTYnFUVv2zbHH3+899lnn93H5/MdnEgkDrFtewxQg5sVrlNKONOAoQPggEkwbQrsPQKGDYTq0qR42cmCovCPt6eivLnkimauqOY9DwVKJC3lDIu7q3PvjTryCnrIFfKUoG9shFArtEThwFVnc/zqy3C8Ns45JcR+VY7jFdlpXpXCESI9t/jjt97KX66+GpRi+vTpvPjii+kHt54GW+Vz3Xbncj7jjDN44IEHClzRbcNhhx3GE088QTAY7JV2SCk54ogjeOGFFwC45ppr+NnPfgbA1VdfzY033piZ1GWbUl5ezlNPPcW0adMKPrB01Y580fC5x3j11VeZMWNGav/GYcOG7fHZZ59t1MFy2xYt6JrNJhaLYVkWSikeeOAB45JLLvF7PJ59GxoaZgKzlVIjpZTFmfsIXMvZY8HE3eGgqTBzPxg9FGr6gCHcIK9CruUsj2KGCzpTuLoSy9z9e1KGHKuYjGrJXJdRr8pZn/s5n5e9U9leqEMp1+WesCEWh9YwNDS7Ir62HtY3uJ+bWtxtkRjEbIvjVv6MQ9fPwcGGgCD23SLaf16OU4zbfy7AkZJlH3zA9w8+GIDhw4fz7rvvpidCAfKKQk+EoFBZgLVr1zJlyhTWrVuX59vsGiEEPp+PsWPHMmHCBAYPHkx5eTmWZRGLxWhsbGT58uV88MEHfPbZZyQSCfx+P2+//TZ777131nG2ph2Zn0OhEFOnTuXzzz/HMAz+7//+j5///OdZqWW3FtM08fv9DBs2jKqqKrxeL4lEgubmZvbff3/+8Ic/ZLVtc9rRleAD3H///cydOzd1HvNPPvnk6ffee6+tk9FspqToBAAAIABJREFUO8SwYcOGDxjQf/Wrr75mp8ZAajQpknOSG3PnzjVeeeWVAXV1dTO8Xu+3HceZKKWszuy7E4BpQVUfOGgKzJ4OB02EgZXgNdz+56zCZGtzejnHrQzktVzz7V/wmFtYR67wd9HtndXfndX/3c255tIbdSjlvmzHFfVw1LXSU6K+sQnqm6CxxV3fHnb72mMJiDsmM788nyPrLujo97cgfpCPpl+W0TYyzrkHHMDa5cvxer3Mnz+fiRMndtTfhSs3c3vWOXfRX62UYv369UyaNGmzxNzn8zF37lxmz56dzsPQXf94ap1hGLS3t/PII49w5ZVXMnbs2K1uRyapMh9++CFTpkzBtu1OZbaEPn36cNppp3HIIYcQCASyRzHkOce+ffsyefLkTue4LeIHlFJ897vf5f777wfANM3frFu37orq6uotbp8mGzFwIGtOO40Bn30m5EcficaGBu/ThuF/sLa2dsGCBe+0+f1+nfHna0AikcCyLJ5++mljzpw51aZpzmhqavq2YRgHK6WKVdYUjtCnGCbsAUfPgGMPhv59wUvSyoYs0UmTdA2jkpvzWMpZVmYX1npq/96uI1+gWpbKpsqQp1xqVWp97m65TxO9WIdS7jopXVGPJyAcSUa6t7ivhmbXQg+1Qms7tEVc93w04ZaP2zCgeTJnLv0t5ZEBuGFwgod4iGu5FnCDuu66667kNe3+vrE51m0KKSVz5szhH//4R7fHB3dylxtuuIE+ffrktTK7CrrLdx5FRUUcdNBBefuMN6cd+faVUvKDH/yAO+64o5OA9hTDMDjqqKM477zz0sfoLqgvtV1KyZgxYxg2bFje7d1Z4d11j2zatIm9996bDRs2IISwBw8e3H/FihWb9EQv2wYxeHDZS3PmhGb4fB0uRyHc1+rVsHAhdl2df8HGjdEHa2trn77gggvqLr30MqmU2unnddbkJzX/8plnnmk99dRTu7e3t39bSnk6UJvbr11eAvuOh29/A46eDn2CIBId+pLrJs5n0YqsD6RFt5DQFlzu5ToU0NgGQT/4rZx9cyzhzDoVna39zGN3Wg8d/d7bsY6UlZ6Kdo8lXMFui7gC3tzmvkJtrtC3haE94lrzkVjSWk8N23MMpqydwzHLL2F64lAaaaS4uJj333+fkSNHdit2+SKle7JeKTczWb9+/bq1Yi3L4tprr2XcuHEF3cWpOlLkE+Wsr0gpHMdh+vTplJaWZu2zJe3Ld/wVK1YwefJkQqEQRQG47mJ45D+wcLE7dLIrmR87diw33HBDt/UVOj9wh/MdfPDB6eXu2pGvjkL1Sim5+eabueyyywBkMBi8u7m5+XzLsvQY9W2AKCoK3HnmmZGzq6owunqgVsqdRSsUgk8+EXz8Mes3bBD/NE3rwVmzDv/oySefjALaZb8TkgqmqaqqGhMOh0+LxWLnAhWZZUwDRg2FOcfAibNgt0Ggohki0QMnTZa7N6kwuUamyrO+0747qg4JVJ9FU6ycf/79EfbfexV7DyNr6FfucTqJaM4hc+vPLJfpLhc55XujjlTBtKg7HcIeibnC3R5OCny4Q9Dbo0lRj7pu+Gg8abEnYO1GeO5/7jEPOuggXn311bz9ranP6XMuIALpdhSwDJVSfPrpp4wfPz6v+ziFz+fjzjvvpKqqqscPFz3tFlBKMXHiRAYMGLDF7cjdllvHrFmzeOmllzCE4qnb4YhJyWMLED5YsAgefhb+9TysWt9hjKXo378/3/rWtzjwwAMpLy9PP/x0dQ6ZAn7ggQdSVFS0Ve0o9CCwYcMGRo4cSXt7O6ZpLttjjz2mfvLJJ41othoxatRuP9hvv2W3DRmi2FwtVsqd3tG24fPP4eOPRfiLL4yXbdt8sLq63/MrVqxo1P3y25fUTW7y5Mmln3766Qm2bZ8vpZyYaXkbAibsDt/5FpxwmNvHTSr7mMh219aHy3j0ecURBzQzpJqOjbmubvJbj+ljZtxwsuogW3wyt233OkQp1PwIhYlA4ZgG/3zoUYZUfsj+e9Lhhs+lC3d5ykLOdYWnzgvyn2ev1qE6Xo7siH6PJ9yAuUjctdwjSSEPxzqs9JSox5L96/+dD/MWuse+5ZZbuPDCCzEMo0eWaCGrrjvRqK+vp3///l0K+vXXX8+4ceN67FLfHBzH4YADDkgH/W1pO1LL+cTv9ttv5wc/+AFCwA9Pg1svoiM3QOZ3njq0Fz5bDf94Dv7xNCxdnX3OpmkyceJEvvnNbzJx4sS8rvjUu2VZHHTQQfj9/h61o7suhdzrIqVk1qxZvPzyywCUlJQcuHHjxjf8fn/3F1/TJdYXX6xcOHgwJLtMNgsh3D45w4DRo2H0aBVUyjlKCOcow/iSiy7y8Omngupqa2FLi/VUZWXFQ2+88ebSoUOHSnf/zftD0nQmFWxSW1tbs2nTpnNN0zxHKVWbWaZfBZxxHJz5Tdh9EJAg604vksvpv9cMi7SqZhrnfX8qCaV47IlnCaq3OWJ/wMmxhFNCmSmYInWOGW7t3DpyVExlbEuf0/aoAxCBUShhJusSmFJx8knHEVff4i9338c39lvFwMo81nPyXDoeDDLqzSib2qRyziXrryD3PHujjuRxUi/TcF8eC/xeCNpuf3k84Yp2LN7xSlnosaSV/mw6j79g8ODBBd27qTKp5UJWbVdBZqn9KisrOeKII9LjtnMZMWIE48ePLygyhSzyfOTbFgwGuxTznrajUH0AQ4cOTe+34kvcrAyZv+fUYvJvgwTsXgPXfBeumetudyxY8Bn85Z/w+H8d3nnnHd555510XYMHD+aEE07gkEMOyXoI69OnDylx7Wk7cj0Y3d3bx40bx0svvYQQQtbW1k4UQszH9ZFptgIBjJowgXe+9S1Ku3jg3SpSN1vDcDN4LV8OH31krV+2zH61oqLi/ilT9nn5scces71er0ylO9TkJx6PEwqFmDFjRunixYsvBr7nOM6A1HYBjB0Fl54LRx8AJR7cP5OcJ3qReVPItHIzlsFC1FyIMvqk61eGwbPP/hd/4g0O3Yes5C2pt82qI9fSyDhWbp94r9ahgMozwD8io47sJ4hFS5ax+J0HOO5Q1RH8l+d4WfXnmMy5noRcOj2UdCqwbepQCmICTr4UhgyEq8+HPpbripdJq91xoC0Ox18CB0+G7x3ningiKfi2DedcBwuXujf0+fPnM3Xq1GQd2ZZo4XMpnOWsq23Lli1jypQpNDc3d9rn0EMP5cc//nG6q6kr13ZPLOjMZaUU++23HxUVWT1WW9yOfHUALFq0iLFjxyKlZPpEePEusNSWf+cAmLCxFf7xH7jpblhTn7150KBBnHjiifzyl7/Mcrf3tB2FyuR7ELjpppu44oorAKQQ4reRSOQKPXxt6zFuuOH69U1Nvk29mbQndZOS0k3ruffeMGeOXXPVVZx84YWNz+2zz39iF19c5Eyb5omUlpr/syzzwpqamgHnnnuOJaXs9ke0q+M4DrW1tV7TNL8TCAQWV1dXq08++aTZcZxfopwB++4Nz/4Fou+C8y588CDMORhKLdI3/7SRKjKsPDqsv9Q6kVFGePqB6fZBpl6GUhw1eyYHHHU1dz1Zy/rmjP22pI5UGZG9Ll0mc//erMMIgn84ApXhDRAIBQJ3upExo0Yw6/jLuetfRSRyjwlu2ZTgZp5z6rxE9rmL3HPKeDjJ3EcKPw++Pp7/vC2SGdm2rg6lYH07jDgCnnwF/vA36HcQzFvkdqF5LPB6YMUmGH0s/O9juOE+GHMitCfcyV9qKmFgXzdPfYrUDGK5lnhXr8zyueu72n/kyJG89tprnYRHKZU5KUgn8U6VydyWW2/muWSWlVKyzz77UFFRsc3aka8MQGNjY7pufxDMrfzOhQAk9CuCi46HL58F+R40vwX33eBmWayr+5Kbb76ZkpISLMviwAMP5NVXX00/GHXVjkLXM981SV3LDGydYGbbYFx44cUtGzYk1kejyO2tm6mbi2HAwIHwjW/gv+QSue/Pf+78/vzz168pLb0rcdRRpjNokPFlMGj9ORgM7rvXXnsFHcfptaxJOwOJRAKlFJWVlbWGYdxpmmZ7XV1dzHGcBxzH2X30UPjrDdC6ABILYP69MHtictgYHdc1y8BVHZ+h4+E+XSbnu1cKVHAc7lRaHdaJSt45fMLgnPO+x8r2b/Hie+7um11H5iqVZx3boB09rcM/BoGZbmdKmDuO796oSvx+5pz9I+57sgzHoKM/GjKeNrLPIe05yCiScolnnovKKJd2LigwA3sy55TjmX38tXwe+S5/eSJIU26082bUsWQDjP6Gm1AGoG8Z3Hkl7LdHx+/njcUw+SQ3+h1g+ED46zWw5xA3H35pERSXwMDajgeR+vr69PWDbDHtuNaqRw/omYKqsn5/HfuOHTuWDRs2MG3atKx9P/74YxobG9P75Apz5rFzXcWF3n0+HzNnzqRv376dzmtr2lHIa7By5cr0ct+qDiHPYmt+V7i/rRITzpgJSx5zjYHGN+GGS6BfpeTNN99kxowZeDwe+vbty/XXX59+0Mh85ba30HXJbPO6devSy7vtttuaWCymA622AYZpmkZ5ecWitjaxU1zQtJWioLgY9tlHGWedpWovvdQ+76c/Df/vuOM+aZ8711ITJljtlZXel4qKgqcPHTqkVinVZZDMzo5SCtu2CQQCewUCgf8KIZyGhoYvpZTn+n0ETzkCVrwAznuw+BH3j7A45xvLFL18y+Qsp8Qx648/vd1A+PfIWSeyrGKkYt8pExg+/lwefckEo/NNpOs6Ms5RFD7vrWtHD+pQIILjATtpn4usQm4AUtrOp8jj4aQzzuWBf5vpjPOZdXScYMc5ZV6X1M1ZZRfNstAz1xMcB8pBKMUeI4Zy7gWX0xK8gLueCBJOdDxQdFuHgk/XwtRvu1HsAP2r4E+XQ0kRfLLc3eeVj+Hwc9woeIC9RsDvLnb3/2KtO9rF5wG/Bw6Z0HFNX3nlFfda5FjCuZ8LueNzRSKzLzZf360QgmAwyLx58/j888/Za6+9AIhEItx8881Zw2rzCXeh/vPMZa/Xy3777ceMGTPIDdraVu3IXS+l5PXXX3fbCEyf4Ho3O3bcRr+rVDtSZRSU++DyU2HNs2C/D+88CjOmQijUwC9+8QsqKyvx+XycffbZrFmzJqsdqTYXiivIvN5vvfVWevuKFSveRfefbxPc34Dg4jlzuGXkyB19Oj0n82/IsqChAT76SMhPP1WrW1v9f1dKPHLqqacsuuOOO+M7c7+8UopgMDgmEoncA+ybWl9WAj85C358OviSN9aU5Z3Vl1zgPfWh0/bkh9RnkVGm45wA7yDoew4ChVICIVTypiFcazWjM1cpxeervmTx2/dwzIEqfcBu69ge7ehJHaIP1FyEG92eWi/SVnmn4CmlUMAbCz6gKPYEE0ZknEt3dWWcb+bKdBtS21KbjTJUvx+C8KQud0dZIXj19fmo5uc4ZFLy6yhQh1KwMQIjD3eHpQEMqIL/9yPXQyaEO/ph0AjY70S3Lx1gzHD45fc6Zr8L+GDWNPAkj1kfgeGHu1Hww4cPZ8GCBVnTdbrnUngYWFfvmftmUqgcuGJ477338pvf/IaqqiquvvrqvMcohJQSr9fL0KFDGTFiRNZsZ9urHS0tLUydOpUlS5YQ9MMn/4ahZdm/8a3+XdFZ1Av+dpMfmhLws1vhr/9yAyNT7T/xxBP5wx/+QHV1dcE2Zi5//vnnjB8/nkgkgs/nW3TppZdOve6669p69AVpukQkL/js2bN5Zt992Sms9K1FKVfkYzFYsgQWLhRtdXXiecex7h8+fNjrixYtDuX2mW1PHMdhyJAh1evWrbvJcZzvkLTzyorh+kvgrGPB65Dxl9rxx5xF5vqMv8LMsoX+cDsdM/dYpd+Akv1AyY6bWNoEUGnBg+RNDfjvS28wtPh5Rg8qcN7bux09qQNQwSlQfkxGi3DbKETyISb54JJ5LBQxJfnrHX/k3BMawM6oI+eO2emGmvE5fToZDy4ddQDBKVD+TZSS6btrx/fhHnhTcytP/P12zjoujHA61wcQBaadDu8vcpeDfvjzFW5Ue6p83IaLf+dmjAN3RrvbLst+SJISJu0FI/onT9ML3/4JPPqC+zu48847Ofvss7Mufe4NPXN9IZdtISEsZNUWqkMpd4rSTZs2EQqFiMVi6Wl8LcvC5/NRWlpKVVUVffr0SR9nc+rYlu1QSvHAAw8wd+5clFIcewg8disYiW38u8rYJ+vvrQd1ALRK+PXdcMtf3UBJcL0ZV1xxBZdddhmBQKDg9br88su56aabAAgEAte1trb+4uuSKc62bRBgGmbW9XGkY6CQW3sdRCwW4/LLLxs8b95tq44+WpLzu9xlSP0oDQPq6lxrfulS492WFvFIVVXVE599tnhZSUkpvfnDchwH0zSPA+4imdjFY8H3T4Vrf5DtQi/0xJy1PdckzdkOnZ/Mc8vkrUMK6H8ZwgyiMvOrZhXqfENSlsVf/vBbzjq2GUvsBO3oSR1KIKrOAN+wtAcisw73hpZhSWVa7obBI489x0F7vEm/kjyXKF1H4W0Zz2ydvQ0S6PtdlG+IW29m/enHD/eIceDeP93Cmd8METCz61ACLrsdbr7HXW8acM33YNTgjmtqGnDLg/DGh+6yzwv/72I3AC7XsvN74cjppCP9P1kD+5zkWm01NTWsWrUqPWVqIUs9Xx92+poU2NbdcXaFOsAdTlZXV4dlwnuPwt617oXfZr+rbrZtTh0KWNcKF1wH/365w7MzcuRIHnzwQaZMmZLVtjVr1rDHHnvQ1taGECJ8+eWX973mmmvCu3KE+8xLZhZ/uPqDvQJ+/88Mw5jt8/jcO71SRuqPSwhBwk7IuB1flHASfxo3dOy9z/36hfjmGp0CoLS0NFhe3vrl3LmqorsddnoU0IZr8wagK59Dpsg3N8PSpYKPPzbr1q0z/hMIBB+cM+fU12+77Y8Sti4DntfrLXYc589JaxyAcaPg7zfDHv0BmfF0TP4n7k4u1GRbM5+qRXJdlgarjj+8HtdhDYB+F6JUPNsiJNWHrjKOky00r775NtXms4wZvBO0o0d1eGHA1QjstKDnutpzSQmpAN5Z+BE0Psrk3TvXwf9n77zjrSjOxv+d3T3l9nvpcOmCoIiKCqKgomg0ViwYBVvs0QRLEjVq3l9i4puiKcZe8xqjRsVGYo8GEUQMghVQikiR3m6/55zd+f0xW2b37LlcOijP53M+u2d2Zp55ZmefMvPMM3qb3LIe3kIKTKjNpBFdbnIxeg/C7wMhfWFfn8nw+MN/4ZLTakOW+kdL4IBTgzYcPwwuPAUcO8D18Rdw6yNBMy48GY47NNQkHxwHBg+EXp1VumPAT++APz6qnl9yySXcf//9IUZeyOJtaW29tczsm4LDcRyuuOIK7r//fgB+OBbu+DGhd7l1xlVYUS5koW8KDilBmvCfD+Hc62GZ63BpWRY333wzN954I5Zlceyxx/pHxCaTyasaGxv/8k21zoddPbTTklVLnk+niob6XaZbFx5f0ztW6+zmbPPXGxo2nLvyqTVvWWbrtqEJgOuu+2nymWfue3vs2Nqh34gz5+sIu1ikgQSFB3sEpFRCPpuFpUthxgxRt2CBNaOpiUd79uz5wpVXXrF+3LirnI1N2w8ZMqTLjBkzns3lckMBLBOuvxhuvhRS2iEmIQtS04j1lyuk+zeiXmtyK1RGF3qbjKPiBCgdEtSVZxX6RfKs5eWrV/P+m3dx8uEyr03bnY7W4Cg+AFF1GlIGuyZCgkinXTvpRLj1fzLnCzZ8+TjD9tP6JGrVeMqICPeZPnJC7XITRPGBUDUKpIPXmoA+r389bwaV46tly5g56T5GHe7WY8Lx4+DVd9TfylL4y3XKAteZ9nV/gYVfq/seneH344I+85uk5S8pgu8cGmynkmllpX8wWz1/7LHHGDt2rN+fQR35gnBj17g6CgnRXRnHU089xdlnnw3AwD4w8zkwmoP3sFXGFYQOBQqlbyEOvb4NGbj8Vnj6JU8JF/Tu3Zv58+cDYJrmC4sWLTq1urqabxI40mHIlYMrV9Ysf6W0qHhotGMkLv+S8bqR/o15kMllVm9o2HBqfWPd5KZ/tXx+gQHw+9/fllm4sHZBU5PGPHdl0BU+ATQDtajwpq2gzxMilgU9esCpp8rSa6/NHn7TTdmHx46du2bhwmvsY44xs506GfNTKeu2ysrK/Q855JCklJJsNkt1dXVXIcQn77///tJcLje0vBT+dhtk/gu/uhjS7kvzrMi4l5inJmj5ieaXkTKa5rfJOEhA0Z5uP4hwRuGlqZ8ksn9XCIrLy1lfU+S/gx1GR2txFA9CSjtEh8eAfAEqRJiRiYD+mg31lLonv3sx33Ulw1Ms/Gh1Gu44ZorU2la0L9KdvhHCE+YyaJPXXoHfST2qq2kQ+7O2DqQDM76AN6YEeEaNgKKk+waFsrY/mhsIcyFg9Mj4ftX7saYelqzyOgtEE/zrXujWST2/4IILeOaZZ4Jujwg0/eov2USuer5CFnGckN0VcUyYMIFzzz0XUPv7X75fE+Zbe1yJgM+L6HUzcOjgcYeKBPzjF9A8A26+HCxT+sIcWJtKpS7p2LFjgVp2Tdj34n3S3cdUP9lM3ZrKitKhVtLASqifmTAwLIFpCkxD+I6ooI0XpCt7ZKh/k1ayXfvy9u90qOj4zwMu27+4pUOJDK9CKflk3bpvyNYBXaDrPdOEst4346hhnZlVVsJhh0nr8stl7xtuyP3kmmvWzzzqqKnNo0cLmUol6pcuXbpYSrlPRSm89ACsfxvOGYGKqiZ8OROq27cYReRj0T4mqae5Cf5HF9PezcKR7ARmWw2J9/ELTdnzmJreJm1jV4z2v93paA0OowqS1SGB7dHh0SqlpuRKEcKNYTB33lf07hrUH323XhNCOoWWIVRG7zejAlLdfSUmoEG9B78d7lV4DNtxOGTYEN7/2IAkPPisivoGaqvZkYODdU6kstRfnhy0p6wYhu6rNY6Ye9Sa+6y5BCFJhQpaMuNZ6FCl/EXOOussnnzyyVgBp3hO/D7mlhzcomWi5XdFHM8++yynnXYauVyONuUw83moLg8Lz602rgjnic2/iTi87yVahxRgOXDLRdA4Df58vfIZAto0NDSsKC8vf7hXr167dESZnJPjhSnPG52+1+7GrNFU26FT5VnJlGEkkgbez0qoazJpkkiaJFIGiZTpPhOYllpK9zio3+e+8qh+xeniE9fUr1k64JJ+3aPjzQMDIJvNGtXVXWatWrWNT1GRQAPKYi6k4m0NaGlJxmtD3Za3QRfyU6bA+PHgOBSnEir60tq34buDCIVe9X+axutNa3npeWmeRh3Rkn16PGauM365mTiK9gGc0IDykIRw4K7qug0TLoNqrKmlsrwR7B1MR2twpPcAkYylQ9Ung9kB9+pHgwNqGxqQdXMpKw4+OiJt0cnxx4sILvrPyyMAkd4TRMLH7T9zGy/0/8J7Gwp6VFezaKWaJXnxrYD8vXurgDCeUiRRh7B8Mi/IM3Sg1p5Q52mE4NEPi1dotAhom4Q5L8GAPZTgGjt2LFdeeWUoRoQu7Lz7ja076/kKldXL7Ao4HMfhmmuuYfTo0TiOQ/+e8MXL0C6F/xL8cbS1xlVMmS3FAflpOtlCgClh3BlQP00tOxoCo6Gh4cIvv/yyFhjDLgqdz+pw4o8fvGZDh3Ztby2rTFmJhIGVVL9E0iCRMkimDVeIGyS0+6Qn2FMqv2kJhEG48wjYsGkJSorSlTbO553P7nBQnFA3AEzTdLLZ3NerVomGbeqfIIBiF2stUONet7aAN9BGbgS/95Mu7iybDVLC2rXwm9/AxIkq7ZyTVTjF848BQ6NJRMr5lmKEaXqWl8+oZfDf+yj96TIRefcikrapOABRtJ8r1BQCgT6l7uEIT7N7eQFmfT6Pvj0CdX2H0NEaHBJE8b4Igk3+AR06lwtIV8Wkj3vS21M47KC60IyPxxj1csIr4Cko+aQEigYgHVQwGXdKJ5pXRJAIL5dUzwzLAqOETxbAuiAKKgfuFWwx8orPXhhY8ABDBqhY7egoPDNMa4iUat/6rHnKKU5vS1USPnwGLhil0u6991769evHkiVLCq5Je//j1pjj/FTiprAL1bmz4ZBS8vXXXzNgwADuuOMOAM4+AT5+DtqmgrEbrpMtH1f6+4zJu9k4dHQyQJEn8AUkJPzmMlg9GQarOEBJ4HHDMGZ36NChw8bOuN8ZwHYcyk8o7dN9bNev2pa1+WdJSaq0rDKpLG5XkCdTJom06QpsU/3XhbhmwSc04Z9IuILd5T9efzoO2DmJmTBIp5PpitKyt7uf23nfaMRUA9SBH4ceesjCtWtFTcy43vqQAMoIpuuaURbz1hLwgnjvdqn9vHyN7m9TUQh47z24805oaoI2FfDxBPjbzzWHN709GlpfQKF9ZAWee/fSzasLtqj27OeRbB6ORA+kWRbgkIEAE67pq3BoUbB8HBJpmXzx0WT6dt/BdLQGh5FGpnqHGJBHh/dPRh56TEoCXy5eQnbtJPbogm/xxkGoba5SETtb5rVLgjDLkKluwTMZPAsViKYL9b7UEoJkznx1KpoHvbqE+0UIWLpSU3pQwWb8mJEFFCkIaF5fC8tXh9sAYNrwyM3w+kNqz/v8+fPp3r07t9xyS8GwzdFp6ahTWlz+QnkKldvROGzb5re//S3V1dV8/vnnFKXgpfvh8VvA0mNPeOULtcu72ZRx5eXZ2jh0dIHm22KeqhRM+z94/i61FOQ4Tv+VK1cutizrxJbex44EKR2+/ke6d8O/un2+8ooOc2ecbnY/vBoq2qWwkgIrIQLBnMoX1smUEX4ezaNZ91bCwDA13iIU7800O5imIJVKFBcXpV8Z8IM922WywUduABQVFfHCCy+uXrYsV+Mz0m0NAihFeaBDwC3hr61VAAAgAElEQVQhX8C30pktBIXW0T21UU/LAfWtw+F9GH/7G7z2mkobeQis+A/s0zkw8HySNG1bN3R9i1izHIX+8WlMNu8nw/WEeKnQcG4qjuJ9EeTc/7og9xiBay16lruHw0XwyisTOergGkzZAo7tQcfGcEgQRfsAMo8OVU5xrqht7HnPL1u9hvf+/QinjJB5ywE6HZ5Fo5fX2x4HAqCoH0KfZtIuPg63cm+M+SChubkJy6hnvWadCwFF6aBPvf7cUBe0sbgIUqkwHq9vQqDRbJrw2TzCIW8J8By9H2yYCqcerdJ/8YtfUFJSwvjx48OKoQxvEYyb4s7rqxbyFHJS21E4AF588UXKysq48cYbATjpSFg/Fb57AIEPRBQHW2lchYfSVseRlx6Tz/v29LF1ysGwZCL0VOdFJoF/JhKJP2UymfwKdhBIabPy5eLuTZP2/Lx9dd/5qbKKPUUyQVmxRaoqHQjqpEkyZYSs8WTa/WnT68lkkN8T6rogV4JdKGc6y+NPwv9umxttTEtQXFTUxZbZv+pbqo2g0dLIZplRU7OdHeOSKGs9OgB0JuJ5qdegBH1rBLxHma4otITDZqPr6p4wv+cedQQswI2XwRt3K4sklA9XAGgKkmcdeVZP6L+WDopB+umagiA1hcGjyfsgQ/VsKg6SkO7j5hdBxSEcLgOWMmDgQqXPnrcAat6kbxcCibEj6GgNDkAWDwScPDqkwPca9+sVIFHP5i5czDsv38XZx+Xyj1DVcHj36DSJgAbd+NeZqEQgi/ZB4gV50gakpt3kD+UgNsD8eQvp263RP1gF1JbJVMyW1IbmAEMyofL51lyUjsh/D9ZtgBVrC49z04ZnfwOrJsMBe0FzczOjR4+msrKSJ598MrS+HhXycf+jz+Kc0nSICuPticNxHJ566ikqKysZNWoUjY2NDNgDVr0DL94GCd1RVoTedgTBlo6rbYtDn8XSiofSQg80ZbRtEr74F5x4hHqUy+WuLioqevzoo4/eoZFLpZ1l9Zvdjm/+76A1bTsP+CpZXrWnSCcQqQQkLf5bn2JWNul7sntr4coBzggL71T+z0qK0Hq7uhe+o5z6iWAKXoPmRgfDgpLiouP7X97zrJytlir8DstmsyQSJV+sX78DDmkRKKHu7o0NmVh6HtznrRHwZqQckTw6Dl3otyDUhYAHH4QVK9T9X26CX1+CH/ghClHryUcpQ+O6RQtT5yGhtEgbQ+VkoFS0GkeiA1htfSs4rwvcdN+ph8ANa95Xi5nz/mMcP0zG1r+ldNgywdPvDuCVqYKczB8im4zDrEAku7l5gnhr/syDjNYhwTD518tvsP7LhzjzaDt4hx7Dk5ExoGke/lDW7r31yrxnRjEi2SvIE6kuSBPoSLz8jmEw7d3JHDRAUqWdLJrLQVOMv0hZUTBOmppV7IXoLEheIyJgGPDpXNQ3J8l7h959uxRMfwyWvAmH7g81NTWMHTuWVCrFJZdcQm1trYtX+Nc4x7Pos0Ie5YUs7405vW0pDiklDQ0NXHnllaRSKc466yxqamoYsg989W/45CloVxTumxBfcMfsVh1X2xiHN4h8Nh2pQ3+WN1Mp1HLDC3+Ei05Xz2zbHjNx4sTHpk6dut3kkXdUd69Lq0v/5/Ye92en7GdXFrd9KWEm22AYwaEHLuHPrk6STgpfMEcFd1JbP096FnvSDK+ZJwUJ1xq3EsLf4qbuBZYm1L3+lFJi5xxyWUkiYRrpVPo3x9x8ZDprZwOBbhiGU1JSPneHbl1LoabhoyBj7r3R5KC2o+kCPkvgGBdlQnFMKZovRqibJjz9tAo0A8pT84fu4MvTeiOM2B/kQtOSZYDW++9pv34+7WOQ2i+kLet1QFij3hQcxWrPs0qTLk7XMnHT/KsMnOb+M2kqKz5/iFNH2O5g2/p0mKlenHnmWL57+i0ssi/h/udLWFufn7/VOFL9kCLpzp4In1YhVUQ2v69cmhcvX8HDd9/CMfu+w+B++IzQqx+dVo0OP117hn4VkfyATO+NFGaYBjScPm5XoZIqxIyXd8bMj9izywKKLWjbLsyoa+s1RuvWVVkW4GhshnotFoU+WxICGbogJaxeDyvXhmmM/ry+6lIBkx+E2mnwo3PAIMfDDz9MeXk5lZWV3HnnndTX17doLcelFdoa1pp6tgaO+vp67rvvPiorKyktLeXee+9FkOPys6BmGrz3V+hWqfWP0O4L9NVWG1fbGEdoFkDPq/HWuDbovNNw4IGfw3Huabi5XG7MsGHDbtyWjnKO4+A4Dvtc1aP7gKt73D3k+r0bO7apqn1lVdmlExZhONkcTnMW2dCM09CMbM7iZG1WNEi+aLb8KXJPSOetk/te7Wbs2rln3XtT7JZlaBa6cH8GpikwTKEpToLmBhvDEBQVJXsuXT9/DFKz0HO5HKlUasaKFRjbxTGuEBgooZ4gzE3iOEtcmoNycqt1n+vCWmj/oyM0Wm9kTf2jj2CWe7DFdw+DX12OmqaXmqaqofFuhJYQ0si9gSzDWnPIqtHzEORBhrXckBYtNgeHgKJ9EARrwqq9ItJu4RdqzGW57+472LfTKwwbuA3pkKijTZ0sSIc9unXlsiuvJ1M1jvueLaauOcjfKhwOiOKBgJ1nuQR9pSpZsnIV9935W8ob7uGikzOktQKx71xG6Ig89/PI/HR/VsA9KjXow6DxXp3C7x+3tFv2q6Vf89WnL3DofgrPfnuquOteV8z5ShkZHkiposIZWmMXLcOf1QjRIeNp8q6W6VrpXv9o31yh76PUhDuugqZpMP91GDEY6mprGDduHKWlpaTTaS644AJmz57tT8u3ZguZ/izOum5NPS0904X9F198wUUXXURRURGlpaVcccUV1NXWcPiBMPdVaJ4G9/wYyrRAIqF33pq+2tJxta1xEHyv0fQAQSR/TBuEAJGFJ2+Hvq5PqJTyVx07dtynkCNla8G2bRzHwXZsbnvmtuTeV/TsPfDaHrcO+Vn/VYf9z352RVn5V23KK69Ipay0lRCkkoI/f24yepLgk1UZco1NOI1NyMYMNGWYuM70p8l9i9qz1PX1cn3bmrZm7gtz72oZWJbATAhM0wgEuRuMxrCUQBfai5VSkmm2VX7TunLB8rlW9N2169+fL88+m9IWlou2H9ioPeO6YPauEIwISXh0RNsuCqTpEIfDBFkC2QzcdRfU1CgG+cmLsIdm/Xhrjno7dOtYRNrp9a1eRifBb4JsAcdGrpuEI9kT2l+ExEFEK9EqkFJiC8Gz4yfQvXw6Q9Uy9BbRISVgwBNvQroYOpZBZQWUlENlGirSaUT1j4G0KiuliowiAcPg3WkfULPkBY49NNgm2GJfGWXQ6Scqg3Tp8riZVP6Rb745ifVL/8OokQ4pT0CFX2+oTi8sZijdu422IVqPXkxUITv9CCG001XcdkoROO8p7UP4/Q2wbPVq3nzhTsaeIDGkIk0Ww4ATYc6XKk+vavjzj4OjL5EqGuKYmwJv+GH7wU/OVdvb9HemNSV01Z9Lqc7Oblce9Nmm9JX3f1kd/L+74PF/qlkDD0zT5OSTT+bcc8/lsMMOo23btv6zuG1iUdiU9Djv9rVr1zJ58mQee+wxXnzxRXTLMZ2Es0+EW34E1WUECtDG3nn02bYYV9sYR4u8yPsbw6v1WbUQ2wFemAJnXK0+dcMwJp922mlHjB8/vsXZYykljlQ87PCfDCufv3jB3mZCHJ6wksdIRw5NJpPFpmEaVR2SWEkjT+FQtyKPQKHR7rIrqjqksBIGwlB0eBa0aQkMQ/3U4nVAuOOAdCS2LXFsdbVzavrczknsrCSXc8LXrJpaV1Ps3r36wCVgmII2HVJksrmm2obag0NNHznyqOLZs99559JLswfkvTDvReSNju0Ajahp9EICfFNgU8pKkAmYsxCeekolnX8S/PUW/L3HnmXoCS5PG5YQCAJdq/WYcAtKhy9rCP8PKQjaxxjCH1PfRnFUnIwoPTDyPao7b2q9MZPh2fEv0rvdJxzqCvJNwtESHcDaJhh0BpxwKlRXQ2Mj1NdDba06OKehQSlUGzaoNO95LieoLEtTXtxI/57QqQO07wI92kP3dlBeAW0roE0llCchWX4wsmoUSBvhOCAM6hoaeHviu6z8ajInHZmjXRn+WQChdWzv/cb1uZsYFXqh/LoSE+UbEigegqw6CZBhHBE1KRxbH6a+P4OmlS9w5IEoRz0Nxy8egVvuUSUtE/54DXRsG9BlmnDXU/Cf6ep/OgkP3OTGeo/QHwWddA/aVsCRB+NHRdySvpIASfh4Pvzh/+DFN1XIWR2EEJSVlTFs2DCGDRvGIYccQvfu3enYsSMlJSV+nmiZ6NQ5QENDAytWrGDRokVMnTqVd999l8mTJ7Nhw4Y82suK4aSj4CcXwP59gcxmvHMf/5b31Y7EIfUb90E0PxQoQzi/11ZZBANPgVnzwTCMXJs2bQYvW7bsQ0c6WKaFBGYt+sz67s1H72kIc4RpmN81DHFUOlmUdtuvJp40pIYhaNclrcaDjpCYcS48HpjffmEKqjokldAWAunIkEVtmJ5Q1ytWAt3xhHnOFehZJczzBHjWIZfz/qs0/VmgREuqOqQQBk7STP00RMann35sDBly4PPjxmVPTKVamHrPoQRsTnuJ0TcU6Rz/uik/vayNmgZvaVTo+Apoi6E6KfBcq8M04ckJMOtzlfTawzByoPaetEGfpyxEPo6453ltjt639GxT6ixYTwI6jQOzPK8PbMPgvfemM3vGG4wa2UA7z79hk3G0jo41zbDvqXDCKUqot2bpR7cOhQh+pruHM5dTjl5NTVBXF/w8RaGmRikL9fXQ3KTinHeogs7tobIKunZW09Idq1R6ZTvoVAEdKyCR1Npgg7ADhSU0hmPIjXajOsb1AmSqF4FKJZFShBUjb85TQkM2y6MPPcL3jvmaNiUxXSphwRoYdJqK6gZw7CFw8ahwvy1aDtfdEZQ9/0Q4YXh4aEU/kzxlxE2wHTj6EGhbGqR5bQl9C1q5jQ0Tv68kYIBtwsw58MybMPk9mPm5mmHI+4RFy3vMW5PXNKF9JRx/BFx0BgzZ293R4im0m0NHNE9E6G2VvtrOOGL5kCb4ozM7MpI/jgXf+jj8/M9gWAZlfYvHtx9etTxhJL5jCNEnmUga3tbNPDYRleQutOmYUtPWoccivki0Xl/Aq+AuFW2VQEcoIe1tMbPcKXPDtdS9KXLpgON4wtwT4prgzrhpIeGtCfdImmO7XjQSSisTlJQmaMpkngu1OZPJGD16dLtt9OiVV1dVyU1bS3dQQj5LcNJZnMDRoZBgKiSMWxLmURyFRmAhHNGybpphwNuTYPIMNRA/fBb27BSuR5+SiWOqOo2haUrvA4vTfiXBlqoCWjPhqoMPlXB9LeJIdIMOl4PMQSLBV4sWM+k/75LIfsbIQ3K0Lyc43nVzcbSSDiQsrVWndo0aDTvi7IbojIIQ4XVnTznwFITGRnVdv14pB96voV4FzGhXoRzP2lRC+07QvYP6ta2Czh2gugO0L4OSkhKcLv+DIIfIOe6ygkQ67nSwz3HUssf48f+kR/l/1bKHRB+OfqcKoaK4XfMnuPMxVx4K+MtP1Tnn3jswDPj9o/D+Z6pcSRruuQHSbtSyuG8kNA0fedyhLRw+KGhQiJF7fUv+fd7nHcGBlt/lZaGKpAXCUMsFi9fCsuWwYg3UNsOGWvVbrxzpqSyDilKoKIPSNHRqC8nKbqxcM4DVX8+iIv01g/bK0aMj/vbE7UHHrogjjgdGHuexXQjzRmnCqgaLSUvK+M/icj5ZVUxDzsDUFu09HLaE07s7nN7NpmeRcmbN2Q6za+CvC5NMW29h6vwKSBWZlJQn/FbkLb3oAlyT7nG6QTJlUFqZwDDUDJkn0H2vdM+pzQThOqhICY5nicdY5Po1T4Bn8i11O+c5aArSJQYVbVM4OflxqKlNTU1UVlaOOemk5scHDMjXVjcZJMqKzwBRn4aowC50JXIfV55IXsgf1a3BFTOShYB33oE1G+DLJfDBP6FXacDo/Oz6R6INcND+x+AIWXQF2i2JKALE1K/VEc1TCIc04K0Pyvh6WY6+vRvp1xMqiyk43bw5ODaVDoCVjdD/RBhzDrRvH86zq0DU2PNo8Ha+OI765XJKKWhuVrME3uzB2rXqWlsLtTUCx0lQVpKktMQil1nPwP5q5qBfN7j8e2Dm3P7VlCpvLDYC7YYH69F9u8HvxqkQr16eDXVw6a1Be4fvD9eODfKEiXNxEAgM/ZtxHHW0aqUWNz4yw5n3LYTW5OPoiBT3+jiuzJbgIDIutwWO7UHHdscRg1Tq6VIJ7WZb8OHqEiZ9XcFHq0r4qjaJLQW+N5fOeyM3toQLe9uc31uCMIKGSAeZc5A5G5mzcbI5frmgmPdqkn7ZkooElhWuXOiVi0jzhXaJSPVkyqCk3EKYAhxlaQcnq4nAc11zZPPWy1sS2ln3Pizo7ViBnstKt48lyaRBm05pHFuuDoWaSKfTAEtWrSIjBMlWzlYVBoHyVk9oaRIlMDIEU/ZoV73v4hi5iLkvJMzj8hbCEYdTgmFCIgFVZbAiDY1rgVJNIBVqJzGC3c0aXfvW83uVCiI4CHdRqEK9zpgyBXFIOGpQLQwK6Mh751uKYxPpQECHIpj+DAwfC6PPhjZtdj2hXqi9WgwVhFBjK+F+H+3bF6pNImUG9dEEZYUAWULI8ziOmaclPH47nD5OvYu5i+Efr8MZIwMlq6IULj0NHnhOlZnyIey/Jxx+QP449tsQhwx3X/o8GD6I0MsOMXhaGA9xdOgJ7n1cF28pjqjz1rbAsT3o2F44ovyiGcG6JouP15UydUU5n60pYVWzhSMFpsjHlfIihUbSow0WQnBke5vz+giElUBYpppukoBt42RthGHgCIEhJb/qXc9lCxIszaq1t1RKKQChcVwAZ3TtXOEP7vV1cn0yOu9nuALdEEgcHBuEkO40vCcBggq8bzpUiceo/fVEXfNSbXUc5R/gOJSHBLpt2xx99MgvVq2a1GAYTnILdwrEg0AFoCiKpMdN2etldAjTlC9ZvGf680LKSZwiodVl21BRAcuXQ/fOMHkW7N0d37KReh8TIxBbQhP5KKLT8ToOL7++nipj6vK1Ye/ZLohDCOjdtpj337qEgcPv4bzzs7ukUN+aEEe7lMFRqL7Q1RQj72oIGDUMbroMfn2fSn76DejQxp0ad+s4dijM/Qr+84FKuutpladfj3gcIQ9pv1Hq+bJVsK4OqtyT6HQlVm9e9L4lOvw8Hl6Xn3v8bjeOrYsjNCUu3E1HjsnyxhQfrivlwzVlfF5TTE1GiRFfIBGuLJXOj3TmPctLFjG3Qh1S0r9cCW1hGoiEiUiY4EhkBoQjkY6DsAUYBlII+pY5rGpMIlDbybw2RpGE2iC0iwgnejQI1xlOGMI9f9xBSvdYY/ebdFxvdrcncRy1fObF8Ch4DkBsavyTqKItgDyB/sc//mH5d787uMa2qSykmW8TMFCBZVJammfJex7u0dHXUtu8/BvLu5F0KaFLF1i2TB0y8dpbcMkooIn89UVNYIVmHiI4fDJEvE7iC0wR4JB6Jq9aEalH+1h9gbur4kh1p2u79kz79zgOO/5uzh7TRFXVt1uotxZCyqOnSDnwi0vhq6/hsQnq2T3PqEhxg/qrV5Jz4IozYeV6+MwNbfzrh+HWK6B7p7CiJnRGWEDizJ4Ph2pnqxfUqaU7VCIZYukgMsYIK5a7cbQSh2NhZ4qQOQuEg0g08rVtMLe+mC9qSphdU8ri+jT1tokBGIbUXq1WuQmpogJjQU+KZmhBmBcSsK/VpDi2QyNpoSxNmXNQfiYO0lY/XKG5MmcwXZb4MwBWItB8ola6iP8TabfOp1Q+IQBTKGc3z+HNQPUnBlI62Ebwvrytap6nu1/O3c4mJeAoYS/9NDddupV4DBLwnGZN0++kmrw+bWpqMgYO7Pba6NGrj04k5LZloBKl9tmo6fe4dXY9b0v/N4YnmrdQ+QLpM2YqZyc7Bz88F0YfEZNtY210/4fWp9w0EVMkTqGKrsd7+aPrgHlr07sSDkBWjYbigSAlC5bXccCIP3PRxVnKy3cLdR2qSuCHR4NhhwWCPs58Zi+BBJz+E3j+30EdV46GEQfhWxiGATfdDV8sCvLc8gPo36MwDv2Fe2mOA8cfppzO/BmZuDHiKX2RsVCIDn0sQv5Y22lwSMCEJhtW10KDe6pjwoLSYuU0aRlgCnwnrmYbmnLQ2AR19VDXAPV1sKIGahuVg19doxui18BfSja0nzBQuy5SCUraJClul0aUFLOkIc1J5YJ9ik3tXUmw3TVo26Y+63DjqrasdAKrOw9aEMbqNk4y5wvI+PpE3MX/Ywm4vkMdexVrnrpSKoGes5G5HG81pHm0sTJ04GYoHrpGVEo47JdoZj+rmSJs1tgmH9pp5sg00n2ZIkwcAImE4U67Q+36LIYpVGAYfeuau37ufR6e0HfcLWu6l7sdcXiLervbUc/3XHB2Q3GZRWW7JHZOzogT6FRUlPzhwgudazt2LKQnthIcAoHt/bROCbh45FoIWpuvpbo3JshjnkupnJbefVdtY2lsggn3Qrt0MKZCDCDKJDbhCvF16P/9Lowwm5CgbaENOz0OKaDLz/ECrEhg1pfrOPykuzn/gt1CXYc8ga4L1uA29N5sAeNuh3ueDOo59Ug457vhs9F//yhMn63uBXDZ6TBySPDu8pDEQHUHOGQ/NrrOH21rIToKFYrm2dE4pITpc2H4+doZ9FsZ2u1ZxuAL96C4KolVZCJtcGzHb4Q+vSyQ3Natjs5pgbBMhKnEnbJsbWTWRmZz6prJ8bu6tsxxUkH5Qu84KtzjBHskvWB9eYqCILYKoRzkUkLSy8pRIhzWOgaL7IRWt8irT8fZ3crxk7L1pAwjUNocCbat+iSbY0VOcBtdaBLayYfeRySVf5VhCuprcji2xPQCy5jBGruuEEpHWd62vhdd93rPSU14h4PJRLewOW5wLYmksn2K4pIE9U0NT+iHjALw61//GtuWvfv25fi2bWnpZEElsL096U3ur9n9eVPlOTeft2/TlwoRaGHA5H05hb4q/T5abmMCoFA599a0oLgYVq1SCU+8BBecjgolqpXNQ6vXE8ERmmp2/+v3fploe7R+DOkhIqieaNquhCPVH0oGucJeZWpflea44wYy7sfTGTTIwbJ2C3VQ++aH9CYIuxv9Ftxvbfa6I3j21Q20b9dEVQkcPwwqquC1yer5nIXwwSw44kAw3ehXRxwADU2BpT59NsxfoqLJ+YwqMpajszG19Wovf8rS2uN9J3peLb0QHdG8uPmilvROgUNAdXs4YD+Y9N/8gDhbCgee24uhF+9BuszCSpgqkImpLEQvlKjp7Y22BP2LHY6vzGIkEhgpdWKYkTADBi+9nwQpKTEcPjDLsCzP8nTDklrBz7K8Iz7DPx9/TLlwffnlwnUJf2+3ZYVxJxIGhmWwwbBYbSSotyzfu9x0w6haEdzCUNPT/ZJZflpRQzKVwEhZiJSFSFhKyTEM/72XIDnKXsfERBV4QtoV2KCm0L1h1NxgB2PD23VqS2wbbCewyu3I1cmpeyen3WtR5IJp+mDK3vYiZbrtrGibwpY2lSVVd+WxxGw2ZwweMnho+/YfvXPowY4hPKHtBVMgqGirwkY0/Z0Fx/x56oCW2Qthz57w2v2QjHgu5+HTrVTcey9/XLskIYejFi2DFmjaJXFIoOosKO6Pd9SA1PLMnLuKkafcw8WX2JTGHeTzLQPdQgeCsQaaVWxC9S1ImSPjODz37ASqy2YyfH+Y8zUMGa0OZQEVTe6GC2C/vkG/z10MN98TWOYlRXDL5dDNjRMQt4TkGzISelbD4L1jdOWWLOQ4OiJjULeGQ8s/OxkOCWBAfQ5eeQ8eeBL+/R6bDfucXM3g83qF7CIfZ0TL9fhNkZDcXrUOK2kpC91S0+6eNSozroWeySIzOZ51KphoVIYV8Lwb7ZmIeSBishasT1DgbyhzfH0inF4Ah5OT5BzJmGQthxZlMRIWwu0PHImTzSEzOdUPzTmcbA6RyfBooiMfJ8pClUopaajN+YrUupXN6kA2zzJ3rfOgXzxnODX1LrX19CAEbH4Y2MBSD66OHUQ1shKC9tVFNGey62sbagfnC/ScTcIyuw/cx5g9+kyn2Il6nG8MoqMszhqXBe71tCYKhxctVPfG8uZxlJj0uPKRuhYuhBkfw8dzYZ8+MPnvUO7OdehrhTpTi6a3iMLLW+B/1DIo4DC5a+IQxSpynSgqUAimzlrBcac9wLhxuW+Npa53geFa0CtXAM3wl6vAyEQEjmcpSpBF+0Gb0QjtjPWcEIx/+nn6dZzJXn3gvBth/BtB+d7VSmgnXLfZnK0c5GZ/GeQ5cC+47jx1H2vZumDbMOooZaVHfTD05Rk9PY8Owspjwbwxde2UOCRICxauhH+8Cg8+DYu+DnYttAR7HduZI67uh/S8qPPlaGx6e8Pm+tRakqbhT7nj6OvParr9dVHOK8k2mDqjihO6MTi8PshvUOuEbl5dMbgL42ipPoU/0+ywl2zk4lSNssotdz+5RNHvLTtkcziZHGSy/L/y3jQbZjC03XrrN+TIZhwVzKjZoWFDVls7V7Hco6LGc3YLOdLZEQs+FxHiroD37r1gU9KRVHVMk0obTk1D3cQ3bp52TCwrPOusM9t8+OFL08aOre+zTbautQRZVCSMOKFb6H9LoOeNfq1bIAiWL4eH/qEYXTIBb/0VDu2fL6Bir3pb9PYU+h+BEAPxSGmF8NwlcKT6I9udCzIHuGFPo5VKybTZKzj2tHv5wQ8k6fSuL9RDfgfutakJFi+GefPgyy8BGwb1g5HD4OiDoVc1lCVRkcziFFPv2vZ8SPcOpQmholxtaGjkiUfu5ryTapi/DL5zsToG1YPDD4ArRqtiQqip+ZCs9HYAACAASURBVP/9qzo7Hbe6U4+Cs75TeLwIAT26wOAB+Ep6aE09ovwWpCOqNMSU0f/vSji8jssKmP4F3P4wvDJJO0gnAmbCYP/Tu3HQ2T1Il1kBvqCqPIHmXSqxOcapYW/ZSMKxcSSskBYTkxXMtkoIDiiRrkUJEoFwiRXeTwRX/UOPkb8q3VdovON+VUJorVlKRzrSQU3PGW5bdLPSCNqHv5Tnjbd8pKELCEFTg01fu5Hvi3WYhqGiuUl8b3lyNk7Opi4ruaeiGxuMRGzfOrZk5ZJGtX3NgA1rMji29A9m8ZcztHfsebAHAj3s/e5b6L6Ad1xhrtbRpQzoTSQFbTunyeUcp66h9oSZt335aiwb/OEPr+T+++/5z803yxGbY5ltFkhUrPZo2Fgi/wtdvTxEyrWmbCEBn6euB3kkSu+470Hl/Q5w8Wi470YwckGZWAtdb6qu2UeYelR4+mnehxGhP07g7nI4qs5EFA/AO6ccvJ0WQaxtL+72xA+Xcvo5D3PFFfYuY6nrPga2rcbOl1/CF1/AqhXQpgwO2R+OGQ6HDVLx41MQRO8D35NaeglQcKwJUeHOeCSQUjvYxe1DIQSOEDzzzAQO6vVfenWBR16CH/06ECYCOH44nHuCujcMeO4teOr1wKIUAs47wY0BL/PfhRBw7HAoTeILwk2iI9qH5CsN/jjzvrFdHQcqbv37s+HGP8GUmcqA2Ci09jtogbcXpeB/r4UfngGm9BqpXePqEpH/entinjcC37lEBTECEEK8N3jw4JFT35vSIJEIieuxZiAQCCEcT0i+suQBo9GuTTrSTs5Y97pRk1uT7F9+cOWi+lldJE53W+Y6JYx0Z8tI7pmxG7qbIlFpGlapQJSDMOwsTqbZMcqkzcHZWvrYjaQdmxoMPkuUMDNVTs7FJXQ63BtvfK9f1cSGNVl/1mzdymY13W4ECoz3UqVLt+NvTdMEuhM4yuUJdtdi92fLJUgk7TqnMUyDpuamt8489Nxjf3rKz3Oxr9790O+/9louLivbDueje4500PrBuDGIG2AtDcjNqF+mwEjDG2/AZNe5qKQIxv8Fjj3AxSUDjS5vHS4q6GTwHcRZr/690EiRgWUQhVjhuzPjwIQuN4F3fKivFAnNSvem7pT1MHHmUk4750GuuEKSSOx4oa4rM0Ko3RGrVysre+5cqK+BPt3hqCEwcjgMHaAc20Q2zDhCoTZphR6q5fUeSAEiPQjanE6gKXuMRffAVbW89fa7VPEqg/qqGPB/fBx+9meleHgwsA9cM0ZtuwJ4/BWYMCk8Bg7ZV22FS2hKlpSwR3c4oF8g/DaJDv271fpmq/bVTozDgzXN6p08+oIKy7s1QQi1I+Gx26BXFWGlpDV0ePXolUb4rZSACX95Gq79na8QOkKIS44++uhH3njjDbY25OwsQggMoZwAbSdrgOE8Of831qRlT59jGFa7YrO0TAq6C9jfNBJdDSHaGJiG3va4aX4BfDmrVk29C8hmHWrXZPw1dK8/vL7x1tE9j3d96j1sqXtWuhu33QkqkEB5VZJUsUk2m2tYunbpEV/eu2Z6wkzEi7ZMJmP06bPHFSNGLL2zVy9n2zFJB2WVxwnbOMEbN8KJlIlLJ/K8JRxx+QvhSABF6gU1N8NDDynmDbBHV3jtQejdPsAT9xHo9UWFYEF9RBOaLabBroUj3R/Rdiy4a70CETmvOSgt3cJSCp56aSZXXPc8P/xhcMratgRPeHlx2WtqVOChuXPVT2bh0ANh5FA4dhj06+nGWvfiortjwWeMEOpQX/GL/JduB/p9Tj6zDTFWB2S78xGp3gESF7FnpXscWgoJhsm//vU6/dpPom8XF6cB4yfBxTeFPbWLUnDhKTDiQIX69ffgkQlhC7K8BH70PbVM4Liev6eOhIQRkNwqOrZHX+1iOBDqIKPzb4D/vB+Myc2B6g5w7y/gxEMALb5/q+kIsqg8QsuH9p0b8ObHcMaP1NkBAEKIl4uLi0fX19c3bD4FWxdsO4sQBkIYXDdzRB8pc5ckzPQ5lkh2CZRgl16ptgp+Nm2tf/paNuNQ4wn1SN1KoEtfqPtHqmpC3XeUc9fW1TS7wiiRFJdZFJclkA5sqK/76cd/mne7aSgnrljW51roxx9zjPHi8OGOtU2m3fUzzjcmWP2Gafm8e0v7CcLWPq2sNw5HrLoZSfdC2Gp5liyBxx9XB24AHLQPvHAXdClVZfUBAdrH4VWv9XXeFJ+MCEO9WTKcFtJFdgUcEqj6HrJ4b/TPQGo3whXk3tOM4/D3R//OkQfMY/ZCGPsz+NGPAkG7JeC11zTV/erV8NVXSmAvWSLo0qEthw7rxTGH92H4wT3o2rkMmbMRjuCR//s7Y0Z+TtoIv+9AMaGglRPCH+1PQSyDKIwjjejyMzdB5GVQwiK0foltGDz64AOcdcxiii3t3RkwawmcfyN88Fm4DV3awwUnwQkj1BTxhTfAvMXhPH27wfknwUmHKyt/0+jYHn21i+KQqs/vfAZ+djs0t3LPe1EKrrsEbrwQEnbL3/pG6Yjkj4IUMONLOOEydfodgGmac8rLy09Yt27dgta1eMeDbee4asZBexdbFb9MGqlRBqblMbKGuiyfz1iPEOp7yuUk61c15ytiukCXQZQ4XajbdnBuuq44gKSkPEG62MRxJHWN9X8/f8TF5//01Jt9H4PYV9DY2Mjo0af3XrHi1dknneQkN9nTvcVeARoISwOvJVHNVX9moSxis1CrCZ+ZHi2/KfhSQJJgf32h8hb5MelRA3vOHHjmGXWaFkCvavjnPbB3V1f4eULNE3Ca0Auttxdoo669x7ZPL7Yr4KAIOl0DQo/9i88l9Gl/xxC8/sbbyJp/c+xQMFwcz02BK2+FSy9rnVD32mlZ6j0tWaLWs+fNg9WrDfbbq5qjRu7JkcN6csDALlSUphE52ydKX/f06xSC8c+/yhH9pqijZ3XmJzXSdUYtvbIa2XqZCFOPU6xicRQPQlSdpmlTEs8RyVcu3XLB+q1k/qLFzJ3+CMcd6ujHr/sWl2PCU2/CVbfC6vXhPm1TDi/cAUP3hXueg5v+CPWN4TzdOsEbD6pjiFtFx/boq28CDgOmzYOzr1EhfqMssLwUrr0QrhqDf4rHZtHh1al9y3E0SgNeng5jrw1Z5F+n0+lT6uvrpxv6ucS7GEgpueHDEV0Exu8sIzHGEKbRUJfj03fX+PvUAdavypDLOqFygPJ21wV6xEku+vKkhIp2SbVW78C6ug2v/uWi+044ZtB3Hc86d7MWhq5dqb/sMoq3mqd7PfHR4vTWJFCCsiXBXQjqtPp0AeL9j6vPy+cJ8Wgeb1kgrlw09nwMfP01/P3v0OBOKFWUwl0/hzHfAeE6zwmtfaGpLsLCUf+ovDz+f60f4/Ls9DiS/aD9+QgZLAwGa4tKU80Bzz//ChViGkcfLDFicIx/By7/NVx1led8ooR7IqHewfz5SmAvWgSZRuXF/Z0RKuZ4v26QThiIqksg0QXPASfM6DwCw0zX53uuQB/RfwrtyjSaNfDzavVG+0vvg2gf633t92NcubbnItN98L0OWkOHlGBZPHD3HVx08krlENUCDtuEf06B62+Dr5apCIrf0QPPAM0C/vEa3PQnFcr0nb/DwK6Exn5BOrZHX30DcWBCQxYaM1Be5C5z2PG4NwVHRsDp18JrU2DwQLh1HBwxUB8/kDHh1w/C7x4M1vkNw5hVVVV1ypo1a+bxDYRrPjh4n6RR9LCRSw2ZOWmVH3QGXGt9ZbNaN4fAUnekCkDjeIe3EJJTnvAvKrVcq1zl3VBX88jJB5922e3f/0ueF0VBkek4Du3bG1Mvv5yhiUShXK0EbyuaBwaBxa1H1dsS0KfwIV+dhGDUelBIiEdBEljrXj0ApRsv633AdXVwzz3CaWiQBqi0Ew6HB26BTiXx7Y06nMXSo7WxUP6W6tkpcAC0ORPSA9z8gUe7IwT//eAjPnzvdU4cUUu166xTEIeAx9+Ey38JRUVQUay2eB19OBy0F3Rpo+JBiwJKqjCrkJ2uRZ2S4HZAdNz4mb10jSUaBn/9698YM3IuKYMwp4wolb5ntF6fB3qZKL6NpQtAlEKnaxHCxN8x0Fo6DMG//vkag3pMprptTN2F6Ih5ltfePA1oI3REceh5C+GIq2s3ji3GIRNqWesfr6jH+/SBmc+CmQEM+HQJnHMdfPy5X4MjhHi6qKjosrq6uppd2SJvDUgpuWbGwZZlGmfOn565e/0yu1Lve+lA3foMDbU5/3OTMvz6vKl1wxSUlCUwLYEjlbDP5XKZdXXrz1740IrnCoVwtWJTgVwuZ5hmxZz6+pqhFRWbeUiLJwhNoIzwwNqa4IWfjYOogG+tEI/WkXR/0QEfAU+A2zZ88gnOtGnWgpUrnd/06NFjfG3tvJqysjIrm82Oy2azv/zX25R2OQLSSfjJRXDdBVDqnc4T5cGCkIXcUlM9ckXkA402d6fBIVLIVF8QAhtYtORr3nlrIik5n6OGZjm4Mxw8KhDaLeKQMHYkjBkZ4AlZQZK8gEUhOor2UWUic56xU6CehqNZwHWNjSRyX5FUh1iFrR29vJemtStvVkMvI2KuUisbxZHaEylSgB1ZEtg4HUhJWVUZNXXQtW0LOOLoYCN0xNHTEh1xOLZ2X+3G0TIOCVkDTr8K/vW2erR3b3jnMVi1Hn78e3jm1cAh0jCM5YZh/OD4449/YcKECTQ0NPBNF+aAN6OXA55wHPnEMb/dt+f6moaXipMle4NaN0+XWKRLLJDgyMAJzq1A8TjtxLVc1sFxcOqbGv6xR8c9vv/hHV9kxMOFhVfBJ47jkE4X3XjOOZlfde0qd973Eecpr4NACfEE20Sh0AX4nDkwaZKYt2aNuLtPnz0feuutt+ratm1LKpU/L19fX09lZWUn4E/ZbPYMXOWqqhxuuBSuPBOKDUVPniDT6RRBG/xpbS1d/x8nwHQGsCNwSGD+UoP3PjHYb68cfbq6EcWccJntRkeHH0KiPcE+vYgEDDD7lXn7uSXw77cm0b303+xZHbRnYxauXmWhq97uuLXvvPHf7vuQ6hl0sk9s6+h465136ZJ4lb26F8CxPejYjWOH45AS6hw44nyYOUdVOagfDB0Mf31ai1UgRANw11577fXLzz77rKHlQ0C+PSClZMDV3dqYwrwjnSg+yzQMy1OS1DUICaum4oP/2Wy2rjHTdFvSSvx+1r0LmlrTpwVzNDU1Gb179z7uoIOWvTRo0DY+RnVLQF+X92AbCnF9oH/xBbz9tli4apV5f8+ePe+aNOmdug4dOmCaeWfetAiLFy+mV69eewN35HK5o730VBJ+ciFccw60SRNSVnTBVWiPeBRaNfUdk/9bg8PqCB2vBNwALNLb2qU+TK8CX7FwwfswV2/YwGvP3cXY4zMhXxHdsShUxm2bl+A/jikTyq89k3H5DTXdLoXlVRfgbQUdWBZPPzmeo/afSbuSHUjHbhw7HMeHi+CQ7xX0ns9ZlvVEr169rv/ss8+WW5b1rbDENwekI7n6kcupqhalf3/xxVFJo+h00xD7IkU7KWUxiDpHOiubmjPvN2can92n5wETXv3V686mKkYby73PkCHMPOEEts3WtS0Fb4uaR4U3nb4NQAglwKdONZcvWiTu7du3zz2ffTZrNbBVB3Eul6OsrKxnJpP5k23bJ6ItixxzCPxyHAztj5rYETEvUPtQY1+uCOfLS4t+2N8mHKUjoOIoN9EzWYJ7X8BLcP3F1X54KclIyf/ddwcXnLyOpMgrGiKkkDOUx0ijZWOaEpvm90XxAciqUar6TaBDoAR+Tjo8cv8fuPS0uvC+5O1Jx24cOwwHABbcfC/87wPhqoQQTaZpPtK5c+efL1q0aO1uS3znghbfRklJSYf27ev/e8kldM9uozN9Nxu8qfZtYIlLqfYfz58PU6ea65csSd5XWlp69/LlK5aofYbbZxA7jkN1dXXl6tWrf5zL5X4opaz0nrUphyvOhivHQMcywrMUcYKN8L3/8bppLn8PlVMMPvzxS/lNxWFC+0sh0SlcsS/otGStGECz4/DIfffx/ZOXk4oIc13piiUjUq9Og47DLxN5kIdDgmh7HjLdJ9pVG6XDq+udqTMot19gv17h/t2udOzGsUNwSAmzV8DI82H5Gq8OsTKZTP48lUr9be3atU2WVdD1ajfsYGhRMk2dOtk6/vijpl17beaAnBfl6hsI7iwjixbBxIk0LFggHkom03fU19cv2J4CvOU2So477jjrjTfeGC6E+JVt24finS8K9O4KF39PHaRRniRvyldG6oudhta5AhHBlP84SPgm4DCqoNOPEdKOGP0qt8/43MLSfbq2rpZn/3YH3x+VIeGh9xin3hbtKjV6dK4chyNu5LWIg2LofJ07c+AeqKHFxY/Fod3XN2d45tHfc/7JWQy5A+nYjWO74pBAo4Tv/QT+NclPziUSiauy2ew9MU3aDTshtCipbNs22rSpfObKK2tHJRLbIab7dgCPqZumOjFt4kTRsHCh+Q8hUr+7/fbb5l166WXOpq6Bb29obm4mkUjQv3//4mXLlp1YV1f3/4D+UkpfwHdsA2NOgqvPg65tUHveydfOfX6QJ+XioaCGv5H8Oz2O0sOh4hiE7wIfbYD0tQcJYJpMmPAKHdJTGDoA5cQXYbL+NL9OQIzCEQLd7NLKhKJztYSjeBBUebHb9Qz5dOgLrVJCRkoeue8eLjp5JQmhCYAdQccm4JDA/JVwx9/hd9dowRt3hvexs+MAcibccCf8+VHQgohNAM5GhQHbDbsItCiim5qaaNeu7Y1nn91wa5cuO7Fj3EZAShVcZNUqmDxZNMydaz5XXFx127hx4z694YYbnMQWb7TfseA4DrlcjqFDh6Y//vjjo4Gf5nK5oWgeBcmECgRx6ffg1BFQahE+2Y7INx/h+/oUHmzG/zCqnQ+H690ePBdahYqLStRAmvnRJ3z63+c4+7hc4OAQw3yjU6O6FpGnpHhlwlUUtr7icDhAuwsh3R0QuKvj7vY9EaLDP20N9d8WgofuvZMxx61SR7LuSDpai0MCFpxzIzzxCj6cfiw88D9QlSqAe2ejYwfgkFIF/Ln0V/D4hODUPMMwPiwqKjpmzZo1q9PpNLth14LWiOgxp5zC44MGbfO2bDXwBPiaNTBlimj47DP5MqR/d9BBB304ceLE3Dd9DSiTyWBZFldffbV133337Qlcls1mzwQ66FZ8aTEMPwAuOh2OHAJVafztYh7DCAlCETAFwBeWEBaUupGg59cHW6i+HY3D7Ijo8AMQBl70ZPU88Ha3hWDSO++xfP5rnH60TVLEIIy0hUgWvw0uXTpTjkvTaWgVDlGO7HQVQiTc+hTCMA7p4hBu/ZIVa9fx8vj7ueCURhVwJ9o/25uOTcQhgZosnHM9vPROME76doe/3QYH9wF94mVnpWN74JDA3FVw9o9hxqxQdW8lk8nvNTc3r94Zlhh3w+ZBi2/OcRzatWvbv1+/dZ8ddxyGjI6onQQ8Ab5+PUyZQtOnn1qvNzTkbj3ssOEzJk16JwfsFOvgOxIcx8G2baqrq5O2bY+or6+/qLm5+SigndRebNKC/r3hvFPh+MOgbxcwvZCEkG/tulwiav3GWsIaQ40KVj1W+3bFAcjSo6DiSJDSTVcVS8Ngztz5THr9JQ4/cBV7dccXDCFLyr2PjrBQnG49XVdS/MT8tE3CIUEUHwBVp+ItC0QVIQhvw3OE4Pnn/ske7f/L/n1cXDuaji3AIaWaPv7VQ/D7h6DZ3SNtGnDxGfDrcdA2HS6/M9KxtXEgoM6GOx6HW++HpuDwqlwymbwvk8n8LJfL1X3TDZ1vA7Qo5TKZDBdddGH6vfeeqD3nnG106tpmgCfAa2pg6lSRmTFDTEyny3+5evXqdw3D2L0XchPAcRyklFRXVw9fvXr196WU37Ftuwuaw50QYJlw7KFwynfgyIOgR0dX0Dth5qiDJotDFkPcfVw5CDOpbYLDMZAdfwCJjmAYLF+1iimT3mPtsukcc4hNz86EYmDH1albSIWaGqUj73+0zk3FIQWy3bmI1B5+jvw61YyDIwSTp05nxdx/ctpIR8VrFzsJHVsJBwbMWgoX3QzTPg6emQaMPQn+9yroUoE/fndWOjYHB6gCtTl45EX4+R0qhr4GC0tLS8+vq6ubxG74RsFGzdY77viz9cADt3x2xhlr99xRRq4nwOvrYdo0nOnTxSTHSf/u5Zdfen3YsOFOMrmNNp9/C6G5uRnLsnAch169enVYtWrViVLK0ZlMZrgQotibsveEqGXCQQPguCNgxGAY3B/SKRB+BKl8Aa1L4DzrI8LEQtOJLnjFoxbOJuOQsKHR4JnXLfbaI8PAPdVBFp4Aj+L08IQQaplEDHf2+WuEKxeia/NxJBFd/kc13k30rHSveFZKXnnpdWTdVE483AkOXtmp6Ni6OKQEEvDWDLj+dvhgVvj54H3g+kvghGGQjPhD7kx0bAyHlCAT8PECtXf8udfBdvQ6xMpUKnX9/vvv/7epU6ducsCS3bBrwEbf6hNPPMEPfnDBM5ddljmjuHh7NCkQ4M3N8P77MH26+V5dnbjtrLO+N+Fvf3sst9sC3/7gedYDdO3atUtdXd3h9fX1p0opj3Ycp41+oAqogVWcVo54hw2BEQfCQXtDaQmIZpCOeseFQBe6oSsxApqwld4ay2ZTcWwMQmUiFu/WgoI4AIoGQRvPu11lkBIcw2D69A+Z+d5rHDesjp4dIc6Rf6egYzvgwIRPF8HP/gSvTlYhmz0wDDh4IFw8Gk4ZAW1KgWzhdu1QOgzIGPDGe/DIc/DyxPxoboZhvJ9IJH7e2Nj4upRykyNY7oZdD1o79G77wQ+4tkOHbbN1zfsIHAemTYMZM8xPa2sTv+nfv98LM2bMbICtG41tN2w98BzwpJQMHz48/f777/dPJBIjHMf5bjabHYEb6U53xgM19dm9E+zVF0YcBIP3h6F7QTIFNKOc84ywoIZ4YVvwedRCcq9xQ7hQHbEzA9H/2kxAnnLRQr44YjYLhwTaXgDpXkgrwby583j7rXeoTC3giINs2rtTyx6unZaOHYAjZ8LED+G398N/3kfzN1CQsGBgXzh2OIw8FI7Y31VEmxXPCs0mbU06ZDC7IBIwZyG89DZMeAs+nA21kc1krkI9J5FI3FZSUjJ+7dq13/jTzXZDPmxUPOdyOaNTp45nHnXU2sf79986h7ToFtEHH+DMnJlcsHq1+NUee/R+4dNPP6uB3QL8mwDNzc24Pg3GqaeeasyePbv7woUL9wWOlVKOsG27p5Qy6TKjYM0exeAqS6G6gxL6QwfCQfvCwN5QUgZJG6QdGcAidMnf3kNYqMcKbs3CiioAUYYdKkf+x9Sa8pBf36biaMjC2/812LO3Q9f26nCbqG/DluLYHnTsMBxSe27B0hp4fjLcdT/MXURBSFrQpQN07Qx776FOIOteDb27QccKKE2BkUKdNqmDDZkGqGmCNbWwdAXMXQhzvlS/pctg6crg4BMd3G8lZxjG18ATFRUVj51wwglfPProoznDML71zr/fdtjo289kMqTT6aGHHso7xxyzeY5xngC3bfj0U5wpU8TCNWuM29Lp9BPr16+vAdjV94Lvhk2DTCaDYRhks1ksyzJuvPFG6w9/+EObTp067b127drh2Wz2ECnl/kC5lDLtTueHtDwhwBBQVgyV5bB3H9i3L+y1FwzuCx3aqWn/lMv1hSTM8bV6ZJxUiCoIWnLsZyBj6gpXVbCe3Ti2Eo4YiS6F+jU50NAIi5fD9Dkw5wuYMQcWLIL1tVDfqIrH8DhHCIFpmg22ba+XUn4M9Lcsq51t26VxY3MLwHEFc4PjOCsty3o3mUxOLS4untS2bdsFH330UVMymXQcx9k9hb4b8mCjAr2pqYkxY87q/dVXr04bNaqpnR092SwG9Cn0zz8XvP02C1avNu7s2rXr/7388ivr+/fvv9sC3w0bhUwmg2maSCkNwzCc8847z3rzzTdLHcfpumLFiqElJSV7NTc3HyCE6JnNZtsIIcoBJzq97wVJkagp1KIUlJfCHt2gfw+o7gb9ekLvztCuCkrLoDKplgWkqwQIJ9y2OO9lf/3UFVJ5a/IRkzIkywqZpN9CHH49fmcrgSyEus/kYH0G6mtg+TqYv0RZuIsWw+eLYOESqG+CxiZ1Rrf+/jVwhBD/v717j43iuOMA/p3Z3fP6gLN9Plln80jstOYweQEJiqhrh0BIIhqlQijKgz+SiqIUNSJO1VZR1UoR6j+RqioKURT+KKIRjUhKhCBI1JUiASaJmoaHX+FhzsgHtuN7+Hy27867szP9Y2/D1YTg8Izh95FWd76zz+PH7W9n5je/4XD/X9K6rqdM0+wRQhzJ5/MdkUjkv7lcbmj16tVjb7/9trRtmzPGpOM48Aqu2LYNKSUMw+Ccc/niiy/qAMwPPvhAD4fD5qJFi2b29vbOPHr06P9l7YbDYbFkyZLU4cOHxxhjYuXKlSIUCuW3bNkilFLctm2paRpoGRn5vqYU0Dds+CXft2/HVy0tsl6Iiz+n+E166hRw6BDvSySMd2tr67bs3bsnU1tbR1eT5LqwLAuMMei6Dtu2wRjjAwMDWLduHW9ra+ONjY13fvHFF3ebplk3MjKyUErZ4PP5qoQQQQAzpVvr8pJXl8VBhxfm9DkHKsvcC4Jw0L0ICFUD4SpgbhAIVwD+GcCsGcAMP2DqgMndcsOSXRgp+OYWk3qFlwiGXqCcnMD37V3g7+FyX/8dZ4mL1j0Xgi8KB5OALYEJ6Q4hj2aB0XEgOwacTwHnUsDQ10B8EEik3Q1Bzpxze8zePLIsmv+/zAih17vNaJo2ZFnWoM/n6zRN86RhGD319fXtn3/++dDGjRvl5s2bZSAQgJRSGoYBIQSUUqAVM2Q6m9KEi1IKpaXsX6++ipWTa7r3fHJ11wAABvlJREFU9ACHDmEoFtO2ahp/K5fLDRWGp65Xmwm5JizL4pqmQdM0mc/nwRjjvb29aGtrC2zcuHGeZVl1hmGEysvLa8fHx+ts267SdT2Yy+WCAMK4zGa93iAU54XpAe5OEXwzlM8ufXDujhCUmkCJDygx3PK9jF1400oASrplO2WhByoLH3uPK1XIe2fu63EOcK3o/uSDuc9zBjCv3YX7Fz3mPc4vbnvxrXd4P/Pk5zm//H1Nc49EAjh5ksn2dnZKCO1jIcR2y7I6DcOAlJILIWgZK7ltTWlMRwjBKyur2kdH4yvHxhTa2niqp0f9LRCY9dbwcLrP25FMSoeGici04fP5vhlILwyjeh+nC0e7bduIx+MA3AvbwtxlU2kpf23xYrlq2TLwmTPdQEr5SFdPKTdw2zYQjQIdHTx79qx+cHzc2TF37pz90Whv4sIOiO6fy8u/4ZzL73hpQm55UzoFWZaFmpqae0dHR7PJZLLHNE0K3OS2IKVEIBD4kW3n/zB/vvN0U5PyV1W5CZ4UwK+OUoBhAKkU0NXF0NXFzw0P+z4C2I6XX/71sc2b/2xpmkb5NoRMEZ2SCCmwbRuxWB8ikQXlSqnfhsNi/aOPqqo77qAe+JXy5ry9mByNMhw7psT5875P02m5vbS0tHX//v39S5culRS8Cbk6dIoity3HcWBZFurr6/2JRPy5QMD6fWOjrGtoANe0okxsMiXFwXtsDOjoYKKrC4l02rfbNGdtB1j7wMBAlvZbIOT6oNMVuW0UMtrx4IMPmF1d3Y/MmuW8ft994v6lS5Xu8934AF6csV2cNOZldo+PA36/O6f8Q1K8y52UwLlzDMeOqWwsZh5Lp+0dc+fO27Nw4YL+3bv3SqUUTc8RcoNQQCe3NKUUWlpe4du2bXvAccb+2NCgVjU3K9+1TmSbvJWrdyuluydBNguk05DJJOfxOLLZrJGOxax0Pq/OlpT4O3M5qzcSifQMDw9Hh4YGXlu+XP5i2TLwmz3U713kMAaMjgJffcVkZyfvTyS0/bpe+l4gEPjPgQMH8rW1tbBtm5Z9EXITUUAntxSvGE0gEKgXIr/prruc9cuXwxcOA0JMLTgW95y9ZVPua7uBOZNhcnQUfHAQSCZVJpXS+oeHWYJzX1QpdGSz2b6KiorOd99952wsdj6/atUq3HPPPVJKCSGEV8wESimYpullzodmzNB2PPmkWLVgQWHt9Q3mbYrkOEB/P3D8OPJdXfzIxAQ+rKu76x9bt25NNDc3ywtZ5oSQHxJ6V5JpzQuMfr8/ZFnWhjlzVEtTkwrNn+8GcE/xumYhgIkJhpERYGREIZWCTCS4zGR4IpPRzg0OTgxqmtZZXl5xxrKssw8/3NSTy+X7Wlv/LR3H4UopqZTiUkrpVQ27UtXV1fPy+YF9Tz+Nu6urr/KXMUXeBYumub3ukyeBEyf0od5e9nF5ednOxx577JPt2/8uClXQbkyjCCFXjQI6mXaUUlizZo1vz54968rL8Zv775eRefMYHxlRMpkEHxpSYmyMRW17Rl8yme8LBoMnk8nUCSFEf3Nz09k33ngjtXjxEjiOI0tKSiClhOM4N3q4+KGaGux65hnUBALX75t4Q+acA7EY0NHB5Jkz/Eg6zXf6/aW7U6nhqFJKSilpuJyQaY4COpl2Wlpa0NraemckEkns2rVrTErJbduGYRiysJnQzW7it0omE6isDK2pr8e2tWsRMIxrP4ev60A+D3R3Ax0dLDswoO/O5+X7Tz31s4MffvhRhpLUCLl1UUAn5DqybRsLFzbwWCz2u3vvzb/++ONuudgrDeTF8/uaBnz9NXD0KBOnT6ue8fHS9wC2+803/3pq/foNwnGociMhtxMK6IRcB0op1NTU+OLxgXdWrMALy5aBf9+th4vXdU9MAKdPMxw/zlLxuPHJ+LjcUVMz+2A0Gk1RkhohBKCATsg1F4lEQoODPTufeEI8EolMbXlc8Y6FySTQ3s6s7m5ER0e190tK/P9sbPxJz969H1tSSkgpUVJScmN+GELItEEBnZBroDCHH6mowK5nn0VDVdWlC9V4y8NyOaCvj+HLL1VqcND8NJOZ2FZf/+PWTZs2ZV966Vfuvq5UUY0QMkUU0Am5Cp999hkaG3/6cHW12Pncc6jy+y88V1yUJR4HuruZ7OjgpzIZ/aOyssD7+/bt6160aLGkeW5CyLVAAZ2QKyCEQGVl5QuzZ2feWrtWzfT27LYsIBplsr1d5aNRfpAx872ysrL958/3pwoFZG520wkhhJDbm1IKR44cAef4U2Mj7FdegVqxAs7s2bxX1/lfqqurH3r++Wd1IQS3LOtmN5cQQgghkwkhEAqFfq7r+oFgMPhCMBicc+LECUgpMTExcbObRwgh+B+yarAh5aYb0gAAAABJRU5ErkJggg==\n", "text/plain": "" }, + "execution_count": 1, "metadata": {}, - "execution_count": 1 + "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", + "\n", "Image(\"fun-fish.png\")" ] } ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.1" - } + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, "nbformat": 4, "nbformat_minor": 4 } diff --git a/tests/notebooks/metadata_image_output.ipynb b/tests/notebooks/metadata_image_output.ipynb index a398a85b..798385a7 100644 --- a/tests/notebooks/metadata_image_output.ipynb +++ b/tests/notebooks/metadata_image_output.ipynb @@ -11,30 +11,33 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "tags": ["skip-execution"] + "tags": [ + "skip-execution" + ] }, "outputs": [ { - "output_type": "execute_result", "data": { "image/jpeg": "/9j/4RB6RXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUAAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAkAAAAcgEyAAIAAAAUAAAAlodpAAQAAAABAAAArAAAANgACvyAAAAnEAAK/IAAACcQQWRvYmUgUGhvdG9zaG9wIENDIDIwMTUgKE1hY2ludG9zaCkAMjAxNToxMjoxNyAxMDo1OTo0NQAAAAADoAEAAwAAAAH//wAAoAIABAAAAAEAAAFyoAMABAAAAAEAAAD+AAAAAAAAAAYBAwADAAAAAQAGAAABGgAFAAAAAQAAASYBGwAFAAAAAQAAAS4BKAADAAAAAQACAAACAQAEAAAAAQAAATYCAgAEAAAAAQAADzwAAAAAAAAASAAAAAEAAABIAAAAAf/Y/+0ADEFkb2JlX0NNAAH/7gAOQWRvYmUAZIAAAAAB/9sAhAAMCAgICQgMCQkMEQsKCxEVDwwMDxUYExMVExMYEQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAODhAUDg4OFBQODg4OFBEMDAwMDBERDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCABuAKADASIAAhEBAxEB/90ABAAK/8QBPwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAAAAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGxQiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14/NGJ5SkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgU1AQACEQMhMRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJEk1SjF2RFVTZ0ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eXp7fH/9oADAMBAAIRAxEAPwDrQklCcKq2FJBPCSSFJ0gnhJK0JKUJJKWhOnAJMASToAFjZ/1jqqsdj4DW5FrTtfcdamuH0mV7f6Q9v53u9H/jUkwhKZqIt2Elz1ef1O3V+Q8eTA1g+5gCu052W0Dc71R3Fn/k2+5DiDJLBMdQXUTQo03MuZubII+k08gqaTEdNCxSUoTQipZMnSSUsmUkySn/0OuTpgnVVsLpJJ0lKAUMnKxsSsW5VrKGOMNLzG4j82to99n9hqD1PqNXTcJ+VY3e+RXRTMepa76Fc/ue31Ln/wChYuZqbdlXnKzHm7Is0Nh0AHautv0aam/mVMSZcWEz1JqI/Hyeg/bvTyfZ6rx+8K4H/gjmP/6Ks42diZLgymwGw8VuBa8/1Wu+n/1tYuNVS+tr63h7X6te2C0g9w5v0kS7DbZWQZDhq08EEatLT+a5N4tV5w49gSPFN9aOoWYmCzGocWX5xczeOW0tj7Q5v7r7d7KGf9dXHHrXTen3Nx37pbAeWNltY/l6j/wPernUM/L6je11p/T4tYxhZzucHWP+0OZ/pH+oz1G/v1qhR9W8V1L6bC51rvcbz9Pdzu/8xU0RCvX+DIIZMcBGAjxamUjt4RenofV6XrFzW1hu82Ejbtjdv3fR2bfzlDpv1k6H1DN+w41xfd/g3OYWssOriyl7vc6zaPz2V+r/AIH1Esb6vYeT0irpeQ61+OwNBcHbXO2nc3cf3f5Cfqv1Xwb8KqjBDcG/DIfg3MBmt4Pqe92tljHWe+z8/wBT9KowMetk76HoP6yzJKRNCv5fou3TDL2bfz5Yfu3N/wCk1W1l25+PRl1es6CN1ha0STA+ixv8ux3tUX9ayLJNNTamAge6bHa/5jP+imxOjHLFORBA0rd1klm09QzDq8MsHhG38WK7RksvBgFj2/SrdyB+80/nsRsLJQlHf8EiZSKZFasmTpklP//R64KShKkFVbC6cJQpMDS4B2jZ9x8B+ckh5L6yZZv623FaZrwKw2P+FuAuuP8AW9L7PUsv6wZP2fotwk7rQKmgfyj7v/A2vTY2S7MyL8+zQ5Vr7j8HuLq2/wBlmxqPXl/V7qf6rffRaA4E12nZ7gfbt9X09/8AYTwKkDRIjV03iBHEIWIkxIH94up0an7J0nEZH6Oqhrj/AJvrO/6pB+qF1+R0JuRfY62y+655LyTEu9rGz+YtoUMvpdXEte0tO391w26Fqh0/p2P0vAowccOFFQIa55lxJJse57vb7tz1GZAxlfzSIP8A0rYidR0AsV/i8Lx2XRZfRnNqdssste1rhpEH/wAxXP153VsCz0fWuoeP8G73D+z6u9rm/wBVdbgt9Wued1r3fe5y1z03EyaxXkVMtaOz2h2vkpY5hC4yjxBk5nHxEESMZDTR5DH+uHXqgALKXgDh9TTPzqdWit+t31ozLxi4Yqdc4wG1Ujd/Wc611ra2t/Psf9BdL/zY6BvDjhVz4e4D+03ftcr/ANlxMHH2Y1TKK2g+2toaNP6v0v7aJzYumMX4gU14453rM/Td5rN6p9mpys/I22WsLaWNbIa5zRtOyfo1+r6tn/FofQ/rFlX9QZh9QxxUckb6HtkaxLWua/d7XbVmdUeR07GvLd7G3Cx7TwZ9Qt3fydxTfVtuX1Tr2Pk3HfXhu9R7wAGtgO9Klsfv2O/rpwxx9uRI769q+VlzzkMogCf0fSB+j+kbd63L611HreT03peU3Brwa2vfbsD3WPdt2s2un9Hud/6sWn9X+q5eb9oxs6puP1bprw28M0Y4O3enY1v5u/a5lrPofzdlf85srxvrR9Xuo+vd1Tpm97clgZmUVSLIaG+9rWHddXZsZ6lTPerP1I6XnYrMrMzKn0nJbXXU22RY5rC5znOY/wB9df7nqe+z+omSEDisEbRr9/j/AEmLiPFVHr/d4ej2bXB7Wvbw4SPmkh4jpx2nwLx9znIqiYzoSOyyZOmRU//S66E4CSSqs7IKl13JOL0PPvBh4ocxh/l2xjM/6VyuBYX14v8AT6NTROuVlVtI8W1NfkO/8EbSjEWQuiLlEeLz3S2bag1o+iIC5bOxfs+ZfjPbAa4lo7Frvewj+TtXZ9Ka0tH4K7m9AwOpVtGSwh7B7LGHa9s8jd+7/IepIZhCZvYtrmYCcQNiNnz+va1hYyGNI922RwfJdr9TMG3F6VkZjmuY3McH0Mcea2A7Ldv0f0tj3+m78+lGwfqZ0aiwWWMfkkahtztzNON9LQxlm3+WtvNJZiWGddhM/JLPzAnHhjeu5LBixGMhZB6aPOdEBdi0k9xJ+a3W+0DwCwOiWj7NRH7jfyLce520Qwkd+FXn8xbeXWQTscDMoHU3xh2dvaUmPAA3S3ycIVTreSG4dmvLeyEdwFsY+sebidMYy/CZVY0Pa5oBaRIIK3+mY+PRSGUMaysSQGQBP530VgdHJbRSeJY1Gqx+pdIyLMjp1Zy8G8my7D3Fr2PPudZivdLfd/olNIWSLrsDsV2XYGtx03evpcNnw4VRnVsWzrFnSK5ffTT9oueI2s9zGCp//Cu9VtixR9chaPs3T8DIf1B/trruaGsa46B9m0lz2Nd/Jr/4SytaXQOh/snGtfcRdn5TjZl38lzid/ptd/o9x3/8ammHCDxaH9EftavXR2sP+Yjwe78s/wAUZAwz7LB4On7x/wCYo6A2DHL5isUycpIof//T69JJOqrYXC5L/GFfsd0iomA92S/5tbjsb/1bl1oXEf4yKrMnL6dTV9Oqi20ax9OxrP8A0Qn4vnF+P5KF2DEWRqy6Y5oY1w1HdaL+sdOx8rHw7r2tyckgVV6mSTtZuc0Fte93tr9RcLjdY6hgE1X1y4NOzcIM/ml0e17Fu/U7Axcu2zqeRkjJ6m4ucaiWudW0+z1HVfS3fm/6Oir9Gjkw1xSkdOnD1bJzxmQBv+lxfoj/AL57Fha4SDwhdQsa3AusOobW4/gUZlLQ0AOI+EKj9Ya3fsnL2OOlL/Dw8VXA1HmqNcQ83D6LhOGNUJEbG6Ok9l0FWMAwRtafIH+JWf0yG0sH8kAfILUaeAjORJNsuWRuuzJtVgmXjXyWN9YcY/ZjsdOhnTVbjeNeVm9bH6o8eX8EoGpBZjJ4w4HSB+q0eTR+C6OjVrZ08Byuc6O4HErHhP5St7Hs9oaDqB+Cdk+Y+bLPWI8nUrdrzM6fIdkYFcXn/XDN6Xnvx7+ngUhx9F5sLXWNH+ErJY+r3fuK9j/X7ob6nPvbkY72N3bHMD9x/crtqc5n/b3oI+zkoERsHt6mpKUbIvUd/T/0np8VzfWtrn3bWPjyl7JVlc39U8nqHUczM6xl0/ZqMqmurApPIpY91rrXcb/UfZ/O/wCF/wAH+h9NdIlXDp2YpGzfdZJOmSU//9Tr04TBOqrOyC4360P9T6yhn+gxaGfN5tv/APRrV2LZOg5OgXBZ2QMr6wdRyG6sOQamf1aQ3Fb/AOeU6PXyZsAuf0c36yYz3YVdrBIqdNnkCNs/2XIn1Z+r+B1KqvN9fIpvoeW2ClwYQ4fQdVbt9Svew7lvVYlWRS6uwB1djS1zT3B0crXQukY/ScM41Bc/c71LHvPuLjp/V2tYic1YzEEiV/gvyYx7nFodNj+867Ce/Kp9dn9i5sf6B/5FcaRCp9d/5Gzf+If/ANSVXjuPNEfmHmHN6b/NM8gIWmD37cLK6a4ekyfALUadBPxRO5ZsnzFsNPZZ/WBOM8eM/kV31ADE8qh1gxiPB7g/kSjuFkPnDzXSRZ6DC3UbnCO/0neC3KBaPBsCQC4z/wBFZPQHA40HX3P/AOqcuio9sdhyIUmU+o+bMZekeQed+tHUX0NqwmUm7JytWNeze0Aez9HU5rn2X7voLFo6XkdP6t05ufWGNssousZaW6Mfbs2WVe73e33sXoX2eh+QzIfWw21z6dhaC9s/T9Ow+5m7+Ssj6x/Vmzq+TjZOM9tVzHNZc95OtQdvljfo+pU4vd/wqkxZogCB9IN8UmpliZHi3quGP5vT0h4yRvMkhzT8Yn/vqtKqX/p2P4mwaf1jt/78rJUMdlk9/opMkmTlr//V64JwmCdVWda/Jbh412Y76OLU+4/9ba6wf9Jq846Qw7Bv1edXHzOr/wDpLtvrQbR9XOoek3cTW0WeVRfX9os/s1blx3S43/PXwT4/LJs8tuS9HhtG1saDwV4TEKnifRH+vZWpdt4nVVyvnu2GOlVOt69Hzv8AiLP+pKPUXQNPyKr1sv8A2TmwNPQs/wCpKMdx5rAPUPNzuntAqZqeAVoB54PGuqzOnmw1s0jQROvZXnetIiPMnT8m9GW5Z8g13bVRP8VR60SKHjxB80Wn7UHEEA6nWT/cqvWDYMZ0iTGvA/8AMko/MFsRUxqHE6A6KTrw94/6UrpaXAgeELl+h7tjo/0j/wAq6bFnaJ4T83zHzSfkj5Butj+5HYJ17qrWTuOmistJnjw5UTDJnZo0O/dLXfcQVecNT8VRtj03btBBn7ldE7Ru0dAkecap0erFPosUykUyesf/2f/tGdpQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAPxwBWgADGyVHHAFaAAMbJUccAVoAAxslRxwBWgADGyVHHAFaAAMbJUccAVoAAxslRxwBWgADGyVHHAIAAAIAAAA4QklNBCUAAAAAABCQadng9equgfESqXOgJChYOEJJTQQ6AAAAAADlAAAAEAAAAAEAAAAAAAtwcmludE91dHB1dAAAAAUAAAAAUHN0U2Jvb2wBAAAAAEludGVlbnVtAAAAAEludGUAAAAAQ2xybQAAAA9wcmludFNpeHRlZW5CaXRib29sAAAAAAtwcmludGVyTmFtZVRFWFQAAAABAAAAAAAPcHJpbnRQcm9vZlNldHVwT2JqYwAAAAwAUAByAG8AbwBmACAAUwBlAHQAdQBwAAAAAAAKcHJvb2ZTZXR1cAAAAAEAAAAAQmx0bmVudW0AAAAMYnVpbHRpblByb29mAAAACXByb29mQ01ZSwA4QklNBDsAAAAAAi0AAAAQAAAAAQAAAAAAEnByaW50T3V0cHV0T3B0aW9ucwAAABcAAAAAQ3B0bmJvb2wAAAAAAENsYnJib29sAAAAAABSZ3NNYm9vbAAAAAAAQ3JuQ2Jvb2wAAAAAAENudENib29sAAAAAABMYmxzYm9vbAAAAAAATmd0dmJvb2wAAAAAAEVtbERib29sAAAAAABJbnRyYm9vbAAAAAAAQmNrZ09iamMAAAABAAAAAAAAUkdCQwAAAAMAAAAAUmQgIGRvdWJAb+AAAAAAAAAAAABHcm4gZG91YkBv4AAAAAAAAAAAAEJsICBkb3ViQG/gAAAAAAAAAAAAQnJkVFVudEYjUmx0AAAAAAAAAAAAAAAAQmxkIFVudEYjUmx0AAAAAAAAAAAAAAAAUnNsdFVudEYjUHhsQFIAAAAAAAAAAAAKdmVjdG9yRGF0YWJvb2wBAAAAAFBnUHNlbnVtAAAAAFBnUHMAAAAAUGdQQwAAAABMZWZ0VW50RiNSbHQAAAAAAAAAAAAAAABUb3AgVW50RiNSbHQAAAAAAAAAAAAAAABTY2wgVW50RiNQcmNAWQAAAAAAAAAAABBjcm9wV2hlblByaW50aW5nYm9vbAAAAAAOY3JvcFJlY3RCb3R0b21sb25nAAAAAAAAAAxjcm9wUmVjdExlZnRsb25nAAAAAAAAAA1jcm9wUmVjdFJpZ2h0bG9uZwAAAAAAAAALY3JvcFJlY3RUb3Bsb25nAAAAAAA4QklNA+0AAAAAABAASAAAAAEAAQBIAAAAAQABOEJJTQQmAAAAAAAOAAAAAAAAAAAAAD+AAAA4QklNBA0AAAAAAAQAAAAeOEJJTQQZAAAAAAAEAAAAHjhCSU0D8wAAAAAACQAAAAAAAAAAAQA4QklNJxAAAAAAAAoAAQAAAAAAAAABOEJJTQP1AAAAAABIAC9mZgABAGxmZgAGAAAAAAABAC9mZgABAKGZmgAGAAAAAAABADIAAAABAFoAAAAGAAAAAAABADUAAAABAC0AAAAGAAAAAAABOEJJTQP4AAAAAABwAAD/////////////////////////////A+gAAAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gAADhCSU0EAAAAAAAAAgApOEJJTQQCAAAAAACGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4QklNBDAAAAAAAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBADhCSU0ELQAAAAAABgABAAAANjhCSU0ECAAAAAAATAAAAAEAAAJAAAACQAAAAAwAAAAAAQAAQgAB//+cAAAAACJAAQAAH8AB///KQAD//84AAP///EAAAAAAAAAAAC5AAP//x4AB///9gAE4QklNBB4AAAAAAAQAAAAAOEJJTQQaAAAAAANjAAAABgAAAAAAAAAAAAAA/gAAAXIAAAAXADEAMgAuADEANQAtAGgAbwBtAGUAcABhAGcAZQAtAGMAdQByAGEAdABpAG8AbgAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAABcgAAAP4AAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAQAAAAAAAG51bGwAAAACAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb25nAAAAAAAAAABCdG9tbG9uZwAAAP4AAAAAUmdodGxvbmcAAAFyAAAABnNsaWNlc1ZsTHMAAAABT2JqYwAAAAEAAAAAAAVzbGljZQAAABIAAAAHc2xpY2VJRGxvbmcAAAAAAAAAB2dyb3VwSURsb25nAAAAAAAAAAZvcmlnaW5lbnVtAAAADEVTbGljZU9yaWdpbgAAAA1hdXRvR2VuZXJhdGVkAAAAAFR5cGVlbnVtAAAACkVTbGljZVR5cGUAAAAASW1nIAAAAAZib3VuZHNPYmpjAAAAAQAAAAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAAD+AAAAAFJnaHRsb25nAAABcgAAAAN1cmxURVhUAAAAAQAAAAAAAG51bGxURVhUAAAAAQAAAAAAAE1zZ2VURVhUAAAAAQAAAAAABmFsdFRhZ1RFWFQAAAABAAAAAAAOY2VsbFRleHRJc0hUTUxib29sAQAAAAhjZWxsVGV4dFRFWFQAAAABAAAAAAAJaG9yekFsaWduZW51bQAAAA9FU2xpY2VIb3J6QWxpZ24AAAAHZGVmYXVsdAAAAAl2ZXJ0QWxpZ25lbnVtAAAAD0VTbGljZVZlcnRBbGlnbgAAAAdkZWZhdWx0AAAAC2JnQ29sb3JUeXBlZW51bQAAABFFU2xpY2VCR0NvbG9yVHlwZQAAAABOb25lAAAACXRvcE91dHNldGxvbmcAAAAAAAAACmxlZnRPdXRzZXRsb25nAAAAAAAAAAxib3R0b21PdXRzZXRsb25nAAAAAAAAAAtyaWdodE91dHNldGxvbmcAAAAAADhCSU0EKAAAAAAADAAAAAI/8AAAAAAAADhCSU0EFAAAAAAABAAAANc4QklNBAwAAAAAD1gAAAABAAAAoAAAAG4AAAHgAADOQAAADzwAGAAB/9j/7QAMQWRvYmVfQ00AAf/uAA5BZG9iZQBkgAAAAAH/2wCEAAwICAgJCAwJCQwRCwoLERUPDAwPFRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwBDQsLDQ4NEA4OEBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAG4AoAMBIgACEQEDEQH/3QAEAAr/xAE/AAABBQEBAQEBAQAAAAAAAAADAAECBAUGBwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUHBggFAwwzAQACEQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRaisoMmRJNUZEXCo3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPBUtHwMyRi4XKCkkNTFWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/AOtCSUJwqrYUkE8JJIUnSCeEkrQkpQkkpaE6cAkwBJOgAWNn/WOqqx2PgNbkWtO19x1qa4fSZXt/pD2/ne70f+NSTCEpmoi3YSXPV5/U7dX5Dx5MDWD7mAK7TnZbQNzvVHcWf+Tb7kOIMksEx1BdRNCjTcy5m5sgj6TTyCppMR00LFJShNCKlkydJJSyZSTJKf/Q65OmCdVWwukknSUoBQycrGxKxblWsoY4w0vMbiPza2j32f2GoPU+o1dNwn5Vjd75FdFMx6lrvoVz+57fUuf/AKFi5mpt2VecrMebsizQ2HQAdq62/Rpqb+ZUxJlxYTPUmoj8fJ6D9u9PJ9nqvH7wrgf+COY//oqzjZ2JkuDKbAbDxW4Frz/Va76f/W1i41VL62vreHtfq17YLSD3Dm/SRLsNtlZBkOGrTwQRq0tP5rk3i1XnDj2BI8U31o6hZiYLMahxZfnFzN45bS2PtDm/uvt3soZ/11ccetdN6fc3HfulsB5Y2W1j+XqP/A96udQz8vqN7XWn9Pi1jGFnO5wdY/7Q5n+kf6jPUb+/WqFH1bxXUvpsLnWu9xvP093O7/zFTREK9f4MghkxwEYCPFqZSO3hF6eh9XpesXNbWG7zYSNu2N2/d9HZt/OUOm/WTofUM37DjXF93+Dc5hayw6uLKXu9zrNo/PZX6v8AgfUSxvq9h5PSKul5DrX47A0Fwdtc7adzdx/d/kJ+q/VfBvwqqMENwb8Mh+DcwGa3g+p73a2WMdZ77Pz/AFP0qjAx62Tvoeg/rLMkpE0K/l+i7dMMvZt/Plh+7c3/AKTVbWXbn49GXV6zoI3WFrRJMD6LG/y7He1Rf1rIsk01NqYCB7psdr/mM/6KbE6McsU5EEDSt3WSWbT1DMOrwyweEbfxYrtGSy8GAWPb9Kt3IH7zT+exGwslCUd/wSJlIpkVqyZOmSU//9HrgpKEqQVVsLpwlCkwNLgHaNn3HwH5ySHkvrJlm/rbcVpmvArDY/4W4C64/wBb0vs9Sy/rBk/Z+i3CTutAqaB/KPu/8Da9NjZLszIvz7NDlWvuPwe4urb/AGWbGo9eX9Xup/qt99FoDgTXadnuB9u31fT3/wBhPAqQNEiNXTeIEcQhYiTEgf3i6nRqfsnScRkfo6qGuP8Am+s7/qkH6oXX5HQm5F9jrbL7rnkvJMS72sbP5i2hQy+l1cS17S07f3XDboWqHT+nY/S8CjBxw4UVAhrnmXEkmx7nu9vu3PUZkDGV/NIg/wDStiJ1HQCxX+LwvHZdFl9Gc2p2yyy17WuGkQf/ADFc/XndWwLPR9a6h4/wbvcP7Pq72ub/AFV1uC31a553Wvd97nLXPTcTJrFeRUy1o7PaHa+SljmELjKPEGTmcfEQRIxkNNHkMf64deqAAspeAOH1NM/Op1aK363fWjMvGLhip1zjAbVSN39ZzrXWtra38+x/0F0v/NjoG8OOFXPh7gP7Td+1yv8A2XEwcfZjVMoraD7a2ho0/q/S/tonNi6YxfiBTXjjnesz9N3ms3qn2anKz8jbZawtpY1shrnNG07J+jX6vq2f8Wh9D+sWVf1BmH1DHFRyRvoe2RrEta5r93tdtWZ1R5HTsa8t3sbcLHtPBn1C3d/J3FN9W25fVOvY+Tcd9eG71HvAAa2A70qWx+/Y7+unDHH25Ejvr2r5WXPOQyiAJ/R9IH6P6Rt3rcvrXUet5PTel5TcGvBra99uwPdY923aza6f0e53/qxaf1f6rl5v2jGzqm4/VumvDbwzRjg7d6djW/m79rmWs+h/N2V/zmyvG+tH1e6j693VOmb3tyWBmZRVIshob72tYd11dmxnqVM96s/UjpedisyszMqfScltddTbZFjmsLnOc5j/AH11/uep77P6iZIQOKwRtGv3+P8ASYuI8VUev93h6PZtcHta9vDhI+aSHiOnHafAvH3OciqJjOhI7LJk6ZFT/9LroTgJJKqzsgqXXck4vQ8+8GHihzGH+XbGMz/pXK4FhfXi/wBPo1NE65WVW0jxbU1+Q7/wRtKMRZC6IuUR4vPdLZtqDWj6IgLls7F+z5l+M9sBriWjsWu97CP5O1dn0prS0fgrub0DA6lW0ZLCHsHssYdr2zyN37v8h6khmEJm9i2uZgJxA2I2fP69rWFjIY0j3bZHB8l2v1MwbcXpWRmOa5jcxwfQxx5rYDst2/R/S2Pf6bvz6UbB+pnRqLBZYx+SRqG3O3M0430tDGWbf5a280lmJYZ12Ez8ks/MCceGN67ksGLEYyFkHpo850QF2LST3En5rdb7QPALA6JaPs1EfuN/Itx7nbRDCR34VefzFt5dZBOxwMygdTfGHZ29pSY8ADdLfJwhVOt5Ibh2a8t7IR3AWxj6x5uJ0xjL8JlVjQ9rmgFpEggrf6Zj49FIZQxrKxJAZAE/nfRWB0cltFJ4ljUarH6l0jIsyOnVnLwbybLsPcWvY8+51mK90t93+iU0hZIuuwOxXZdga3HTd6+lw2fDhVGdWxbOsWdIrl99NP2i54jaz3MYKn/8K71W2LFH1yFo+zdPwMh/UH+2uu5oaxrjoH2bSXPY138mv/hLK1pdA6H+yca19xF2flONmXfyXOJ3+m13+j3Hf/xqaYcIPFof0R+1q9dHaw/5iPB7vyz/ABRkDDPssHg6fvH/AJijoDYMcvmKxTJykih//9Pr0kk6qthcLkv8YV+x3SKiYD3ZL/m1uOxv/VuXWhcR/jIqsycvp1NX06qLbRrH07Gs/wDRCfi+cX4/koXYMRZGrLpjmhjXDUd1ov6x07HysfDuva3JySBVXqZJO1m5zQW173e2v1FwuN1jqGATVfXLg07Nwgz+aXR7XsW79TsDFy7bOp5GSMnqbi5xqJa51bT7PUdV9Ld+b/o6Kv0aOTDXFKR06cPVsnPGZAG/6XF+iP8AvnsWFrhIPCF1CxrcC6w6htbj+BRmUtDQA4j4QqP1hrd+ycvY46Uv8PDxVcDUeao1xDzcPouE4Y1QkRsbo6T2XQVYwDBG1p8gf4lZ/TIbSwfyQB8gtRp4CM5Ek2y5ZG67Mm1WCZeNfJY31hxj9mOx06GdNVuN415Wb1sfqjx5fwSgakFmMnjDgdIH6rR5NH4Lo6NWtnTwHK5zo7gcSseE/lK3sez2hoOoH4J2T5j5ss9YjydSt2vMzp8h2RgVxef9cM3pee/Hv6eBSHH0XmwtdY0f4Sslj6vd+4r2P9fuhvqc+9uRjvY3dscwP3H9yu2pzmf9vegj7OSgRGwe3qakpRsi9R39P/SenxXN9a2ufdtY+PKXslWVzf1TyeodRzMzrGXT9moyqa6sCk8ilj3Wutdxv9R9n87/AIX/AAf6H010iVcOnZikbN91kk6ZJT//1OvThME6qs7ILjfrQ/1PrKGf6DFoZ83m2/8A9GtXYtk6Dk6BcFnZAyvrB1HIbqw5BqZ/VpDcVv8A55To9fJmwC5/RzfrJjPdhV2sEip02eQI2z/ZcifVn6v4HUqq8318im+h5bYKXBhDh9B1Vu31K97DuW9ViVZFLq7AHV2NLXNPcHRytdC6Rj9JwzjUFz9zvUse8+4uOn9Xa1iJzVjMQSJX+C/JjHucWh02P7zrsJ78qn12f2Lmx/oH/kVxpEKn13/kbN/4h/8A1JVeO480R+YeYc3pv80zyAhaYPftwsrprh6TJ8AtRp0E/FE7lmyfMWw09ln9YE4zx4z+RXfUAMTyqHWDGI8HuD+RKO4WQ+cPNdJFnoMLdRucI7/Sd4LcoFo8GwJALjP/AEVk9AcDjQdfc/8A6py6Kj2x2HIhSZT6j5sxl6R5B5360dRfQ2rCZSbsnK1Y17N7QB7P0dTmufZfu+gsWjpeR0/q3Tm59YY2yyi6xlpbox9uzZZV7vd7fexehfZ6H5DMh9bDbXPp2FoL2z9P07D7mbv5KyPrH9WbOr5ONk4z21XMc1lz3k61B2+WN+j6lTi93/CqTFmiAIH0g3xSamWJkeLeq4Y/m9PSHjJG8ySHNPxif++q0qpf+nY/ibBp/WO3/vyslQx2WT3+ikySZOWv/9XrgnCYJ1VZ1r8luHjXZjvo4tT7j/1trrB/0mrzjpDDsG/V51cfM6v/AOku2+tBtH1c6h6TdxNbRZ5VF9f2iz+zVuXHdLjf89fBPj8smzy25L0eG0bWxoPBXhMQqeJ9Ef69lal23idVXK+e7YY6VU63r0fO/wCIs/6ko9RdA0/IqvWy/wDZObA09Cz/AKkox3HmsA9Q83O6e0Cpmp4BWgHng8a6rM6ebDWzSNBE69led60iI8ydPyb0ZblnyDXdtVE/xVHrRIoePEHzRaftQcQQDqdZP9yq9YNgxnSJMa8D/wAySj8wWxFTGocToDopOvD3j/pSulpcCB4QuX6Hu2Oj/SP/ACrpsWdonhPzfMfNJ+SPkG62P7kdgnXuqtZO46aKy0mePDlRMMmdmjQ790td9xBV5w1PxVG2PTdu0EGfuV0TtG7R0CR5xqnR6sU+ixTKRTJ6x//ZOEJJTQQhAAAAAABdAAAAAQEAAAAPAEEAZABvAGIAZQAgAFAAaABvAHQAbwBzAGgAbwBwAAAAFwBBAGQAbwBiAGUAIABQAGgAbwB0AG8AcwBoAG8AcAAgAEMAQwAgADIAMAAxADUAAAABADhCSU0EBgAAAAAABwAGAAAAAQEA/+Ea52h0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS42LWMwNjcgNzkuMTU3NzQ3LCAyMDE1LzAzLzMwLTIzOjQwOjQyICAgICAgICAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1sbnM6cGhvdG9zaG9wPSJodHRwOi8vbnMuYWRvYmUuY29tL3Bob3Rvc2hvcC8xLjAvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RFdnQ9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZUV2ZW50IyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtcDpDcmVhdGVEYXRlPSIyMDE1LTEwLTA4VDEyOjM4OjExLTA0OjAwIiB4bXA6TW9kaWZ5RGF0ZT0iMjAxNS0xMi0xN1QxMDo1OTo0NS0wNTowMCIgeG1wOk1ldGFkYXRhRGF0ZT0iMjAxNS0xMi0xN1QxMDo1OTo0NS0wNTowMCIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgZGM6Zm9ybWF0PSJpbWFnZS9qcGVnIiBwaG90b3Nob3A6Q29sb3JNb2RlPSIzIiBwaG90b3Nob3A6SUNDUHJvZmlsZT0iVkEyNzAzIFNlcmllcyBDYWxpYnJhdGVkIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOmUyYmQwYjU5LTU2YjEtNDNiZi1iN2UyLTMyNzQzYjFhOTNjMCIgeG1wTU06RG9jdW1lbnRJRD0iYWRvYmU6ZG9jaWQ6cGhvdG9zaG9wOjk2MWFlZWE0LWU1NjUtMTE3OC04NGExLWVmNTVlNWVmOTVhZiIgeG1wTU06T3JpZ2luYWxEb2N1bWVudElEPSJ4bXAuZGlkOjY1MjRlZTYyLTQwNDAtNDQ4Ni05NzMwLWNjNDgyZDBiNmRjNCI+IDxwaG90b3Nob3A6VGV4dExheWVycz4gPHJkZjpCYWc+IDxyZGY6bGkgcGhvdG9zaG9wOkxheWVyTmFtZT0iUG9wdWxhciBJbGx1c3RyYXRpb24gQ2F0ZWdvcmllcyIgcGhvdG9zaG9wOkxheWVyVGV4dD0iUG9wdWxhciBJbGx1c3RyYXRpb24gQ2F0ZWdvcmllcyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IlBvcHVsYXIgVmVjdG9yIENhdGVnb3JpZXMiIHBob3Rvc2hvcDpMYXllclRleHQ9IlBvcHVsYXIgVmVjdG9yIENhdGVnb3JpZXMiLz4gPHJkZjpsaSBwaG90b3Nob3A6TGF5ZXJOYW1lPSJQb3B1bGFyIFBob3RvIENhdGVnb3JpZXMiIHBob3Rvc2hvcDpMYXllclRleHQ9IlBvcHVsYXIgUGhvdG8gQ2F0ZWdvcmllcyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IkJpZ3N0b2NrIFBpY2tzIiBwaG90b3Nob3A6TGF5ZXJUZXh0PSJCaWdzdG9jayBQaWNrcyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IldpbnRlciBDb2xsZWN0aW9uIiBwaG90b3Nob3A6TGF5ZXJUZXh0PSJXaW50ZXIgQ29sbGVjdGlvbiIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IkJpZ3N0b2NrIFZpZGVvIiBwaG90b3Nob3A6TGF5ZXJUZXh0PSJCaWdzdG9jayBWaWRlbyIvPiA8cmRmOmxpIHBob3Rvc2hvcDpMYXllck5hbWU9IkltYWdlcyBhbmQgVmlkZW8gZm9yIGV2ZXJ5b25lLiIgcGhvdG9zaG9wOkxheWVyVGV4dD0iSW1hZ2VzIGFuZCBWaWRlbyBmb3IgZXZlcnlvbmUuIi8+IDxyZGY6bGkgcGhvdG9zaG9wOkxheWVyTmFtZT0iT3ZlciAzMCBtaWxsaW9uIHN0b2NrIHBob3RvcywgdmlkZW9zLCBhbmQgdmVjdG9ycy4iIHBob3Rvc2hvcDpMYXllclRleHQ9Ik92ZXIgMzAgbWlsbGlvbiBzdG9jayBwaG90b3MsIHZpZGVvcywgYW5kIHZlY3RvcnMuIi8+IDwvcmRmOkJhZz4gPC9waG90b3Nob3A6VGV4dExheWVycz4gPHBob3Rvc2hvcDpEb2N1bWVudEFuY2VzdG9ycz4gPHJkZjpCYWc+IDxyZGY6bGk+MjMzOEI4RTQxMjc0MDA4QTkwQzhCRDI1NDc5NjBCQjM8L3JkZjpsaT4gPHJkZjpsaT4yREU0NDA2QzEwQjczNDIyQjRFRTZEOEIwRDMyNUZBODwvcmRmOmxpPiA8cmRmOmxpPjMxOTc2NTBFRTkzRjc5OEQ2QTJCQUYyMUFENjIyNzJCPC9yZGY6bGk+IDxyZGY6bGk+M0YyOTgxMzJFRjVERjdCRDFFN0U3OUM1MjVDMENBODY8L3JkZjpsaT4gPHJkZjpsaT41QUFBMDQ2RjFCRUQ1NTA3QjRGRTU4MkVEMTI1OTFBNDwvcmRmOmxpPiA8cmRmOmxpPjY1NjUzQUYxMEE1MUQ5MEZBMDdFQ0U2MzMyNjA4NEFBPC9yZGY6bGk+IDxyZGY6bGk+NzZFNDE3RTVFNDAxN0Q3ODU4MkI3OTFCOTYzQzlGM0I8L3JkZjpsaT4gPHJkZjpsaT44RjQwMDNDMUU1MzE4REU2MzVDODM0OTBENTE0ODMwQTwvcmRmOmxpPiA8cmRmOmxpPkExNDc0Q0I1QTEwRTM2RDQ2ODcwRjA0NDZFMDdEM0UwPC9yZGY6bGk+IDxyZGY6bGk+QTRENUQzQzczOTc4NTBERkZDQThDNjM2QTZEMkFBOUU8L3JkZjpsaT4gPHJkZjpsaT5BODE4NjdBREIyRDIwMzc2Q0FGMjNDNkM0NDU1QTYxRjwvcmRmOmxpPiA8cmRmOmxpPkMzMDkzMjZBRjJEMkUzQTE1QThBMjI0RUUwMjQ2NDQyPC9yZGY6bGk+IDxyZGY6bGk+QzRBQUJERDU3MUY5NkU5MjQ1QUYzMjU1REFDQkU5MDI8L3JkZjpsaT4gPHJkZjpsaT5DNTk3RkREMkRGMjlDRUUzQTA4OTA2REVGODIzNUZBMzwvcmRmOmxpPiA8cmRmOmxpPkQwRTQxMTkzRDBEODdBQkY2OUQzQTI3NDM1RkQ5Q0U2PC9yZGY6bGk+IDxyZGY6bGk+RDQ5M0IzODIwMDhERDAyMDA1ODk0Rjg0QUI4QUNEQTU8L3JkZjpsaT4gPHJkZjpsaT5EQjFBQzlEMjZCMUY0MEM5QTVBMTFCN0E2QURDM0ExMjwvcmRmOmxpPiA8cmRmOmxpPkU2NEU5NTJBQ0UyOTAwMkVCNjhGMUJDRDAxQjg5MTFCPC9yZGY6bGk+IDxyZGY6bGk+RTY4ODU2ODVDQkRGMjMyNEU3MTE1OEJGMjE3NkUxRkU8L3JkZjpsaT4gPHJkZjpsaT5GNUU3NTc3QTZCM0EzNDFBNTFDQUFBQzVFM0E1OUIxMTwvcmRmOmxpPiA8cmRmOmxpPkZEMUQ3RTMxQzc1MTJCRTBBODkxQ0RBQTVDNzdERTk1PC9yZGY6bGk+IDxyZGY6bGk+eG1wLmRpZDo2NDk0NmNiOC00MTFhLTRiMDAtOTk2MS1jODJkZmZjNTQ2NGM8L3JkZjpsaT4gPC9yZGY6QmFnPiA8L3Bob3Rvc2hvcDpEb2N1bWVudEFuY2VzdG9ycz4gPHhtcE1NOkhpc3Rvcnk+IDxyZGY6U2VxPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0ic2F2ZWQiIHN0RXZ0Omluc3RhbmNlSUQ9InhtcC5paWQ6NjUyNGVlNjItNDA0MC00NDg2LTk3MzAtY2M0ODJkMGI2ZGM0IiBzdEV2dDp3aGVuPSIyMDE1LTEwLTMwVDE0OjI2OjM1LTA0OjAwIiBzdEV2dDpzb2Z0d2FyZUFnZW50PSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgc3RFdnQ6Y2hhbmdlZD0iLyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0iY29udmVydGVkIiBzdEV2dDpwYXJhbWV0ZXJzPSJmcm9tIGltYWdlL3BuZyB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUucGhvdG9zaG9wIi8+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJkZXJpdmVkIiBzdEV2dDpwYXJhbWV0ZXJzPSJjb252ZXJ0ZWQgZnJvbSBpbWFnZS9wbmcgdG8gYXBwbGljYXRpb24vdm5kLmFkb2JlLnBob3Rvc2hvcCIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0ic2F2ZWQiIHN0RXZ0Omluc3RhbmNlSUQ9InhtcC5paWQ6NjQ5NDZjYjgtNDExYS00YjAwLTk5NjEtYzgyZGZmYzU0NjRjIiBzdEV2dDp3aGVuPSIyMDE1LTEwLTMwVDE0OjI2OjM1LTA0OjAwIiBzdEV2dDpzb2Z0d2FyZUFnZW50PSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgc3RFdnQ6Y2hhbmdlZD0iLyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0ic2F2ZWQiIHN0RXZ0Omluc3RhbmNlSUQ9InhtcC5paWQ6NjM0NGY3MWMtNDhiZC00MGU4LWFhM2YtZjcyYTEwNmJjZTlhIiBzdEV2dDp3aGVuPSIyMDE1LTEyLTE3VDEwOjU5OjQ1LTA1OjAwIiBzdEV2dDpzb2Z0d2FyZUFnZW50PSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50b3NoKSIgc3RFdnQ6Y2hhbmdlZD0iLyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0iY29udmVydGVkIiBzdEV2dDpwYXJhbWV0ZXJzPSJmcm9tIGFwcGxpY2F0aW9uL3ZuZC5hZG9iZS5waG90b3Nob3AgdG8gaW1hZ2UvanBlZyIvPiA8cmRmOmxpIHN0RXZ0OmFjdGlvbj0iZGVyaXZlZCIgc3RFdnQ6cGFyYW1ldGVycz0iY29udmVydGVkIGZyb20gYXBwbGljYXRpb24vdm5kLmFkb2JlLnBob3Rvc2hvcCB0byBpbWFnZS9qcGVnIi8+IDxyZGY6bGkgc3RFdnQ6YWN0aW9uPSJzYXZlZCIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDplMmJkMGI1OS01NmIxLTQzYmYtYjdlMi0zMjc0M2IxYTkzYzAiIHN0RXZ0OndoZW49IjIwMTUtMTItMTdUMTA6NTk6NDUtMDU6MDAiIHN0RXZ0OnNvZnR3YXJlQWdlbnQ9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE1IChNYWNpbnRvc2gpIiBzdEV2dDpjaGFuZ2VkPSIvIi8+IDwvcmRmOlNlcT4gPC94bXBNTTpIaXN0b3J5PiA8eG1wTU06RGVyaXZlZEZyb20gc3RSZWY6aW5zdGFuY2VJRD0ieG1wLmlpZDo2MzQ0ZjcxYy00OGJkLTQwZTgtYWEzZi1mNzJhMTA2YmNlOWEiIHN0UmVmOmRvY3VtZW50SUQ9ImFkb2JlOmRvY2lkOnBob3Rvc2hvcDpjYTc1NGM2MC1iZmMwLTExNzgtYjgwYy1lNWFjMmFiZWU0MjgiIHN0UmVmOm9yaWdpbmFsRG9jdW1lbnRJRD0ieG1wLmRpZDo2NTI0ZWU2Mi00MDQwLTQ0ODYtOTczMC1jYzQ4MmQwYjZkYzQiLz4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/iKWhJQ0NfUFJPRklMRQABAQAAKVhhcHBsAhAAAG1udHJSR0IgWFlaIAffAAkACgAPABcAGGFjc3BBUFBMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtYXBwbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWRlc2MAAAFQAAAAc2RzY20AAAHEAAAATGNwcnQAAAIQAAAAI3d0cHQAAAI0AAAAFHJYWVoAAAJIAAAAFGdYWVoAAAJcAAAAFGJYWVoAAAJwAAAAFHJUUkMAAAKEAAAIDGFhcmcAAAqQAAAAIHZjZ3QAAAqwAAAGEm5kaW4AABDEAAAYPmNoYWQAACkEAAAALG1tb2QAACkwAAAAKGJUUkMAAAKEAAAIDGdUUkMAAAKEAAAIDGFhYmcAAAqQAAAAIGFhZ2cAAAqQAAAAIGRlc2MAAAAAAAAAGVZBMjcwMyBTZXJpZXMgQ2FsaWJyYXRlZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAABAAAADGVuVVMAAAAwAAAAHABWAEEAMgA3ADAAMwAgAFMAZQByAGkAZQBzACAAQwBhAGwAaQBiAHIAYQB0AGUAZHRleHQAAAAAQ29weXJpZ2h0IEFwcGxlIEluYy4sIDIwMTUAAFhZWiAAAAAAAADz2AABAAAAARYIWFlaIAAAAAAAAGwPAAA4qQAAApdYWVogAAAAAAAAYjYAALdyAAAR/1hZWiAAAAAAAAAokQAAD+UAAL6XY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA2ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKMAqACtALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t//9wYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKDnZjZ3QAAAAAAAAAAAADAQAAAgAAAJQA4gFvAgICsANEA9gEdgUOBbEGVwb/B6EIRwjtCZcKRgrvC5sMSwz7Da8OYQ8TD8kQghE6EfISrRNoFCUU4xWkFmYXJxftGLAZehpDGwsb2BylHXUeRB8YH+sgwSGYInIjSyQpJQkl6SbLJ64olCl7KmQrTyw8LSouGy8ML/4w8jHnMt4z1TTMNcQ2vDe0OK05qDqkO6E8oD2hPqM/p0CtQbVCvkPKRNdF5kb4SAxJIUo4S1JMbk2LTqxPzlDzUhlTQ1RvVZ1WzVgAWTVabFumXOBeHl9dYJ1h32MhZGRlqGbtaDBpdWq4a/xtPW59b7tw+HIyc2l0nnXQdv14KHlOenJ7kHysfcN+1X/kgO6B9oL8hACFBIYGhweIB4kGigOLAIv8jPiN8o7sj+WQ3ZHWks2TxZS7lbKWqZefmJWZi5qBm3ecbp1knlufUqBJoUGiOqMzpCylJqYhpx2oGqkYqherFqwYrRuuH68lsC2xNrJCs0+0XbVstnu3i7idua66wLvTvOe9+78QwCbBPcJUw2vEhMWcxrbH0MjqygbLIcw+zVrOd8+V0LPR0tLx1BDVMNZQ13HYktmz2tXb9t0Y3jrfXOB/4aHixOPn5QrmLudT6HfpnOrC6+jtD+4371/wiPGy8t30CPU19mP3kvjC+fP7Jvxa/Y/+xv//AAAAlAEiAa8CQgLwA6UEQgTyBagGXQcPB78IdwkzCe0KqgtnDCQM5w2mDmgPKQ/uELYReRJCEwoT0xSfFWsWNRcDF9MYohlyGkMbFRvrHMAdkx5rH0MgGSDyIc0ipyOEJF8lPiYdJvwn3Ci/KaAqgytmLEotMS4XLv0v5TDOMbcyoDOKNHU1YDZNNzk4JDkQOf466zvYPMU9sz6hP45AfUFsQltDSkQ7RS1GIEcUSAlI/0n3SvBL7EzqTelO6k/wUPhSA1MSVCVVPFZTV21Yh1mjWsBb31z/Xh9fQWBkYYhirGPSZPdmHmdDaGlpkWq3a91tBG4pb09wc3GWcrhz2XT5dhd3NHhPeWh6f3uUfKd9uH7If9eA54H2gwWEFIUjhjGHP4hNiVuKaYt2jISNko6fj6yQuJHFktKT3pTrlfiXBJgQmRyaKJs0nECdTJ5Xn2Ogb6F6ooajkaSdpaimtKe/qMqp1qrhq+ys+K4Drw+wGrEmsjGzPLRGtU+2VrdduGO5aLpsu3C8c712vnm/e8B+wYDCg8OFxInFjMaQx5TImcmgyqbLrsy3zcHOzc/b0OrR+9MO1CPVO9ZV13PYk9m42t3cAt0n3k3fdOCb4cLi6uQU5T7maueX6MXp9eso7Fvtke7J8ATxQvKC88b1DvZZ96r4/vpY+7f9Hf6K//8AAACUASIBrwJBAvADhAQtBNYFfwYtBtwHjAhBCPMJqgphCxYL1AyNDUUOCA7DD4cQQxEJEccSjhNTFBsU4hWpFnIXPhgIGNYZpBpzG0UcFRzoHbsekB9mID4hFiHuIsojpSSDJV8mPicfJ/8o4inEKqgrjyx0LVwuQy8sMBYxATHsMtkzxTSyNaE2jjd+OGw5XDpLOzw8Lj0hPhM/Bz/+QPRB7ELlQ95E2UXVRtNH0EjQSdBK0kvVTNlN3U7kT+xQ9FH+UwlUFVUiVjBXP1hQWWFac1uHXJpdr17FX9tg8WIHYx9kN2VPZmZnf2iWaa5qxWvdbPNuCW8ecDNxR3JZc2t0e3WKdpd3pHivebd6vnvEfMh9zH7Pf9OA1YHYgtuD3ITehd+G4IfhiOKJ4orji+OM443jjuOP45DjkeKS4pPilOKV4pbil+KY4pnjmuSb5Zzmneie6Z/roO6h8KL0o/ek+6YApwWoC6kRqhirIKwprTKuO69FsE+xWLJfs2a0brV0tnq3gbiGuYy6kruYvJ+9pb6sv7TAvMHFws/D2sTlxfLHAMgQySHKNMtJzGDNes6Vz7PQ1dH50yHUTdV91rHX5tkc2lHbiNy+3fbfLuBn4aHi3eQa5Vnmmufc6SLqaeu07QLuU++p8QLyYfPE9S72nvgW+Zb7Hvyx/lH//wAAbmRpbgAAAAAAABg2AACjgAAAVsAAAE8AAACegAAAKAAAAA8AAABQQAAAVEAAAeryAAHqcgABzcYAAwQAAAIAAAAAAAAAAQACAAMABAAFAAcACAAKAAwADwARABQAFwAaAB0AIQAlACkALQAxADYAOgA/AEUASgBPAFUAWwBhAGgAbgB1AHwAgwCKAJIAmQChAKkAsgC6AMMAzADVAN4A5wDxAPsBBQEPARkBJAEuATkBRAFQAVsBZwFzAX8BiwGXAaQBsAG9AcoB1wHlAfICAAIOAhwCKgI5AkcCVgJlAnQCgwKSAqICsgLBAtEC4gLyAwIDEwMkAzUDRgNXA2gDegOMA54DsAPCA9QD5gP5BAwEHgQxBEQEWARrBH8EkgSmBLoEzgTiBPYFCwUfBTQFSQVeBXMFiAWdBbMFyAXeBfQGCgYgBjYGTAZjBnkGkAamBr0G1AbrBwIHGgcxB0gHYAd4B5AHpwe/B9gH8AgICCAIOQhSCGoIgwicCLUIzgjnCQEJGgk0CU0JZwmBCZsJtQnPCekKAwoeCjgKUwptCogKowq+CtkK9AsPCyoLRgthC30LmQu1C9AL7AwJDCUMQQxeDHoMlwyzDNAM7Q0KDScNRQ1iDX8NnQ27DdgN9g4UDjMOUQ5vDo4OrA7LDuoPCQ8oD0cPZw+GD6YPxg/mEAYQJhBGEGcQhxCoEMgQ6REKESsRSxFtEY4RrxHQEfESExI0ElYSeBKZErsS3RL/EyETQxNlE4gTqhPME+8UERQ0FFcUeRScFL8U4hUFFSgVSxVuFZIVtRXYFfwWHxZDFmYWihauFtIW9hcZFz0XYheGF6oXzhfyGBcYOxhfGIQYqBjNGPIZFhk7GWAZhRmqGc8Z9BoZGj4aYxqIGq0a0xr4Gx0bQxtoG44bsxvZG/4cJBxKHHAclRy7HOEdBx0tHVMdeR2fHcUd7B4SHjgeXh6FHqse0R74Hx4fRR9rH5IfuR/fIAYgLSBTIHogoSDIIO8hFiE9IWQhiyGyIdkiACInIk4idiKdIsQi7CMTIzojYiOJI7Ej2CQAJCgkTyR3JJ8kxyTvJRclPyVnJY8ltyXfJgcmLyZYJoAmqCbRJvknIidKJ3MnnCfFJ+0oFig/KGgokSi7KOQpDSk2KWApiSmzKd0qBiowKloqhCquKtgrAissK1crgSusK9YsASwsLFcsgiytLNgtAy0uLVothS2xLd0uCS41LmEujS65LuYvEi8/L2wvmS/GL/MwITBOMHwwqjDXMQYxNDFiMZExvzHuMh0yTDJ7Mqsy2jMKMzozajObM8sz/DQtNF40jzTBNPI1JDVWNYg1uzXtNiA2UzaHNro27jciN1Y3izfAN/U4KjhfOJU4yzkBOTg5bjmlOd06FDpMOoQ6vTr2Oy87aDuiO9w8FjxRPIs8xz0CPT49ej23PfQ+MT5vPq0+6z8qP2k/qT/oQClAaUCqQOtBLEFtQa9B8UIzQnVCuEL7Qz5DgUPERAhETESQRNRFGUVeRaNF6EYuRnNGuUcAR0ZHjUfTSBtIYkipSPFJOUmBScpKEkpbSqRK7Us3S4FLy0wVTF9Mqkz0TT9Ni03WTiJObk66TwZPUk+fT+xQOVCGUNRRIlFvUb5SDFJaUqlS+FNHU5ZT5lQ2VIZU1lUmVXZVx1YYVmlWulcMV11Xr1gBWFNYpVj4WUpZnVnwWkRal1rrWz5bklvmXDpcj1zjXThdjV3iXjdejV7iXzhfjl/kYDpgkGDnYT1hlGHrYkJimWLxY0hjoGP3ZE9kp2T/ZVhlsGYJZmFmumcTZ2xnxWgeaHho0WkraYRp3mo4apJq7GtHa6Fr+2xWbLBtC21mbcFuHG53btJvLW+Ib+RwP3CbcPZxUnGucglyZXLBcx1zeXPVdDF0jXTpdUZ1onX+dlp2t3cTd3B3zHgpeIV44nk+eZt593pUerB7DXtpe8Z8Inx/fNx9OH2VffF+Tn6qfwZ/Y3+/gBuAeIDUgTGBjYHqgkeCpIMBg16Du4QYhHWE0oUwhY2F64ZIhqaHBIdih8CIHoh8iNqJOImXifWKVIqyixGLcIvPjC6MjYzsjUuNqo4JjmmOyI8oj4eP55BHkKeRB5FnkceSJ5KIkuiTSJOplAqUapTLlSyVjZXulk+WsJcSl3OX1Jg2mJiY+Zlbmb2aH5qBmuObRZuonAqcbJzPnTKdlJ33nlqevZ8gn4Of5qBKoK2hEaF0odiiPKKgowOjZ6PMpDCklKT4pV2lwaYmpoum76dUp7moHqiEqOmpTqm0qhmqf6rkq0qrsKwWrHys4q1Jra+uFa58ruOvSa+wsBewfrDlsUyxtLIbsoKy6rNSs7m0IbSJtPG1WbXCtiq2krb7t2S3zLg1uJ65B7lwudq6Q7qsuxa7f7vpvFO8vb0nvZG9+75mvtC/O7+mwBDAe8DmwVHBvcIowpPC/8Nrw9fEQ8SvxRvFh8X0xmDGzcc6x6bIE8iAyO7JW8nIyjbKo8sRy3/L7cxbzMnNN82mzhTOg87xz2DPz9A+0K3RHNGL0frSatLZ00nTuNQo1JjVCNV41ejWWNbI1znXqdga2IrY+9ls2dzaTdq+2y/boNwR3IPc9N1l3dfeSN663yzfneAP4IHg8+Fl4dfiSeK74y3joOQS5ITk9+Vp5dzmTubB5zTnpugZ6Izo/+ly6eXqWOrL6z7rsewk7JftCu197fHuZO7X70vvvvAx8KXxGPGM8f/yc/Lm81rzzfRB9LX1KPWc9g/2g/b392r33vhS+MX5Ofmt+iD6lPsI+3v77/xi/Nb9Sv29/jH+pP8Y/4v//wAAAAAAAAABAAEAAgADAAQABQAHAAgACgAMAA4AEAASABUAGAAbAB4AIQAkACgAKwAvADMANwA8AEAARQBKAE8AVABZAF8AZABqAHAAdgB8AIMAiQCQAJcAngClAK0AtAC8AMQAzADUANwA5QDuAPYA/wEIARIBGwElAS8BOQFDAU0BVwFiAWwBdwGCAY4BmQGkAbABvAHIAdQB4AHsAfkCBgISAh8CLQI6AkcCVQJjAnECfwKNApsCqgK4AscC1gLlAvQDBAMTAyMDMwNDA1MDYwN0A4QDlQOmA7cDyAPZA+oD/AQOBB8EMQREBFYEaAR7BI0EoASzBMYE2QTtBQAFFAUoBTwFUAVkBXgFjQWhBbYFywXgBfUGCgYgBjUGSwZhBncGjQajBrkG0AbmBv0HFAcrB0IHWgdxB4gHoAe4B9AH6AgACBgIMQhJCGIIewiUCK0IxgjgCPkJEwktCUYJYAl7CZUJrwnKCeQJ/woaCjUKUApsCocKowq+CtoK9gsSCy4LSwtnC4QLoAu9C9oL9wwVDDIMTwxtDIsMqQzHDOUNAw0iDUANXw1+DZ0NvA3bDfoOGg46DlkOeQ6ZDroO2g76DxsPPA9dD34Pnw/AD+IQAxAlEEcQaRCLEK4Q0BDzERYROBFcEX8RohHGEekSDRIxElUSehKeEsIS5xMMEzETVhN7E6ATxhPrFBEUNxRdFIMUqRTQFPYVHRVDFWoVkRW4Fd8WBhYuFlUWfRakFswW9BccF0QXbBeVF70X5RgOGDcYXxiIGLEY2hkDGSwZVRl/GagZ0Rn7GiQaThp3GqEayxr1Gx4bSBtyG5wbxhvwHBocRBxvHJkcwxztHRcdQh1sHZYdwB3qHhUePx5pHpMevh7oHxIfPB9mH5Afuh/kIA4gOCBiIIwgtiDhIQshNSFgIYohtSHgIgoiNSJgIositiLhIwwjNyNjI44juSPlJBAkPCRoJJMkvyTrJRclQyVvJZslxyX0JiAmTSZ5JqYm0ib/JywnWSeGJ7Mn4CgNKDsoaCiVKMMo8CkeKUwpeimoKdYqBCoyKmAqjyq9KuwrGitJK3grpyvWLAUsNCxjLJMswizyLSItUS2BLbEt4S4SLkIuci6jLtMvBC81L2Yvly/IL/kwKzBcMI4wwDDxMSMxVjGIMbox7TIfMlIyhTK4MuszHjNSM4UzuTPtNCE0VTSJNL408jUnNVw1kTXGNfs2MTZnNpw20jcJNz83dTesN+M4GjhROIg4wDj4OTA5aDmgOdk6ETpKOoM6vTr2OzA7ajukO948GTxTPI48yT0FPUA9fD24PfU+MT5uPqs+6D8mP2Q/oj/gQB5AXUCcQNtBGkFZQZlB2EIYQlhCl0LYQxhDWEOZQ9lEGkRbRJxE3UUfRWBFokXkRiZGaEaqRuxHL0dyR7RH90g6SH5IwUkFSUhJjEnQShRKWEqdSuFLJktrS7BL9Uw6TH9MxU0LTVBNlk3cTiNOaU6wTvZPPU+ET8tQE1BaUKFQ6VExUXlRwVIJUlJSmlLjUyxTdVO+VAdUUVSaVORVLlV4VcJWDFZXVqFW7Fc3V4JXzVgZWGRYsFj7WUdZk1nfWixaeFrFWxJbXlurW/lcRlyTXOFdL119XcteGV5nXrZfBV9TX6Jf8WBAYJBg32EvYX9hz2IfYm9iv2MQY2FjsWQCZFNkpWT2ZUhlmWXrZj1mj2bhZzRnhmfZaCxof2jSaSVpeGnMaiBqdGrHaxxrcGvEbBlsbWzCbRdtbG3CbhdubW7Cbxhvbm/EcBtwcXDHcR5xdXHMciNyenLScylzgXPZdDF0iXThdTp1knXrdkR2nXb2d093qHgCeFx4tXkPeWl5xHoeenl603sue4l75Hw/fJt89n1Sfa5+CX5lfsJ/Hn96f9eANICRgO6BTIGqggiCZoLEgyODgoPhhEGEoYUBhWGFwYYihoOG5IdGh6eICYhriM2JMImTifaKWYq8iyCLg4vojEyMsI0VjXqN345EjqmPD491j9uQQZCnkQ6RdZHckkOSqpMRk3mT4ZRJlLGVGZWCleqWU5a8lyWXjpf3mGGYy5k0mZ6aCJpzmt2bR5uynB2ch5zynV2dyZ40np+fC592n+KgTqC6oSahkqH+omqi1qNDo6+kHKSIpPWlYaXOpjumqKcVp4Kn76hcqMmpNqmjqhCqfqrrq1irxawzrKCtDa17reiuVa7CrzCvnbAKsHew5bFSsb+yLLKZswazc7PgtE20ubUmtZO1/7Zstti3RbexuB24ibj1uWG5zbo5uqS7ELt7u+a8Uby8vSe9kr38vme+0b87v6XADsB4wOLBTMG2wiDCisL1w1/DysQ1xKDFC8V2xeHGTMa3xyPHjsf6yGbI0ck9yanKFcqByu3LWsvGzDLMn80LzXjN5c5Rzr7PK8+Y0AXQctDf0UzRudIm0pPTANNt09vUSNS11SPVkNX91mvW2NdF17PYINiO2PvZadnW2kPasdse24zb+dxm3NTdQd2u3hveid7232Pf0OA94KrhF+GE4fHiXuLK4zfjpOQQ5H3k6eVW5cLmLuaa5wbncufe6Enotekh6Yzp9+pj6s7rOeuj7A7seezj7U7tuO4i7ozu9e9f78nwMvCb8QTxbfHV8j7ypvMO83bz3vRG9K31FPV79eL2SPav9xX3e/fh+Eb4q/kQ+XX52vo++qL7Bvtp+838MPyT/PX9V/25/hv+fP7d/z7/n///AAAAAAAAAAEAAQACAAMABAAGAAcACQAKAAwADwARABQAFgAZABwAHwAjACYAKgAuADIANgA7AD8ARABJAE4AUwBZAF4AZABqAHAAdgB9AIMAigCRAJgAnwCnAK8AtgC+AMYAzwDXAOAA6QDyAPsBBAENARcBIQErATUBPwFJAVQBXwFqAXUBgAGLAZcBowGvAbsBxwHTAeAB7AH5AgYCEwIgAi4COwJJAlcCZQJzAoICkAKfAq4CvQLMAtsC6gL6AwoDGgMqAzoDSgNaA2sDfAONA54DrwPAA9ID4wP1BAcEGQQrBD0EUARiBHUEiASbBK4EwQTVBOgE/AUQBSQFOAVMBWAFdQWJBZ4FswXIBd0F8wYIBh0GMwZJBl8GdQaLBqEGuAbOBuUG/AcTByoHQQdZB3AHiAefB7cHzwfnB/8IGAgwCEkIYQh6CJMIrAjGCN8I+AkSCSwJRQlfCXkJlAmuCcgJ4wn9ChgKMwpOCmkKhQqgCrsK1wrzCw8LKwtHC2MLgAucC7kL1QvyDA8MLAxKDGcMhAyiDMAM3gz8DRoNOA1WDXUNlA2yDdEN8A4QDi8OTg5uDo4OrQ7NDu0PDg8uD08Pbw+QD7EP0g/zEBUQNhBYEHkQmxC9EN8RAREkEUYRaBGLEa4R0BHzEhYSORJdEoASoxLHEusTDhMyE1YTehOeE8MT5xQLFDAUVRR5FJ4UwxToFQ0VMxVYFX0VoxXJFe4WFBY6FmAWhhatFtMW+RcgF0YXbReUF7sX4hgJGDAYVxh/GKYYzhj1GR0ZRRltGZUZvRnlGg0aNRpeGoYarxrYGwAbKRtSG3sbpBvOG/ccIBxKHHMcnRzHHPAdGh1EHW4dmB3DHe0eFx5CHmwelx7CHu0fFx9CH20fmR/EH+8gGiBGIHEgnSDJIPQhICFMIXghpCHRIf0iKSJWIoIiryLbIwgjNSNiI48jvCPpJBckRCRyJJ8kzST6JSglViWEJbIl4SYPJj0mbCaaJskm+CcmJ1UnhCezJ+MoEihBKHEooSjQKQApMClgKZApwCnxKiEqUiqCKrMq5CsVK0YrdyuoK9osCyw9LG4soCzSLQQtNy1pLZstzi4ALjMuZi6ZLswvAC8zL2cvmi/OMAIwNjBqMJ8w0zEIMTwxcTGmMdsyETJGMnwysjLnMx4zVDOKM8Ez9zQuNGU0nDTTNQs1QjV6NbI16jYjNls2lDbNNwY3Pzd4N7I36zglOF84mjjUOQ85SjmFOcA5+zo3OnM6rzrrOyg7ZDuhO948HDxZPJc81T0TPVI9kT3QPg8+Tj6OPs4/Dj9OP48/0EARQFJAlEDWQRdBWUGcQd5CIUJjQqZC6UMsQ3BDs0P3RDtEf0TDRQdFTEWRRdZGG0ZgRqVG60cxR3ZHvEgDSElIkEjWSR1JZEmrSfNKOkqCSspLEktaS6NL60w0TH1Mxk0PTVhNok3rTjVOf07JTxRPXk+pT/RQP1CKUNVRIFFsUbhSBFJQUpxS6FM1U4JTz1QcVGlUtlUEVVFVn1XtVjtWiVbYVyZXdVfEWBNYYliyWQFZUVmhWfBaQVqRWuFbMluCW9NcJFx1XMddGF1qXbteDV5fXrFfBF9WX6lf/GBOYKFg9WFIYZth72JDYpZi6mM/Y5Nj52Q8ZJBk5WU6ZY9l5GY6Zo9m5Wc7Z5Bn5mg9aJNo6WlAaZZp7WpEaptq8mtJa6Fr+GxQbKds/21Xba9uCG5gbrhvEW9qb8JwG3B0cM1xJ3GAcdlyM3KNcuZzQHOac/R0T3SpdQN1XnW4dhN2bnbJdyR3f3faeDV4kXjseUh5pHn/elt6t3sTe297y3wofIR84H09fZp99n5TfrB/DX9qf8eAJICBgN+BPYGbgfmCV4K2gxWDdIPThDKEkoTyhVKFsoYThnOG1Ic1h5eH+IhaiLuJHYmAieKKRYqniwqLbYvQjDSMl4z7jV+Nw44njoyO8I9Vj7qQH5CEkOqRT5G1khqSgJLmk02Ts5QZlICU55VNlbSWG5aDluqXUZe5mCGYiJjwmViZwJoompGa+Zthm8qcMpybnQSdbZ3Wnj+eqJ8Rn3qf46BNoLahH6GJofKiXKLGoy+jmaQDpGyk1qVApaqmFKZ+puinUae7qCWoj6j5qWOpzao3qqGrC6t0q96sSKyyrRutha3vrliuwq8sr5Wv/rBosNGxOrGjsgyydbLes0ezsLQZtIG06rVStbq2IraKtvK3WrfCuCm4kLj4uV+5xrotupO6+rtgu8a8LLySvPi9Xb3Cvii+jL7xv1a/usAewILA5sFLwa/CFMJ4wt3DQsOnxAzEccTXxTzFocYHxm3G0sc4x57IBMhqyNDJNsmdygPKacrQyzbLncwDzGrM0c04zZ/OBc5sztPPOs+h0AjQcNDX0T7RpdIM0nPS29NC06nUEdR41N/VRtWu1hXWfNbk10vXstgZ2IHY6NlP2bbaHdqE2uvbUtu53CDch9zu3VXdu94i3one799W37zgIuCI4O/hVeG74iHihuLs41Ljt+Qd5ILk5+VM5bHmFuZ75t/nROeo6AzocejU6TjpnOn/6mPqxusp64zr7uxR7LPtFe137dnuOu6c7v3vXu+/8B/wf/Dg8T/xn/H+8l7yvfMb83rz2PQ29JT08fVP9av2CPZk9sH3HPd499P4LviJ+OP5PfmX+fD6Sfqi+vv7U/ur/AL8Wfyw/Qb9XP2y/gf+XP6x/wX/Wf+s//8AAHNmMzIAAAAAAAELtwAABZb///NXAAAHKQAA/df///u3///9pgAAA9oAAMD2bW1vZAAAAAAAAFpjAABiKgAAAADNiQqAAAAAAAAAAAAAAAAAAAAAAP/uAA5BZG9iZQBkQAAAAAH/2wCEAAICAgICAgICAgIDAgICAwQDAgIDBAUEBAQEBAUGBQUFBQUFBgYHBwgHBwYJCQoKCQkMDAwMDAwMDAwMDAwMDAwBAwMDBQQFCQYGCQ0KCQoNDw4ODg4PDwwMDAwMDw8MDAwMDAwPDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAP4BcgMBEQACEQEDEQH/3QAEAC//xAGiAAAABwEBAQEBAAAAAAAAAAAEBQMCBgEABwgJCgsBAAICAwEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAgEDAwIEAgYHAwQCBgJzAQIDEQQABSESMUFRBhNhInGBFDKRoQcVsUIjwVLR4TMWYvAkcoLxJUM0U5KismNzwjVEJ5OjszYXVGR0w9LiCCaDCQoYGYSURUaktFbTVSga8uPzxNTk9GV1hZWltcXV5fVmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9zhIWGh4iJiouMjY6PgpOUlZaXmJmam5ydnp+So6SlpqeoqaqrrK2ur6EQACAgECAwUFBAUGBAgDA20BAAIRAwQhEjFBBVETYSIGcYGRMqGx8BTB0eEjQhVSYnLxMyQ0Q4IWklMlomOywgdz0jXiRIMXVJMICQoYGSY2RRonZHRVN/Kjs8MoKdPj84SUpLTE1OT0ZXWFlaW1xdXl9UZWZnaGlqa2xtbm9kdXZ3eHl6e3x9fn9zhIWGh4iJiouMjY6Pg5SVlpeYmZqbnJ2en5KjpKWmp6ipqqusra6vr/2gAMAwEAAhEDEQA/APoWD2Gwzkrt6JUqwXqB4Vwpdv0G/hTBau69QK98IQ3v9OFV67jELTu3jj5K2O46+JxUKg7V3PcfwxSupvT9fbFDdNwe9OpxS4AgkeHf54FVB06bdzirdPoxVo9vDFK3iCfl3xQup3798Urt6/Ptiq9R44qvAGFC4L7YFt1N8Vdxw0i2+OK2uAwLa0jfrU4aVqmBLdP7RhVoUINNjgVo1rUbj2xVogb/AIYqtI6b/OuFVu/WmJChaQO344pWEffigtU3rXfvioaNa74Vb2ONq0BTptTwxVskH+GKFp3NNz4YLS0fAEfL2xVqnT8MVaIHc74qtp7UA64ULa06H5DFWqnI7q//0PoQCCR7dPfOPD0dKm9QB8qZMFaX8SO3ywrTYFd6Yobptv27YVXDpih3an37YpXADbtiFXjriq8V6eA74pXUJ6df4YquANad8CuH+YGKW9z2+eKGwN6nbFK6nX9WKuC7UH0YShulP64quAP3dsCqgH9oOKF1MUW4DCtup49sVtcRii3UxW3UxW2qYrbVMU20RvgS6mKtccVtaRSoxStIP4YVWEdPwwKp07fhhpLdMUNAb08MSrivcdsAVr+J74UraHw6d8bQ6nTw8cVdx+ivQ4FaA26b+GFDR8d9un9cVW9/nioU/GvXFWt/8z+OFD//0foOqkCh3OcgA9EqjpTtkgqoDSh6nvt+GFNrh18MJpFrqe/TfCrar4dsCrqA0PjiVXhfHtilulO22Kt+O5Pt/XAq/j9IGFWwCev04qupTt0wK3QdtqbjFK4LTqNjhQ3T6RXAq8DFXUA/hiq4D+3ChumKF2KHe+NKuUFiFUFmPRQK4oKUar5g0DQttZ1uy02SlRBPMolI9owS34YDMDmW3Fp8ub6Ik+4MOl/NvyDG3CPV5bo9Kw27sNvc0yBzRHQufHsbVy/gr4q1t+aPku7cRrfXERbdTJAwB+kVwePHzRPsfVR34ftZdp+s6RqyhtO1KC6J39MNR/8AgWocnHJGXIuFlwZMX1xITOhGxFPEZJpaOLK2v1YFap/t4q1/WuKVrD7+2G0rKf7eKrCPwwJW06++FDVKb038TirRrTrTxwJaoCad+3hih1O2Kt7bV64q3T8O+FWuIPzxVaQPffriqwjp28KYq1x6nv2xRTXAeI6Uw2l//9L6HONvGh3GckRu9G4D3pSm2SWl4HevUb4oXKPHtiEKnE7EDp1xSvA6Htiq6g+fvilsDt95wK14+3QYquA2pXp2xVeB/bhVUA3FcVXKv04ob47n36jFNrwDtiUN0xW26YodTFW6YotumGkW7FWLecfO3ljyBpI1nzVqa2FtKStjaoPUubqQfsQQjdvc9B3ODyHNydJo8uqnwYhZ69w95fGHm/8A5yB85eb5ZbPQQ3lDQGJUQWzcr6VfGacbgkfspthOM9S9toPZzDh9WT1y8/pHw/WwCwtXnkaaaVrmdmJlnmJkkr4s7VJO+QlQ5O94IwFAV7mdWFhDtzD+Pwmg9j9OY8iXFySI5MusbaEOeKnid15Ecq5UQeTh5JHqyW3jjjAaFjGy05SL1H6sgYuJOJlsWdaJ541fTGWHUK6pYCnIOf3yg90fv8jlkM0oeYdVquyseTeHpP2PZNP1Cz1W0ivrCcT28nfoyt3V17EZmRmJCw87lxSxS4ZCii8kwawK6mFLRxtK2n+1iq0j7sCVnGu+FWiMVWcdvD3xV38MVdv06jvirh92Kt0xVaMVd+quKra+O/zxQt8dt/DFVnH3xpX/0/oi1GNc5J6NsDauSVvj3psPDGkL1Fdh098VCoAab7UxVeB0p364pXbU98SrqbYFWGta9xTFVw8e+KqijpU/RhSrKMShVHTFiXUxW3e+KG8VdipbphpDf8MaVsDDSvOPzU/M7Q/yo8sPr+qoL7UrstB5b0ANxe+uQKkE9VjStXbw2G5wiJkeEc/xu53Z+gnrcvBHYDme4fr7n5lav5j8wef/ADHcea/N1899qV2SEiqVgtYQfhggjJ4oi9BTr33zIMRjFD5976ZotFj0uMQxih+OfeWWaPp6M3IvQCnQUPtmLOTkTlQei2ECx7gfDGQrAGpqOwI6/fmOd3EmbZjp8aOEAjUbnelaHvXKjbh5SR1ZVbWCng/wqqjZFBA/pkC4cslJqtoFUKqAsKVoP86++Bq8S0fHaySqFQcgN1Wn4V64CGmUgE50m9utBvEvrUMYHIW/tTssqd9ulR2OMJGBsOFqcMc8eE8+h7nt0UsVxDFcQOJIJ0EkMg7q24zYg2LeZlExJB5hfiq3/OuBLWKXD/bwodTAlb9JphSsI8MCraeH0YVWkfrxVqn44q6m39MCu3G2HkrR6+GKrfbGlcfHtiqxtvlihrb28euKX//U+ivEDYGo7E5yj0a5RWgP+3gQ3x8OvbwwquCjf32xVeo+jwGKrx1+WKW/n9+KrWOxA3p3wKt8Nj7nCq9QNsCqoXFVYDChUwgMHYq2AT0BPyxVd6cn8jfdgRawg/LFk7CELxTv0GFV0stvawXF5eTraWVnE9xeXT7LHDEpeRyT4KDidgoBkQBuTs/Ib8xvP+p/m7561DzPdrJHoluWs/Kum9rawjY8NunOT7bHuT7ZmQh4cfM/ivg+m9l6AaPCIdTvI95/Z0daxpAig8TShqdz7gZSbLsuLdn+mzwRRrWJG5AVJPw8aVFSP1V3yiQLVkEub0DTZEmVSWCqep4027Cpp934DMeQcTISGY20cRVGgV35bPKnU7bclIyunElI9WS6enosC4PqdAx2NPZaD6TTbAQ4eWdswtokkRZSnwufhLDbpWnKm5yB5uFKRCbwwKQQyryNCWG1fpwNRmqS2QMRavw78h0FfEeGBjx7sn8m3BfTriwcjlpsxVB/xXJ8Q+41zK0xuJHc6vtGFZBL+cPtZbl7r7axS19GBLeFXeGKFpB7bYGSzoMVWnw6nEpWnw7Yqt7/AIYbV1MCtb1Hbxwq1irXzOKtVxW1hr2pvipap/TphpD/AP/V+i3anf2zlHol4pStMUtg9QfpxRbfhXFW61+eKV+9fnviq7t/HFVtB169sVbC+HTtiq4L9/jiquoxQqDFiUh80+a/LnknSJNc81atDpGnoP3Rc8pp26cIIR8cjV/lFPHDfTq26bTZNTPgxxs/jn3PlrW/+cpNQv5Wt/JHlIWsJbhHqmssWkPg628RoPkTjKJ6mvter0vsoOeefwj+thlx+Zf5na0Q+oeaZ7aKU0+q2Ma28f8Awgr+OUyo+btcfY2jxcoX5ndXtdU8zxj1k1/UqsNmWeRiPciuVEBMtJgO3BH5Mw078wPPenGP0dblvUC/3V4izKaeJIBFfng3HIuDl7I02T+Gvc9K8v8A546XJNFYecLI6HdPsupwAvZk9uYPxJ89xlsch67un1fs/kgOLCeMd3X9r3m2khuYILq2ljubW5QSW9zEweORD0KsKgjMgG9w89IGJo7EPnH/AJyw82v5e/LBPL1pOYb/AM93gsH4n4vqMAE1yNugf4VrlmONzHlv+Pi732c0vjanjI2gL+J2D87NNMduOiqFHJ3FaAD3/VmVIcT6FI0KeF/mZ+b9/p0smgeWpkjuWDfXNTADNErdRH+yG9+o65utD2dEjjn8nifaD2knp5HBpyOLrLnXkPP7ngui+d/NmhatHrmna/efpJSS7XEzzRTAmpSaNm4sppv09qZtsmnx5I8EoinitP2rqtPl8aGSXF5kyB94L9OfyY892f5g+X7PV0hSG6UmHU7MsSYpkA5gDb4T1X2P38V2jozp8nD06HyfT9F2jHW6YZobXsR3SHP9j6PW5is7d5ZW4RRr6ilypVVApWvRQB92awRstRuZ2fFP5rf85f3GlahceX/y5t7K8lt2aPUNevEZolkXZljhPFWoR1bY7FTnTaDsHjHFmJ8gP0l5ztPtzHppeHhAnMcyfpj7u8/Y+dfLv/OQ/wCdXlrzQ3m6Lzld6jfXkVbrStXX1rC6tS/JV+rmiotfsSR7rWtWGbrL2RpMmPw+AADqOYPv/QXQDtnVifFOVg/wkVEjy/QQ/YL8mvzW0H84PJtn5w0ONrRxKbLXNFk3lsb6NQ0kJPdSDyRu6nxBzhNfo56PKcc9+oPeO/8AX3F6LFmhngJ4+R+YPcfd9r13nRGFKIy7/wCZzC5M6srvJcn+5jWYgTSS3jcgneqvQbfI5bpj6j7nH7TH7uB8y9GIzNdM1TBStYKW3UwgJt2BDWKVNgPDAyCnTqMKWiD06b4Fap+GFW/wPfFVu1aHocVaNf7MVW/L7sVW+AwKtPT5HCrW+KH/1vosDU0zleT0Qb5bH/J74FVAKU/jiVbYVH664pbFBSpxQvH+ZxSuHh94xVo0r3P8cVXjf5eOKqoHQHFBXgUxQS8i/OP84NK/KXRLaQwR6v5t1wMPLPl5mIVwuzXVyV3WFDt4ufhHc5OEDM0P7HYdmdmz12ShtEcz+geb8/rm58x+fdefzN5x1aXWdYmrweQ8YoEr/c28Y+GJB4KPnkpSjAVF9G0ukx6THwYxQ+1num6OFVB6YG1fA09j2+nMWU0yyBl+mWfCUEw8WUn05G+E7fs7+OUyk4+WW3NlsOn8COUcifCSDSq7nv8AOu2Quw4JyWjUtBKWANaDiwRSBUeI3+WRtiZ0lGqeXjNDIDRF3Lr13psK/wBMlGVNuLU0Ul8j/mff/lNr1vYaozXXkPWLlI9Uhdif0e8jcfrUA/ZC1+NehG/XMzHZFjn9/wC1h2n2PHX4zOG2UDb+l5H9BYx/zlzr51T819K8vwyrLZeWNAt3UoQyPJqNbguD4FONDmXpwCDLv2avZTTGOmMzzlI/7HZ8afmF5mufLflWaGwjf9Jak3o27xryZajcgdeXYfec22gwDLluXINntDrp6XTkw+o7DyeDeTPy2v8AzFKdX1uOaOGWUvFA54NMwNWZqitCdgO+bnU6uOL0x5/c8b2P2BPVk5s9gE3XWXeT5feyrz7+Teo21qNe8v2DXEcSD9IadCPiMfaWNR1INKgdcp0vaEZHgmacvtv2ckP3unFkc4j7x5+T2n/nELyv5x0/W/N8mp2Vxp+kGK1jjs7mIxh7vdxKjN2EZoaV6iu+2a7t/NjlCABBO/LoP7Wz2c0uo0sc3igxia9JHX+cPhs+xPzW8g+c/OPki+8v+UbmGzv9TiMc88jlS0JPxxbI5o4qC1R4Drmj0GfHhzCeQWB+PsdpqMnHinCMuGRFA/f9j58/Kb/nBy65Wes/mXcq0VjciWDytbghLlYSQhunP7JoG4IdxsTm71ntDYMcI5/xHp7nmtN2RgwEHKeMg8h9PlfX4cn0P+b/AOQHl7z95cex+pQWWs2KFtC1S2jVDbsq/CilAKI23w0oR2GarRdpZNNPiBsHmO/9vm77KMWuh4eYbdD/ABQPQjyHWPKtnx7/AM4r6/5s/Kb8/Jvyu8ywGzTzsjafqunuw4NeW8TS6fdwt0PMKyVH2geJ3GbztuGLV6MZ4b8G49x2kC83oMeXR6qWmy85D4H+bIeUg/WSadjEvFeoJXemw6n2oc4gh3oG6J/L+X6xrursN/Ts1Dn3L7DLtN9R9zjdrCsUfe9ZkVYonnldYYIwTJPIQiKPdjQDM07B0Q3NDmwPUPzJ8jac7xvr0d7MmzQWKNO1fCqin45Ucsfe7DF2XqcnKBA89kkf83PLQI4WOovGdvU4oPwLZA5x3FyB2LnPUJvZfmP5VvGVGnuLJn6GeI8R82UmmI1EerTk7K1EOgPuLMbW7tL+EXFjdRXkJ39SFgw+mm4+nLRIS5buBOEoGpCir4aYrSMDIFZSuBNrD1+f04UrTgVwwq138fHFVpP6sSq3FVp77V98CrD/ALWFDsVf/9f6JKSdumcpzehVB32qT1GNJBVRtt08MVX96Yq3TtvtildTFV4Hf78Va418Tiq8D+3FVVRTFBSHzb5q0XyN5Y1vzh5hlMekaDbmedFPxzSH4YbeLxeVyFX7+2EAk0OZZ4ME8+QY4cz+LflJda/r35kebdY87+Y/j1TW5Q0FkGJjtIF+GC1hr0SNdgANzU98yclYo8IP7X07QaWGlwiEf7e8/F6hpGni29OkRZid9iwBHsMwJytunK3oVk68CWHpMSGENKh6eBHYfTTucppwpizQ3ZbpEthKPWgmgmhFf34bkCwPimxPyyEo1zcLPxDZltuY3qnDgWFWcA0PagFci4MrVo4EMo9P4VUfu+wJHtuSMSni23RBt0NAfirXem2/UEU7e2BiZPnP84NKjhsbtzEoVo27clNR+v55m6WXqek7HycZAfKWiXV3qs0t5fXk1/dBEhE8zl39OFfTjSp34oigAdgM20gIihs7KcIwutufJP4NHtry8hNzAkslspMTSgNw59xXsQPnhGYxG3Vxc0I7EgbMpt9KhibiFDg0ZvhoFPcqfn18BXKpZCWsPQdN0q3nsyBEAFXkQ1CoLbBj4V9vFq9MxZ5C45lwyt6z5RsIYOAQiP01qvPoxJPb7/kA3iMxckrcHWTJG/4/H6numjW0ZCM37xafCCPbqV2Fabnso2ysF5/PLp+Px97MuMUadBGHTlSgBK9ztsR4EdMk4YslJri3haoZQSqnkcFuREl5Rqf5Y+StX846F531PQYbrzP5WLfoHVBVXi5AmjU+1wryWv2T0y0anLHHLHGVRlzHe5UpCXCSAZRuieYvuZN5g1i30mzuLieX0hEhJ5UqNq8fxzEPNt02A5ZgBgvlD83tO0Xy7rV5p6rf+atYuxFZwuh9C2t1FTPK3RjU0VB1PXbL4ROO+8uXr+xJ580RLbFEWT1J7h+th2s+YvM3miWVtc1a7vIl39Bn4xJv+zGtF+8YOfPdzdPosGmrgiAft+auYnjtIZYIeAXjz2FSvTf54E3EyopvFBDcRx/uijMB8I7+HTsci0EmJPVkNtpxCiNugNaDpkXGnktMYoLuxlW5067msLpW+G4jYqafR1+RwHyaZcMxUwCHp/lrzzLcTJpnmVEtrpiFttVUcYpCeglHRWPj08cux6jepfN0ms7N4Bx4tx1HUe56UQRUH6cyXUgraYGVqZGFK2njilaR+vpiq018N/HFXb9/pGBVlT/TFWj+vriqw/dQ4VW09vx7Yof/0PokDT6M5R6JUBO3bFBVVG3uMUqgqPb2xpLY9xiq8eP3jFVwBA/hirY64quFfxwKqjEMC/Pz/nLbzy2u+bdG/K/T7r/cX5UCaj5oRD8Mup3C/uYXPf6vEa0PRmzLwRoGfwH6f1PXezej9JzEbnYe79ryjQLa3txb8EG2zHYcRSp6fhmNkJkXrZbh6nazwRQJKrlUchWFQGPLvQgj8PkDmPRJcOVk1T5O/wCcmPzL1/QYtK8v+X7t7B9fhvItVuIWkEklvwEXAUO+5pvU+wzouw9FDITOYvhqve877TdoZdFhhDGaOTivvAqtvPfm9t/5xJuNSl/KbSxqx/dxXdzDo3NlY/VoyADsX41bl8Jof8nMPt+MRqTw8yBfva+x55JaGBnvzr3dH1jFMGBkUu3EU4geHsTU0zR8LlyFPl780f8AnJ5Py8/MXQvJMehvrNpObdtclhkEVxGZpOMaQLRlLcdyrj4iQOQzeaHsU6nDLIZVzruNd7g6zX4tJlhikLMxz/m2aHvfZkKmaJZGjdXkVJBFMvGVOQFFcAtRgNiATv8AZY9M0VN0tjXd+Px9ve8M/OeH/nX7yQMCVjcsRtX4a75dpvrDvuwz+8fFXkqJhZxyiq8682puST+ObrNzp3svot5t+ZH5raj5M1qLSNCs4GvJII5ruecc1CMf7sp/lAHeu3bNnoez45o8UyaeK9pPaCehyRwYogyoEk/dXmOqH0T/AJyPg9eRde0Ce3tgAYJrKQSlRsCHRuJP0dtjluXsfb0S+brcHtljMj4uIgd8Tf2bPedB/wCcjPy4uYlMuqNprK+0N1Cyc+oEjABhRjvSvjmtydi5wdhfuLsMftDocu5nw+8EPojyh+ZvkLUI4HsPOGkXMLqpEguo4y3JV+0JGUjpQg+PvmszaLNA+qB+TdLU4c4uE4n4h9B6H5q0e7oLLV7C9IUs4t7mGXoGcg8HOx475hnFKPMH5Ouy4Sdwy99Zh4hZJ4gDujPItCw+0RUilRtQbdMi0DCedJPd+YdPtUaW61GzhRAWEklzCgPDYmrMOlPnh4SeQLkRwksLP5m+RZ7210Sy83aVf6vdzG2t9Ps7pJpHmHxMn7ssAaU3JplktNlAsxIHfTKELPMfMdP1PB/zg8zXOoXul+XLGQmbVJT9bCtukCfExHzrjggN5no9d2PphjgchHLkgtOso7SGCMKI0FEVB8IPhSuRJJZZspNskutRtLc26jgWfj6lG6UPSg6jEYyXCgCbLPbdmubRIwOYmo3pRipIp7+3Wm2Vyi64yEZWn0FkhRa1jZKKCAF7bGu+ARaJZSGP+YfzC8p+SlebzBrVvpduGCJJcNQyyU+wgAJdj7D5kDMnDpMmY1CNsZgRhxzIiPNA+R/z2/Krz7fXOkaH5ptYtVtkEi2F8Vs3mUnifS9VqMVP2gDUddxvlmp7L1GAcU47d43cOOaGSXDCYke4Hf8Ab8HsUmmCdDE60A2Ioe/UEHNaYsxmMSznyhrM3L/D+oSGSWFSdKumO8ka9YST1Kj7Ptt2zIwZP4T8HU6/TAfvYcjzHce9ndMyHWrT7j6MDJbTritrD3qB9OFK0j8cVcQKYqp9yPuwK0R12qcUrSOm304oa/z6n78CX//R+iNT2zlHoVVBXFKuBTauKV5FemKtgf7WKt16/qxVeP44q4ffjSqi+PXFVl3qFno1jf61qDLHp+jWs1/fMxoPSto2lYGviFpj0YiJmREcyafirbaze+a9d1rzTfyF7/zLqNxqd16n2i1xIXA9uKkL9GbXJAQiI9wfUtFgGKAiOQFPYtEictF6fGkXQ9Adq9Dsaf59s1ky5U9huzgmKGBmkNCwPM/zd6qx+yT0J602G+UxG7ikEnZ+cn57eYF1n8ypISzKum20WnNcI6hY+bcpBHyIVQAaHkfckZ3HZOLw9OD3m3zv2r1AnrhjHKEQL/rGy/Sb8mdHNh+XvlaO2IkibT4nEvNGHGWrKRJEkSkUPw7AHsp6nkO0Z8eeZPe9ZDhhhxwHIRFcj9wAPvA+L2IGZIpU4iOHgeCmiMPcktHT7swwGuVEjff8e9+Vutta+b/+cpjHeT+tYHzZZ2gBA4H6jwZVEzS+mTyWm0iE/sntnbYQcPZ23PgJ+by+p4c/bIBO0SB/pRdfP+x+xVu3wtxAAcsWQg9W67EBhWm+1fH4qE8EXezsk3+Px+Nngn56sV8rapOWKRC3lbbcn4T+Nf45dpBeUO/7EIEzfc+VPINlXR7dyac4QfY7VqT2p45ttROpu6magHzx+dPk6/vJz5isbf1hYoY7uKIEuY03LAd+Hh1pm97L1IA4CefJ4P2v7LnmrUYxZiPUBzrv+D5yjkjZCKhx9pDWh5HYkEdaDsc3j52CCEas1siRIJVogqCEDFCTzpv1PLAkJpbTxOziJPWEgeQj0+VKhnZ2BFKL1qO2LIUibK2tl43ETS2plljtpvqLmKUiQSpI1BQHZxTv1HfCTexZR23Br3fFPU1fVFgaQeYNQMqLwt7cGZwZP3aSD1GYlKCNGodmoKZHgj/NDdHUZQNpn7fx0DGrm8e4jET3E83pyeoscsjsoYAivxEkH3yYppllkRVn5lnn5W6X5j8zeb7DR/LoGnzOyz6hrSK9LSCNgzSsY9wTxCqBSp+WYXaGWGLEZT3HQd5dt2JhzarUCGOh1Mu4d/6AOr7atbs6x5/1W8kqbbSkisLUbVpQFqAewHTOLyR4cYHfu+y5PRir4/NKPzw/M+byBpEFrpKs2uakjw2ctRS2+GpmoKkkA7eJzK7J7PGpncvpH2+TyPbPa35HBxDeczUfL+kfd974avPzT8+Xd5FczeaLxXhIMaowCqO1VUAff7+OdZHR4YihAPBz7d1spcRyl9r/APON/wDzkJres6sfLHnQjUp5QradryqsbEk0EE6bAt/vvgvtxA+LNB2t2VDHHxMW3eP0j9Lvuy+0smtvHk+obgjb4Ed/ufcOvasul6Xd6q8tPq0LOoXcigJZgAG2zncePilXe7fBESkInk/ISzPmj/nIH817TRZNUngbUry5EM8nH0rHT42ZpGjjXgOZHUqasSK1pneHw9BpzIDkB8S8fkyZO1NZwmREQTX9GEf0vYPzV/5xOvfJmjtrvku5ufMEFhF6upaZcqPrg9MVM1q8YWpA3KUBp9k5h6HtsZZcOQAX1HL3Fy9V2DDh4tMSZD+Enc+cSOvl8ntX/OIX/OQeuajqVh+U/ny/l1WPU4Sn5eeYJ/ilDxDk1hPMd5AwBERO6EFG2Ipg9u9lQhE58QqvqH++H6fmx7O108x4Mm56HvrmD5v0Ou7aThFcwt6dzaus1tKKji67ipzk5CnawkNweRen6bqEeqWFtqEQ4i4Wskf8simjr9BzMhLiFuky4jimYnojPHJMVp/HtilacUrafqwK0dsVWYVW+/0YFWmg7dDiVap7dqY0Ff/S+iH6znKPRLw1DiqJBqNqmm4rilep79fHFVQD+3FW6V64q6n9nviq8dPfFVRR0xQXzt/zlj5nby3+R/mG1gk4X3nK7tPL9qO5inf1bkj5RRn78yNLDiyx8t/k7DsfCcmpB/m7/qfm/wCVrM8IwigMo3rWmw6HMvUS3fS8NcO72zRVVYkQtQ1+M/sgbnc/RU/2DNbNcie30TtCQEINaFSKhf5qgGpNOwO2y+JyOM7tECARfJ+ZNz5O8z+YPzNuvLh02afW9W1hoUmMTzQxl5AyzleIDIFIoDRf9iM72Gox49OMl+kR/A975Zqez9Rn7SnjlE3KZ9RBMQOfFy3iB8Oj9s/K+jSWOlafasE9O2to46ICi1VQH4hNxyp2+JvELTPO8k+KRPe9hqcoMzX4/R+gJ1qVs0dnPwjflGp2jDAoeposRVVPzZj44IFrwSByRs8z+Of7H4/flVaS+Zf+ch9HhjCzz3/me7kuJmkFUEUjyNsy9WUfYlUqx2DDrnfa0jFoT5RDzOlkZ9qyl3SkT5Ae5+06WrCI16H7LGoAA7b7j28OnYZ54di7/wASy+cv+ciTHb+SNUrUEwsBy3/vKL9575kaIfvYu/7FNykfJ8/+ULJotEgjNSBEBQUGxWn3HM3PP1l3ucbgI5NAhvyY/SHF2Pqo3tUdutf7MEc/DvbjZCQ8w85f84y6V5iD6jo0jaJqirUhEU20jbf3igeG1V/jm20nbcoemY4h9ryHanYOm1RMo+ifeOR94/SHzXrf5HfmH5elrP5dk1C3QUS9siJUYhSzUC7gChFSM3uLtLT5OUq97yWfsDWYj9HEO+O7EbvQ/Mlt6kcumXMcDSHdraUekSk4CE8QAFVGYjp0OZUckDyIdfPSZ4fVCQ+B81G3t7qaeG1jsJZLkykR2QBMroTI6lRs3PZwPh/lOWGgL6MIwkSAIm+7qyLRvKXmjzHeWtloXlzVtTv9XiimsnghkRZUnJ9GV2I4NC9GNSRxcEDbK8mox4gTKQAHNyMOhzZSBCErIvu27+6vuL6M8s/84d+e9VihbzBcReXLa4QNNzKT3KgEEKqoaKzCoJLbHqM02ft/DD6Bxfc7vB7PAj97OvduX13Z/lt5Y/KvyfcWflbTja81U6hdyAfWbogEj1pO/QkL9kds5rUazJqZ3M+7uHuex7KwYschixxAj9p8yer568muWs9R1Nt/rl9LMrKdwqsVUD+GX6j6gO4PTZi+VPzevb/zR+ZF/pkAEskHoWemRJ0NV5FxvsCx/DOq7MxjHpwe/cvkftHOeo7QOIdKEfjvfzesaH+XGiad5b1CwmgW6L27/XrslSWcr9upBPwt0FKCmYmTWSlkBD0Gl7Lw4sBxUDYNnqfP9T518j6tceW/Ovl7UbVpHmt9Tito+LMgIllEZ5UILBu4JAP7R7ZtdRjGTFKJ5EPE6DMdPqYSHSVfM0/Yv8wdLur38vtfWCL6zOdKmd4VUOSVWpC1Ug7eC7+GcHpJAZo+8Pd+JUpR94fmR/zjP5msvKf5safc3jJHY6pHcWMk78Qy8quoVqoASRQ+Odn2tgOXTkDmN3juxMohqTH+cCP0h9y+Zf8AnLD8qNKvZ9DBvdfRVjVNS0yNWg+MkSKeZShjPgN857D2JqZxvaPv5u7ydpafDMDjs+W9fF8BXev6PafnBpvmXya7Ppg8zWOo6NZ3MTKEmluU9WIxIeQBNd03NajOnGKR0px5OfCQfk6PUZ8R1wyYTsZA8up+rZ+9kjc2etSSdhWvXtX+JzzTo7+QolOPJcpCaxYndbe4SaI9qSr8X4rl+A7EOH2hHeMu8fczXLy69YcWTXhiq0gfdilaaUxVb/DAq3/OuK2tPt37Yq1QeGKX/9P6HE0G/wA85I8nomkavywRKUSHr9PWmSC2qqfxwqiFH4Yqqcf9vCh1Pb54Erx0xQvAxDEl+c//ADm/5pe783/l75Cgf91omnza7qEYOwuL5/RgLD2ijP35stBDaUz7v0l6T2fx1xT7zXyeBeXIS3pCIM1d2Yjiqmn3nI5j3vc46EXsmmKsbqr0IUJyUCm1K13zXz3apnbZllrDCwCT0VCBWNt0UVqNh9o9Ad98rcWcidwzHQPLOni/i1MWkLXrRmOS54jm0fLdAR+yW23/AMojtglkkRV7ODqNVIRMfx+Ovye2aYsaoAKjqQ+1TWlfvNPw8MoIdFlu0Vf6ct3A0bqhV1K8SobkOlFUmgX8Tkxsxx5jA28M/L//AJx18j+RPOl/+YGjRzyaxe201tp9rM/qW9ol29bkxcvjPrUCkOSU/ZO+bDUdp5s+EYpHYH51y+SJRxRyyyxjUpcz99e/m+g5WZY+PHnyFRyGzDY7/Qa/fmqkmIBL5N/5ycnCeUEtwOJu5Yoozv8AaaQVr3qcyezx++D1HYUbM/c8t8vwU0qNakKqUk6Cm3Svv39vnl2WXqd3m2mzHRtODcOG/qbLWgoa7fjmNKbh5p972HTtNWO3IETPxX92woKmhO/bsBlMZl0WWdnuTSDy+s8cn+jwkMzKCwrTcjt3rk/Epx5ZuE8yiH8qWpjKyWNtPExY8D1J6ioIpurN9GSjmI5MRqZd5QsXkPy3LeQ3d15f02W+h5rFqBii9QVAWgkK8lLAAj3y4aidcNmu61lnlz6+7dm2m6PbWMIitbWO3iSipBGoVKVrQKoAUg7lSKV3XKZS6lx55ZS2J/H4/ajbuzSCE0CuhJA4bgE+x674DJjjlZeB/nPdJa+VtRkDmKZLdnQgkHkV2B9qHLtN6sgD0XY0T4vk+RPK/OLy7YlagvEruUWu7VaoJ8Dm0y/W7qdmnybeavBoX5leYtW1Afu4HlEBHxF3anClRXfuR07Z1eKHHgjEdz5JqtTHT9qZckuQJr9DEvMPnvzJ5ivGmbULiytQB6FjBIUUUFAzcSOTHvXLceCGMUA67W9q59VKzIxHQA0P2lO/yp8uXPnD8y/JOgRKQBqUV5fu3xCOC1b1pHYe3H7zletzDDgnM932nZj2XgOfVY49xs+6O5fu+NMiuNNNrIPVimRg0ZAoQRQg/wAfxzzwEh66Uz4nF5vxy/Or8mvM35XeYNVvX0l4/KV/qs3+F9XUKFkWX96sPwtVWWpFD1pt4Z3/AGb2jDUwAv1gbj9LzfaXZ8sMjkhXATtXS+n45vACeTlzHxBFGCnoQabZsnSXZet/lHbPf/mb5QgtbX9Lahc30UWmacqowmmLV5NzrQRCsh27Zg9oGtPOzQrc/jv5O57KMfzUSd+4fr7q5v3gSIwRLG0pkMSBS5oC1BuxpUCvU55uXoSQSjvJ1xXzDqkO49WwSQj3SQfwOTwfV8HH7Qj+6ifN6Wf15kupWnAlbTw+jClaT1/Vilb1riq3374qt8PuOBVprue2Ku/r4Yrb/9T6Gdf4jOSp6JoDidsjySrKfw6ZMIRKGpB+/ClFDFVWv0YobAxW1wH0YoVEUuyooqzEBQPE4QxL8avz78xjzd/zkF+Yd+kvq2Wk6hHomnvUEejpsaw/CelOfPNxpo8GAd5s/N7fsbGYYogj8FN9Ct5FRWQq1GqQ6lgH7eB+7MHKbL05FBiP5pfmH5i8kaSupWfo/XWugvqSRs0br1ZOIoOR8e33Zl9n6OGonUrqnUdt9ofkdL4kK4rAoi3kGgf85XeerHU4rnW9E03WNKVl9aztkNvOoAALJKSyk7dGFPwza5OwcJjUCQe/n9jxWP2uzmX7zHEx7hsfgf1vp/yb/wA5j/lpezw22v2mq+Uy9Q97dwie3WgpV5ICaErX9nq2arN2BnjvEiX2H7XMh29pM2x4oHzFj5h9IaF/zkJ+Ump20U1l+Y2iNJOp4JNcei1eHqlaSBdwCNj4ZrcnZepgTeOXybhmwZK4ckSPf+vyer235geUHtV1BfM2kfU/sxXRvrdUZAqj4WLjcqcxzp8gNcJv3FicRPUb+aTf8ro/Ke2uTaXH5j+XFlZxHHCL6N3Z3bhQcCwJYUI+WWfks5FjHL5FhUeXEL94Z9+kLHUbWO70+9hv7SUn07m2kWWMlWKvxdCVNGqDTodsw8gIO+zdGJiaPN8hf85RXitpWhQhSPrGqwKu+3wkt9nx265l9nC8hPkXqew41GXw+9iHluOR7NIzUcvs969Cae3+fbBm2Lt9TQlb1XQbBCyNyVRFQkGoLDwGYGSbqdRk+16pYw8ECAs1dqt+yShXfxrxysF0+SV7sljaMngr8XrUuNxvTenjWmStxTE9UQqOJOSUNR/dk0r14g/iuEFjt1UwGqqrH8QWijiGJX+U1607jr3GSjKmwBNbOaNU/eMVNQCWr1HYMdj8juMlzapwPRvUmHpkU4KtKcTRTsdqeAGBGIUXyF/zkHrCxeXb225fF9XYkg7nrt9A3OZ+gheQF6rsjHwiU+4H7ngvlpK6Fo68QFe3iIahJqVGx9sz8pqZdid4g+QfJH50+W7vSfNd9rLJNJYasRKWZCFhLr8MRYfDUBf8znUdnZhPEI9R9vm+Ue1Oili1JzbmM+tbA91/c8lsbae+urfT9Pt5L2+uXAgt4FMkjbjdVWpIFak5nEiIs7B5vHCWSQjAWT0G5fpR/wA4z/klceT6eadet+Pme9jaM27DkLWB3DFf8p3AWp7dM5HtjtEZv3cD6B9p/UH0DsrsoaDFx5P72Qo/0R3e89fk/QzSV5JFHJuKAlaVr/k+/sOgGc9e7HMK5Kfm7yN5f89aPf6B5jsItRsb5aG1dASpU8lZGAA5Kd/HwOX4c88UxKBohx4yoURcTzB5H8d789fO3/OCOu3HmG6uvIvmfT7Hy9c8ZFstUWeS4tX/AGwroD6iHqtaN2JNM6bTe0YEKyxJkOoqj+p1Wo7IxZJ8WOfAD0IJr4vpj8jf+cY/Kf5Qka3Iw8z+d5OS/wCJZ4+AtUkXi8VpHU8Aw6sasfEZp+0e1sur9P0w/m9/v7/uczT6TDph6N5HnI8/cO4PpyRG4SmgPw0Ck9x3zUFvCG8ncz5wuST8K6bKtD3+Nd8nh+r4MO0P7ge961mSXSreuLJb1xStIwKtP6sUqZp/t4lXfRTFWjhVb9GBX//V+h5XOTIeib40+nGlVFQ/dhVEIKdsUqy/q6YqvB+jFVUbfPFBVMWKF1HVYNB0vVtfuWCW+g2F1qMznoBawtL+JWmHmKTCHHIR7zT8E9Dnl1O9m1K4JM2rXMt/ck1JElzI0z1B67tm/wAo4Y13bPouhxAChyfRuhqHWFlFeAA49AKD6e/jmoyc3bS5POfz00xdV8m6hzC1tFE9uSSOJT4iWI7ADp3PHNj2RPhyjzdD7QYBl0OSJ5jcfD8fEvgu3UNExI4l/hAbrnXB8lCvNbNIuycufLYg7ijDY/MUwkLTMLBNOllYvN6hujcD11bjIGlh9FE6EEcgK7dOuDccnIiIk/P7qRWo3Vhcx2Nx9Wja4ulgSSGIEIyiAQMnFiwO6nfYqfbCLGzKUgQD3/qpCXOnXMQ09qLbI7MYp0VaF4x6R5cegBArX54mVsTAijy/Y/XX/nFXR7vRfyf0yWS+jubHX7q61XSLeE1git7qSrBFJJWsoetT9Gef9uZBPUnaiAAfeHttNARww3BuzY/pb18HnX/OS10o1LybYNQV1BpixPwn01/aP07ZR2cPrPk9j2NXBfmPsUfLQpbRGvKiBnXuK7bZTm5uw1PMvZNCgaZWFDwj3d/GoP6u+a+Z3dLqZAF6Jb1jRBx4ns3Xieu/uD+GAcnVy3KYW7spLkGrEhl6bEdK+46dumEsZBEmUseIZqgbjqDXrt3B7jqDigRR9u6yVDAuad/ibb7q0+8YWEhSLgZQx4OxAJJBq2/clTQn2rXDbGYQOoSxFJCFCkj0o2X4QANzt2rhZY4m3wz/AM5DTONPvgsjFBHxcMQ25/jv/DNx2YBxB6zSbaaR8iwXyXIG0vTYzVTHbR1XxFOgPTL9SPUXKr0D3M81Py3Y61HHFfxJcrKyLNbuoZJFU1TmtCKqSRXKsWoljOxp1s8cTYkAR3HcJ75L/LHy1ok0N3Y6XaWl2xMT3EMYDDjWi8hvQdBvvkdRrsmQUSSHCOPFgJOKAia5gUafSWi2ENvGgVGWjAFDuBX7Qr881s5WXX5chLNbFTG6lmPNSdgehqBsPpyPMuHkNhm9pykjNHKgj4krtsdqDxp38csG7gToFUkRdx1qa0HU98WNIAvFBKsYIHLeh7nAWVWLXOBIp703RvevUZWkBL/KvJfN69hJaXAb3NAR/XJ4D6ka8fuPiHrJzMLo1pwMneOKrCK7jAlYQKdMKVPqcVdSmAq0cKtb4KV//9b6K8Nx4nvnKPQrwvXbCqqF+/rgSuFPpHTFK7p8vDFV4PfpiqqDvgVUBwsC8F/5yk8wjy5+QP5hzJKYrnXbaDQbJgaEyahMqNQ/8Y1bMjSx4ssB538t3M7PxmeePlu/JLy9D+9iWNgqqP2v2qeGbfOdn0PSR5AF795dhmZUZXIVqcmUkfIn9eajKaLsMhFJp5o8v/pTSbuxuFMkc8Rjofi5c9uR+RI29slps/BMEOFkjHLExlyOz8yNY0e68t6/faFqSmG60q69Jhy34cgVau/VCDndYsgyxExyL41q9LLS5pYp84n7Oh+S2MowhlZk+0pchiWoCrFuPjSuXW46NgkhNvc1ki5fDHIoYrOeql12I4qyqSPfG2Q5FMrY2sNuJPQWd5gXjkjZkkCgH61bcd14sKMCRXtXAS2RAAv8eYehflh5B8zfm55si8maM7S2dwqv5n1YgCGzshRXmPgWQBU4ivL6cw9bq4aTHxy59B3nu/S52h00tVMxv0j6j3D9vJ+2mmaRZaBpFhpOnWkdjpek2sdtZWUKhFjjiURoAo8eNTnm2WcpkyluSbL19gnb4e58Nf8AORSs3nLydG0m0lzM4qTQKI9gBmy7NPom9b2Z/dw/rfoZX5XhVIIFVdigLU/rmFmlu5WpO5L2vQYjGCo5KtQCgFa7dKHtvmCTbo9TKyzROHpcT9utQo6e1D4jFwOrZk9NQCN+jLWh/HpXw6YWQFlYs4WtWLcRUIftfIjoTiz4LTnTpTIiOwHx7cf2iK9KNsfvxacsaOyNacM/7r42p8I2JJ+TbinzwtYj3pXqRKwsaFaf3Zr8NepoT06ZJsx83wZ/zkHeA6ZeUTkGNQf2jv3HtWubvsuPqeoieDSzPPZhvkyQx29vHQlI41oB8h0Pt1y/VCyXLjQxgPdtPUPHDEHbd1eWuwZiKUHcfPNZLm4eTYkvQtEeCKd7VpUUW5/fRbVBNHFR7jcZVIHm67PuLD1jShUA8uEexCLvufGuVSdRmKeQykScUBBZvhZup+IYQGkjZmFlIfTPEkBaduvcE18RQ4hw5iyjZ7iNR6hIUUBNfADr+GSDVw9H58f85a/85DXvlGKPyH5E1X0PNN5Gtzrmo245S2FtWqRgnYSTgb+C/POh7E7LGc+JkHoGwHef1D72rtDW/kcYEf72W468Me+u89Pm+wvyu1HUdZ/LXyLqurmJ9S1TQbS5u5oHZ42d0HxKzbmopX3rmg1cBDNOMeQkQ5cjxG++j5bi2X6DSPzVpTc6mRZk++M5ThPrDXq98Evg9YzNdC1ilrxwJW/j4YUqZNeu/h4YEqfhvhVv2I28cCqZH04q1X3wq//X+jnhUVzlHom/lvTFLde9e2KtjwxVofRUYqvBIONKqqfoI74qrjFgXwx/znnrwg8lfl15STebXden1S4AJqINOg4IaDqDJNmw7OjeQnuH3u27HxmWQnup8O+W7ZyYkYhgxq1aduxPvmRnk+haegNy+hfLloypDxjDBTQdjQjtmoyyTkl3vTDpBuY4wyBOKgPUV+JgaCncDl9+YwycLrzlALwT84vyAtPO1vLe6ZGLLzDZrIbC9QDhMwKtxuKCpUitD1Gbzs3tU4DUt49R3e50/avZmLtGFn05Byl+iXePtfCfmP8AL7zp5RurvSdY8vXiLbXRhguYkLxXDoDIBFINm5RsfpHjnWYNZhzRuMh311+Lw2p7I1enkYmBIvYjcH3JRbaF5j1u6K6foWo6ndDg0qwWz8ixXiGpxFFdBsf5hls8sICzID4uPj0WozSqOORPuL3T8vP+cdPzN8+3Gnzfoibyzo8skQvfMOoxhAsSE8ZkhJDvIoBVlIAPc5rtX2xp9ODvxHuH6+jtNN2HmnRyfux58z7h3+9+p35R/lJ5U/Kfy9+hfLUPK5uHEmu6zLQ3N3PTZ3PQKKkKq/CAfpzjNdrsmqnxTPuHQB3sMUMEeDGKj9pPefxs9bu/3du1WFFXiG+jbrmtlJnEWX56fn5cet+YflOBqFYRO8Yr0YgCvj3za9nD91MvadmgRhD3n7mZeXJQqoindAKHoCR/k5h5RbfqAXtOiyqYUYULO3xAE1365gmO7o843ZsqhIwQBUCpQECteoAbbJOBdlCXkiiPoKfaC8T23pvWv0YKpuxRNoSOVCVjLqvrHl6Q+Ko9lO9MW4xrdN4ZOIVAV4bipLJv9IphaJDqndpIrIYmYbilOSkj78XFyijbH9ZuY4llqeWxRG2pSlSdjSgGScjDEl8Af85AX6zW0sa/EpqdtiSPYUzoOyo7vR5fRpJeaV+WTSysZOfxemhCjboBQVyefmXLxD0h7npE7GOByCGI3WlamtSB2qM1sxu4mWL5B/NfzV+YP5b/AJoP5otJZH8v6wsMSwyM8trK8DMWRqUMb7/BTttvnT9nYMGp03hn6hfv36vE9ua3WdnauOeG+GQAo8rHMH+bLu8n3p+UX5r6V+YHlrT9W06txKEWO+tUPx28oqOLg0Ne4r2zndbopabIYke7zdjCePVYxmxH0y+YPce4vetPuILr0+UckRFVYOCBy5UBNPcDfMKQpx8gMfNm0Mw9JZKmNTQcgtR1NVYdxXp4HAHAPOnkn52/mXp35aeRtW8wTXiRXaxNFocMo4i4u3HwoqHduPXb6czNFpTqcoxj4+QZ45wxA5cv0x39/cPeS/Kn8mfyl1/89/PF4ddvbp7R5TqHmjzLJG0jGKR/7oufh9WQAqgpQdegzsu0NdDQYgIAXyiP0+4Oi0mllrJyz5yau/fv9N+Q6dz9r7SytbCytdNtYVittPgitbW3GwSOFAiKAKdFA6Z5/OybPMu64rNoS0m9DXtFnKkLFdKrsetHqn09chA1IM80eLDMeT2EihI7g0zYPOrcCXfwxVYfuxZKLdfn1wJW9z3GKru22KVM7fRihqvz64Uv/9D6N17/AIZyj0TZ8B1xVofSKYq2DX2xVcv4HFKpStMVVVHauKq4GLAvy0/5zh1xdR/OLyp5fWSkflXyvG06jf8AealO0527Hiq5tuzo1CR7z9wei7EjUb7y8T8s7pGeJABqW70+Q7ZHPze3wVT6M8rBDFElAjEfaPUbbnwzS5mvM9dsYmf0Ca0G/Eb7ChO/gAcxRJ1UyBbME00cgTGaqoJ4/wCQOLjfxU9MIm4RyKN35Z068DC5tYrhWKs/qorqHQVU0IIJoAQfnk45iDYLKOokNrUbLydpNvIJbfS4I5WQxgRoAeJb1OCsOh5fEuTOeXeznq5kbyP4/G7PbKyRYzUB6/FGwFBXuw9/5hlJm4E5Wfx+Pcn1naKnJgeq0/yQD2U06H8MjbTkkl+qMFhkUqa02FO9e/vkCWeIWQ/Nz88ZDH+Zvl81MqelcME8CStSO+bzs4DwJPZ6I7Y/izfy/PI3pmMkbBVL7jYddupzEyhy80RT2jy7fF2aiSStEADuNj2pmDkjXJ0mqx/B6F9fMkLqtnK7p2IU7nwrlW7rhio2SGLzao0Dur28luqE834NVSdx9k9MkA7CGASHO1S01yyab053RTKPhZgSanp1FfxwkFcmmmBYZLFLaOFMEwYAkuolIB+QNciHDlGY5j7E1W6qpZSreI9Sv0dMkHGlGj+xhHmLUkEE3qbEj4Wod28KUHbLIC3P0uM2Kfnx+d196y3CV+GnwGtQCOtM6fsyFO17Tlw6Qg9U68srXTLCtfhhjLt4kKPHp1ynP9RczDtjj7g9q0FisMaliWFDudhTt7dM1uRqzd6beZfI+k+cdJvdM1W2juNP1CLhNyPxEL8Q4sKEMGBII3ByWn1UsEhKJoh1eeOPNA4skeKMtiPxy8nxddflp+a/5MeYv8R/l7qF1e6fG6sHtgZJCjNUreWxFJUFKkj8M6vHrtNrYcGYAHz/AEHo8Zn7E1nZ0zk0cjOHd/F7pR5SHmN3uHlH/nM+8sIB/jLydzeNljuJdMnCNVCFdzBNTiAKtsfHwzCz+z174p/P9YYw7dxzFZsZietfqO70vUP+c3/JUWm3Euh+XtZ1S7SRYzb3CR28URmQmOSduRJjMo9Jyu6tv0ocxoez2cyqUogfP8bbpl2ppKscUjttVff0vYvnqZfzL/5yX886dNq8S3UlpFzttLtFmFnYxU5OkbzfBVf2mDMZO22ba8HZmE8PM9TVn8fYwx4p62UTlqMI77XX7T5730fpf+U/5Zad+W/lmx0a0Ba7KifVZStDLO1C1Cew7ZyGs1MtRkM5fD3OwzZQQIRFRHL9fxen3benxYLTj9oN09tx3zClJrgGP3zmIxXAofTmjkYHqOLA1B9sgdm6IsEeT29iGYuOj/ED7HcZs+bzIWfhgS4/fioUz8q4sgpt9wxSFnjTAq76a++FVpGx8cVW7+GBNv8A/9H6NVpTb55yj0TfcV+jFWiP7cVpeBX59MUrx49/HFVwBJPtiqsgxQVcfrwgMC/Ff/nJzUm1L/nJX802edZV0y8tNNiVeipa2kQ4HxIJNc3+ijWmj5kn7XpOyiAAPJKfKxEJVw1Fc8eFamvUbf1zE1It7TTkU+h/LNQnwcitQoPYV61Pf55p8wZZQHumiMBGnLizqf3e9Gou1DypWo75ryXS6gbs1tLlgKmQ0DfZFa1HQ/F37Ed8HJwZ4wm0TLPvt6bGnEkgA1rQHtvuK9MbaiOFFxLRd40ZW2QbEmh+e/iKdMbQUZbyhGMci8mrUdjUeI2J+eNsTHqnUMqqNjy5VNff3PQ420SjaQ6x8SPxHIBTQdTX+mBuw7F+Y3/OQs0ll+ZnltmrV0uC5BrtRe4650fZI4sE/g9Rhy0cFf0vuDI/K+pK8VukVxwdkAdjuPEbHMXPjo7h3mWFh7doep3tq6GO09VKAuAKgHMCcQerp9TjjLYmnplnrVxMQf0TKuwHIigB+YzHIp1k9PGP8YThizglrbjT9l1qa+3tgtqG3Iok2NioV5IERgQeIG4r4Hri1+LPoVYaNBNz9CSWF1HwMBUfM98Jix/NEcwCl88F7Z0pdIVINSev302OEBmMkJdHmHnK/uYraSN+JdiQlCeR+YPc5kYBcna6KAuw/P782buSW4uh9hwppEegzqtBGgEdt5CMVDueo+UZOWkaeXOxt4iadyVA6ZrtSPWXZ4STjjfcPues6IiGSGOrAEgujGhFP9qlMwJlOXYPadEsrOQSIqcxFTlUV696fPwzDMjduk1E5D4p/JpVtKwEsfLiQFbiaHb6OwycZuKMsgNnl/mP/nGvyH5zunvdS08W13Mf3txp5+ryS7EAMQeLA8mBqP2s2WDtjPgFRlt3HdxNVDTajfNjEj38j15172BaZ/zhd5fTVjIfMmoCwhVQsdUW4cqAOTSCiurUHNCu5GZp9ospjXCLcH+TdFjqQEvn9562+x/y4/Lfy1+Xdhc6d5bsFs47qT17yRjweZySebgDhtWg40FM0up1M85uZspzTEgBEADuHe9XQqFZq1rTr4ZjW4pBU54+UTNQHkKEfwyJ3TE7sQ1SAmzkNSf3bE7Vp9GQcuEvU9ispPWsrGX/AH5bQtt7oM2UfpDzWQVIjzKIxYtHFKke1cWS0/PAlYe4+/FVw+/FVh8B1wq1ir//0vo2B3P0ZyhehdQGgrv44pXAe+KWxtTb6MULh92KVVev8e2NqrjFiUVbIJLiCM/tyKv3kDJMH8/n5iay2s/nf+cd5KVMknnbV0Za8qejOYloe+yZ1WLHw6bGP6Idx2Vn4pkdxp6R5OUTon8rjc0oQK9af1zUarZ7rSS9NvofRylusaxBvTLA8akksO5I8OwGaXILbZHieu6ZfhjCOCsCmykg0HfY+H35hEU6zLBl8c1Lf95VkAAZT8dfA0O+Bw+uyZ2VxG5CMrsTsJCGH0chufkRtkS15IkMpjkik4qtKcd1NCSB/ktT7xkQ4u4RJiT4KmtACV7e1FbcfQcKBJXjY8yNuIA2P9orixPJC6mqi3cg1cDfwA+eK4zZfmb+eIGrfmro9vGhmNvazuyjanxha0PjnQ9mHh08j3l6/Sw/uvIE/cyHy7oV+zRrDarWq+pUg0HapAzHz5Y9S7bJmgI2S9t0ey1y3aM/VY2iXcRoagke58MwZGBdLnnile72HTItYmUBIlBYKVLEUBr0oPAZQQ6TJLFHqmFxo2rsTxaMGtWFeINP8rrgphj1OMIB7DVVUokUSMhBXmxIb5bE5EN3i4+ZJTmwstVjhHP0pGf4lFTsT1FemTcXLlxE7WpyaFNcGdru+cd+Aota/sgmmSCPzMRXCHkHn/RtRisi0K25t4o2LSipkZiD9o+IGwrl+CQB3dxoNRAne7L86vzQ02dJbuS4uPVcr9ldqeA+jOr0UwQKZ9tQ48ZNvVfJLB9H0wVr/o0YHEkUAUdc1mqHrPvdrppXhjXcPuewaOvxgmpVCPhUdT1qcwMnJOSWz23Q7p/q6xwRN6khryIAA8T8jmDIkF0+oxi7J2Zl6bkRhgEIJCk1LCu+56eOIcCwyq1RhEgDgE1BFO/+fX2yHE4kyL3TuFVjagUsOfIPsCpGxNex9+hw8TSd0/gbgoG4NKUoRt9FRjbTIIkjlSuwr1NNx4b4sVQszKfhFK9uu2AsaCQaltFOhBAZGFSNt64GyJ3eg+W5vrHl3Qp6U9Syj28ONV/hmwx/QHSakVlkPNOck0rTilY22LJZ3r+GBLVN64VbIoMVWHfFVu3j3/HHdX//0/o6u4zlXoWzUkfrwJd+B9sVb8dvY4pbpTY7YrSsvYYqrKe2LEpjptP0hZEmgE8ZJPQAMN8ZcixD+X3UNfaD8yvPN3LP6sOo+aNZkMyE0Zm1CcqwJ3oc72GO8MR/RH3OLpdT4Ock8if0vo/yTr0avETOFAoHU1I3Ph3323zRazCT0fS+ztRGcRu+oNE1O2mQL9aQylaxtUU26bDOfyYyOjsTs9CsNaltFblHHLUdY/hah+/pmPLFbTkxiT5I/Pj/AJyb8waXM3k78v7hLLVIiG1nzVbyi4e0ANRb2/VPUYfbJrxGw3zouyuw4yHiZhY6R7/M+Xc8n272xHSS8HTEGf8AFLY8PkOnF393vZ5/ziD+Yv5h+YNO80f42uLzWNAtZoYvK+rXZYzfWKsbmFJd3dVBBJatDtXMb2h0uDFKJxgRkfqA7uhbewcmq1mCc8puINRkas/zh513/B98WOr82ROMrgrUMAZKfLkv4ZzBDm5NPQtk0dx8PFfUou/F4yakjrVen3ZFxTFdb3E8srFlBjQ0Xifp6HCicQAl+tXiJaSkE/CKmu2w8MU4IEyfm35rnXUvznu2NJDZ2cadagc5CWU0+/OgwenS+8va6YAUOoh95fQPli2YyRgKKj4uNaAjNRmls4uplQL1vTY3+AlOPKlFK7UPU5QC6fKQzWxLx8l5KKbAHYU/jhtwMgtMhcK7Big2NEAcr02Na1GLVwUi+UXEEuRXqaCn3jDbWQbVIrgRMxWpYVoCqt19skJUxMbQ9xPI1NmYvy2Ma7CgrgMrZRiHmHnKFrqzkj6EjkDxp8/bplmM0XZ6M8Mrfn1+cVpEn1gCOh+0KDam4pnSdnyd7q/XgKa+QTJNpOmNGR/vPGDXblQdvuzH1gqZ97kaeYliifIPatHmKExheFGASvh3rXb7s10xa5Q9c8uNG49QMVKVWQKfwr2O2YWTYur1VhmMbh3KmNkVaEtyJ471rT/PbAS4XJkUN3HEoPOoRhtux36b+HgcjbjyhacR3CvwarfEpCgHjU+HfC0mJDI7eRSgotezAkbfjhcYpkklKAKAPAFfvxtrIVi4A+wR3LdqffhYMc1m6hjt39STgtKkONh41wAFniiZS2XfkL5rt/Ov5S+WfMFr/cvcapYVrUcrHUJ4DQnqDxBB6Zt8uA4JcB6V9oBdPqpieaUhyv7tv0PXMpaGj/mcUhTPy+jFk14dsVa3G9cUtH7sVW/T70xVbjav/9T6OrTw69TnKvQ7O/jil3gD26YFb6YpXjcfPFVVcVV16bYsCv8AWFrHcXbfZtIJrg/KKNnP6sZfSVjzHvfyxeZbKSPUr/UDvDql7c3K7dDNM8nbb9rPQcJ9AHcB9zga3AceQnoSU08vee9X0B4hxS9t42B9N/hen+t3+nIZdPHJzcnQ9sZtJsPUO4/rfTnkL84NL1aeO0FvJbzVrJBLxFCf5QN2r2zTars2QF3b3HZ3b+HVnhFiXca+zvUvzd/Oi+tLSfyv5YlS0v7yALd6jCSj20Mo+Je9JGU7eHXJdn9lC/En06OD272/+XBwYT6yNz/NB/3x+x4/+Tn5J+ZvzU1V7bTJTa+XdMK/p7VY6sQHP9zCWHEzN1JOy9Tmy7Q7Qjo42d5HkP0nyeU7J7K/Oz9R4cQ+qXX3R75fdzfsR5D8mJ5N0DT9C07Q49PstLiS3goCQFQVDsykkkkksepPXPP9VnnmmZyNkveTlhjGMMZqERQH46vV7LTtTeMPFf28yMK0iBH3dMxSHEnlx9YlFS2WtlxwkVwNgVbjwHft0yNFYzxUilsNSgT1CiNtuxc1Y/dvg4TzapZIS2efebn1j6s8ccIjYoWlKnc+FARkRz3djohiuyX516ZI91+bfmyeYMZIZYY6nalF3C/LOkyCtLEB6jCB4mTyEfufW3llJB8Sksqp+0ATXrvnP5nX6qqer2r8Y0ruSEAoa0J+eUg7OlkN0/idfVPJqUoWBHSvgO5ybQRsrghxU0qS7MenQ++AFHJHxEOoFSFFCAADi1EUjYYlp6jAOwU0Xj8Qp2w21yPRDygDgenLnwoOxFe/TG1DBPMjj6nIripNUjoOh3O/jlsHO00fU+Afzpt2jN6Bx4kBQeu5XtTbOh7OPJ6LJvpz7lP8tJfU0PTGrVY4I0avUnxpkNcKmfez0p/cwrue3adGoZWP7wMDXcUr03HyzXTLOVvRdGmkiKxKAFJBLbAkDrt4gZiTAu3CzgEWziGcoQsbH7NSwrUjxyADr5AF1/5k0/R7G81PVLuHTrCxhaS/v5nVI4YlFS8jGgUfPrk8eKUjwgWT0YHFW5Ow332ed2H/ADkZ+T000Vmv5jaL9YJqoe5CVrTerAL0I75nS7K1QF+HL5OLLUaaUqGaBP8AWe6eX/NWn6zCk+nXcOo27gtDcWsiyhvfnEWGYOTGYGpCvfsxy6YgWNx5bhnFvdiVV/eCgHQMrVH05F18tkU1woLsWXj7r+AIOERay+H/APnK/wD5yLsvIemX/kLyzcJeed9asmQmHiRpUMgI9e4BOzkfYTr+1m/7G7LOokMkh+7B/wBN5Dy7y0avWx0cP9sI2H83+kf0Dq98/wCcG7ea0/5xf/LuCcylpZNRu09U8jwurp5Fp4A9ae+PakxLV5fIgfYHVY4cOKF9Y38yX1hmAyawJWnr7eGKVvTFLWKrT9+KVp+7FVm3j7Yq/wD/1fo50zlXoWyNtvHr44q34U38MVbA/X0xSvAA/hilVUbYFVhiwLGPPeoppHkHz7qsk31ePT/LeqzNP/IfqkgB+8jJAcRA7yPvZ4Rc4jzfz86Z5Vh1rSLWC6QfFEhq38/Hck751stR4ctnffyfHUY6kwnWvyn1i2WW40v/AEqFalYDXlt2BzKxa2EtjsXRansDLCzj9Q7urzBobuxuAsiSWd1C1fiqjqw712OZnN0UoyhKjYI+BCuZZbmUyXF2PUnkrPeNykerdXYdWphGzGRMjudzzL9Qf+cefzX/ACk0jR9J8o2vm6z065TgIbKYDT/Wnk2Z2lmCrI7nrvtnH9q6LUzyHKYkjy32e70ur0ksUMOGY9I5HYk/HqX3rYycgGihlRmIKO04rQgbiuw9s5uR3bZitj9zKIAacmkgVgPiLL8f0lTTKyLaL96KiZq/vLxG3qAqb06AYAfNMh5IqSXgvFJPUYilCu39mG2sC+YYR5hiubiGQqFUUNW6+3ftkC5mmlGJ3fmraWi2n5r+eI+Rl43q8pCOtV3zfylemh7nt8G4ke8R+59PaHRIQ8b8JGQECtNiO5zR5XAz7l6PpsgmjLcqnnGCpFO1ajKC6rNHhLKQVr6jNstNv1EZNxN+StA3MoASBzYb9+uAIkKCZRxhPi4qQamlDt75ItRlabRMCUHEciDvQgk4GiShJ8KId2K8jxNe43wJ5lgvmEK1tdAABipKSNvuaUplsHN09gh8CfnOtIFZ3PMhz12J8Qc6Hs/m9JIjwixn8r5iNHsGKluKkL1rVWO9Ms149RRoSfAj7nv9k7sVDOhTkWAp0ruCKfxzVFukzKyuokFGkq6mjlQfv+7KJRJceYLNNKuTcScORUqtCzV6Dw+eQlsHCzR4Rbzb88PI2o/mJ5B1/wAsaVcw295qEcX1aedmEXqQyrIEl4g/CaUzN7M1cdNnjkkLAcPWaf8AM6XJgvhMhsTy735NeavIvmjyNqL6T5o0j6lOFDRTRFZraZSaVjkpxb5bEeGd/p9Tjzx4sZsfb8Q+c67s3No5cOaNXyPOJ9x/RzSbTr3UtGmSbSNSvdEljasUllNPalWBBBHouB1y2URPaQB94txseWeL6JGPuJD6K8qf85Yfn35ZeAHzrb+aLRHLPZa9BFcOwqKqZuMci+xDbZqsvYejyco8J/omvs5Oxx9samP1ETHmN/mKer+Z/wDnOLz9r/lyTStE8sWvlLzDPUT6/DIb2KKAg1aCJgCsngzVA7Zi4fZ3FCdzkZR7uW/n5OVPtz0fu4cM+8niA+Hf79nkP5J/kd5v/PLzH+k7lbiLygLs3Pm7zvfRu8l26mssFtI5rNNIdmI2TqT0GZ3aXaePQw4Y1x16Yjp5nuH3uHodDPVz8TJfBe5POXkP18g/dP8AKTTLHQ/Ko0PTLZbHTtIaG20+xT7EMMcKqqL8gu/vnD4pmZlKRsk2fe7ftIATjQoV9z07LXXtYErT3xStOKVvy2HcHFVpIxSt7HbG1a+jv+OK0//W+jY9+nbOVehC6nt88VXUxSuGKqqiv9cVVF/zOBV42/pixLxb/nJPUm0r/nH/APN26QhZJfL72cZ673U0cPT5Mcv0w4s0B/SDdpReUPyM8pWcJht1JQqEFBT4QFHSg7nNtqJ7l7bT4xQetw2VtIsyywBkeKsZHQfDvXMDxCHI8Hns+Zvz10uGxs9Jmiskja6l9Iy8eTBQKrRl2FffOh7LyGVi3kvabCIY4yrrV/tfNVvHJPOIEbhI54qSQorTYE5tnjox4jQ6oy60bVoC0F9pV1GYbdZZop4XIWJzxVyCKBWJoDjGY5gtk9NkjYlA8r5dO99o/wDOPH5o/wDORWj695a8s2XlvUfPPkxpPql3pGoWixfVLKJlikmg1CQhkFvWvFiwNOOc92to9DKEskpCE+djqfOPm9J2fl7QJjDJCUsY2s+nhA/pda7jdv14tZeUVFmqoaicUpyBOxNfEZwxOztJRqSdFeHIgMT/ADGi7e+LC7aAJkIoaLQCpqSOuI5oPJLNUSM20gJ3KGgPapOJZY/qfmI0iv8Am757KLIF/SHBVJoa8Fr0/DN7/wAhYe573Tf3fPoPufSGjxmaKLbh6Ea8qbmnb7+mabIacHKeEvSNLAVFQLx4shUA/FTt9GYxNl1ec2WUPIqqKnkS3QdO++WuIBapAy0oFIDPx3PjiESCdRSfbBr9khj36b0Hfpi45CaxVrD8XwrtxIqem1MHVql1UJxxhQg0ryPuOvUHGlHNgmtUe2uZAy816N4mgoKZZEOdhFEB8G/nSIyLgcQ5DHYdansB8833ZpL0lXh79nnP5bzq2ixryI9KVq9jsxO5r07Zma0VNj2d6sA/HV7vpN67SBY3iIZQEUdansf4ZqskQBu5coimcWk9yisTGp2q1TSnyp1zHIBcTJTL9Ovb9HRvShLsvTqGp4U6UyqYFOLOEZd7J/0jd+iztpplUggqj1oR2IyqLjHFG/qeO+d9J8ueZLJ7LzL5cj1C0uAQ9rcQll5deQcUII8Qa5stHlyY5XCVFyJ6aGbGceSpx7i/Pn81/LX5a+VLqSx0C1vxqxaotILtpLeFT3k5hivhx652ehy58seKfL3bvCdu6LQaQ8GMHjPQGwPf3e7m8SWQMSEV2bsrgNTwqds2NvMPoT/nGj8vdA/Mj807Dy/5x0yTUNDOm3l++nRStbm4ltuHFGMZDFN6svcZq+2NVk02nM8ZqVgX3W7TsnTQzZiMgsCJPx2+fuftlpdlpmjada2FjDFZWFnEsFlp9sgSKKMCgREQADYds8+lMkkk2T9r00hKRZh5FcifV7erFWihnAb9k8mSn3ZZpjuXC7RjtE+8PQTmWXWBroflgZNVpiqwn3rilYTv0xStqNyeoxV1enYYq76Bir//1/o2CD/nTOUeiVF6fLvirfT39sKrh9OBKoOo8MUKo/28ULhir5Y/5zS1EWX5AavZiQpNruvaPYwxgbyATmZ1/wCBjrmZoBeePlZ+xy+z4mWXbufnH5UV4oIW4SFTCVq37Nagmp6DMvUcy9xgGz2fTrT4yhU1Wz5KtR/J1JOa2UvvcoxofF4X+fHlo6x5XF3bq6tpTi6j+Fn5DZXCxpQk0770zc9kZ+HJR67Oh9otGc+kJHOB4u/37Dq+I/SaC5nQ8o5IlbiQpR1JXY0PTrnTvmxiQa5F+pf5B32hefvy+8uvfWFvLd2pfStbtmjRy0tqAAGc1qGFGAIzie2Iz0+oNE0dx8X0jsvVHUaOM+oHCfePxb7K0DRbLTbO1sdOto7WCNGWOCLiihQ1TRQPEk++aHJkMzZ3KMuUkm2dW8SJHTYkyirEmoA3zHLiSNlM1kOxCGhYcjTAjhV+Y9RgqhT8IpT2r+rDe7Ctkv1Tk1tdGlKL+7oKnfwHtXpiU46sPy/bn/ytz8wCYxyXVeBatOiqPv8AfOg/5DQ9z3ulowJ5bD7n0h5eZuCns6FRXYfCa1zS5Q4Go3eoWD83jK19P4aSADelcxwOrqsorZP6rI3AVK1+W/cjJuPyX8ljLAkovMNvuCTT/OmFFWnYlWIhlXkHDJyU9yD49MS4/CSmEM4It2LKjinIb02GRa5R5tSzOIV4yKhSN2615HcEVyYUR3YLrTN9XlalV49FHcr1yTnYRu+HPznQCxmCxciXZg9OhY0p1rWnXN72bzeiu8R67PIfy5tGudNEgCho55F4E9QWO3t9OZ+tlUmvs3+7B62fve16XZm2kAiuQpQ7Ls7Gu43G+azJLiHJzyb5s+srbV7+DlEfSIf4uSnkQB4ZiExiXHyGEDuznTvL19PBbPPqAjuEIZANqfPKZZRewcGeqjEmo7IuKOO2uZ1vNUll+Gv2go2O2/jgErAoJkTOI4Yh8pf85Ifnjqflazg8o+Wo1g1XW4JJZNXkqTZ26n0y0QPWVz0PQDfrnR9i9nRynxJ8h07z+p53t/tCXZ8Ywh/eZATf80crHn3dz8/bCX6zfQRyrdatd31wA1nE7Ge7kkNOPLdiznvnXWALOwHyD5/EGc6oykTy6yL2vz1+VXmXyN5c8rzz6TONS1y4k+uRKheOElA6W6Ej42UdT3PTMLS6+GonIRO0fxbutf2RLSYIHnOR9QG9bbD9r0b/AJxE0+90/wDPTy7LfXkFq89nqFhFaGYesXuITxKilKVQg71GYfbwMtHKu8H7UdjQMM5Mv5p26v2dtrBY4I0j9NHqPUlY8m3zgiNneSyWd008qxfVNcuI3r611aPzqa1Ebhl6bd8s0+0/g42ulxYx3AvQzmY6sKZJBwM1pPvhVZXsPuxVo9tsVWH/AG8VbrX5Yq39J/z7YKQ//9D6Mg/50zlHoVT5fR/bilvFVwPTt4YUqg/264qqKa4FVBixL4O/5zz1tU8u/ld5RU/vNX1m71adR19KzhEKU+bynM/s6N5JS7o/eXa9kwuZPuH6Xx/5ehJt7d+Z5LCw4y1+GjDYHLM53ezwR5PYLFBI8Y9MSn0QuzU+0KEk+I75riW+QKLudCgv7c2klsLmCZfTl+M78hxZaE7VHWmThlMDd0Ws0dj1fnN+b/kuXyb5w1O2jtTbaZeyyPpKGUzEwqQu7U7dOudpoNT4+ESuyOfvfNO3tB+V1JIFQnvHq+xP+cG7GS8j81XhjmhtY/QE37l0t5JIlKCRHOzuwIDUHbOf9p5C8Y67+93Hs+eHSTO/qkBy22HMHqe9+lNgyc1qOJVCAa9d96HORJc7INk4iq8ioQCA7NWtOwABpkOrX0TAxlKE0BLfEQCaU3wlHErxjkzspGwqdt67Cm+ABgSg9ScLbyU+FqihHXc5IlMNy/L+4Ev/ACtvz801Vf8ASrngd/hKrTbrtm//AOQ0Pc99pd8V+Q+59F6BIqxQhiQkZDMAw2B26eOabK6/Ucy9L014VBWvEA1Reh2NaZj+91eXiZAjRkkxPQVqzV6muSaKPVVZRI6fEpBj3IO9fGmHoxBoMhEaqgXhRQvJVJDbkd+/fEuNe6KtVUJDKzB6cVVdj8XfY4gMZnmFszFT+wgZXq1OlT08MIYxYdrXCTTm48g9aEdR032yTmYbE/J8LfnNKwjmgMZAapVqdADUD6c33Zw6vSRH7ovO/wAokjn08xyDlzupNu1VfcnxzJ7RNS+DV2cf3F+Z+99Oafp0EUhmgtkjdQKsF2PvmmlMnYthnYpm2nWM0pZJblYUSoJVdyD8+nXMWcg42WYjyG7KdO0GzilKPI9xH25Odh45GUr5uHk1MiNhTLV0TTfq8oisldqlqEBhU9ftb4iVFwjqMhO8nw1/zkH/AM4+eePzM8waLq3lOTSuFnG8FzFes1uyxMeQflxYNRuw3zpeyu1sOlgY5L3N7buB2z2fPXjGYSAMbBvuPd+p71+R3/OPnlT8vdE01r/RrPWPNVnK11JrtwqtL67KY2aKtfTAUkKB2365ha/taepkdyI93l597HHpcejgIY9yOcq3J7/Lup5H/wA5vXl9ZeW/J4s4bnhHq7yLcW6B1hMMBZS71BXrUEeGbH2co5Z/1f0uF2txDSggEniHIcqB3Pc+JPy0846tbfmr+WuszapPeXdj5jsVimuVU1jnlVHq5PVgxBrnR63FGWmyRqriXR6HUTlqcZJvet+4v39VeDsAOAiY0JAG1c8yskPRnm1Yym38xaM3La4kkt2PtKhp+IyWE1MNeaN4peW70g/dmc6oKR64slh3/twqt+jcd8VWkn6O2KuOBWq/24VdyPifHFX/0fowKjOVehteMCeS4EAGuKtj5/LxxVfXvXfFKoppiqsN8UPyq/5zc19dY/Ovy/5ejk9SHyT5bhjuIuwuNSka5ddu/AJm37OjWKUu8/c7zsnHQB8y8v8ALzsoEUgooipRwCdztSnY9zlOcPY4YEvbNFWOWa0aikSRE0YcVooK02+WazIatlIEAhnelaUZWhNF9MkFQVr1+fXplJydHEy5KBYr52/JvR/zBtNPg1GMRtb3fqI4qhCt/eKAvTlSnXbMnS9pT0pJj1DiamGHUR4MosDf8F7Z5D8naX5G0ez0HQbYWemWiuwto1qoLsWbiBXavvmFqdRLPMzmbJcSXAIiMQIxHIDkHqFvIivEWFfhAJOxqf1Zinm4sominVuwLGUVoWIB6L16b9/fIg721kbUjndmJIFQOpByRNsBsrxj4C1BXjUCviem2FBO6W6ryMB2HFDua0pvXYYCyxn1Py0upv8AkL/n4B9o9UcV61oqim/bOhA/wWHue60srgfID7n0Z5dkVPSbgFAKq4IqaV75psocTU7vVrK5URsyuSyEgNSpABHj2zHdROO6f2zMWY0ogY0NBQnvTC1HkixMheL46niyqKUNB2GLCk6PqBo/iR1oAfmf6YGgUsSfiIFZFf4viFetK9SaUwhJjdlUlfkyEMNqj06noT4GoyYawKYnrXKO0leE0O5O/cbZJysFGW74T/OV5TFcMw+yPhoaipY0A75vezg9JywmnnH5NzMtm7ftC+mFK0qTTMrtQb/Bx+yt9Of6xfXmlTckJKvVqLxFK/D136Zz82eSNFm1vHJJCZUj4lCCjnoTUCgGY2zimQumXWBWQxVbi55IR2qtCD+ORcLKKtlEMgBQUNHUbH3+eNuIYoC1snLh6EgNsoJACk7164bbJy2ZJDAkaMBRdtiR4e474LcSRYN+YHlSz80aFqunT2sV0Lm0uIkV1BHKSJkrQ9OvbMjT5jjmJA8i5GmycNxPKWx9xfk75E/5x68/H82PLvlXVtNbSY7Gcavba2bd57OeHTpo5Qiy/CtX2A5dPfO61XbGA6aWSBu9q5H1fqeZw9g5cOqAybQjchIbg1yHkT5v3IRjJIZSpUOORQ9j1IrnnwFB2kjZKWXc31W/0u4IqI72JloegLAH6N8MfqCeHihIeT1+QUZh2BIzZF0UVA1wM1h/zOKrDt17YqtJ/HFWvp+7CrRNO334oK3lir//0vopUeO3fOVehpUUj7umKhfUdfHAlum/zxVVptt9OKV/SgxVFW6CWWKMmgZgCx7Ancn5DASgvwp/MjzRF52/OX8yPNUMnO11fzBciwZzube2YW8f0ER7DOhwQMNPGJ519+71XZ+PhqPkzHRfTZg2/Jl4MoY0NN+3UeAzAzPT4h1ezeW5GS4tPSiYAw/CzCpPWopvmty1unIBwkeb2jSlKi1ZwVKxildzWu1D075gSlZdVm3JZhZW+6SkHiZGY8tgtP8AJyFuJOXRk1pGVFaCvEGlOA3PUYHFnJM1b+748ObuAKL95Pc9MiWukxgV+QDbk/ZZj3JrvgAa5EI9ixRkLdTTarH2p2GGmARoosar0pSi9CMlyY80o1IM1pOFYDjxr9/XBTOH1B+Xuqqq/m9+YYDVVdUPE7b/AAJ4frzoYf4rD3PcaM+gk9w+579opYRR0+Kifuydj0Boc1ORx870nTrhiPsH7e6vt2rmMRTrMkQGa25+GMrQkOB0Pcb0pgcKR3VIZ1WKUAtJ6cjgJSvUd9u2KTGyixfBjGEPE8OXp8ainSu2KPDWM1ySVURlQQw3Pc9OmLICIThEaNCXmUlgCAVr17bYXEmbOwYP5jmYxP6TAFSeRUdge+/jkwHN00d93wv+ckzmFlKMGC/tAAEjpXOg7Ni73JtiLzT8nbh1sryMlAov3BWlT8VK0965ldpx3HucXsUk4Tf84vrnQJHaKMH4+ZIRga7L0Aznsopzsw3epaK7NbCp+INvyP2a/a/VmJIbuszipJ/ayskjPUFUJoPxqcg0TjYTyOUuF+KpRtvcVrTFo4aTMOEjcqP2qEHY0PUVwtNWU1hlaUxRqa/Cwlp8qg5GTVKNWjDwHwsCpYBTUjfbp+OEFrq1XTrZY414/ZO1Kbbdsld7sMsjyT7mvBaKKNTfoake+EtFMc8xCliZKBzE6SKOlOJByLbh3NPaVf1EilG4ljRwf9ZQf45s+joOWyxhscUrDhStIpsegwKpHxxVae/6sVa/qcKuofH264q//9P6IAnOUt6FeDU9NyMNoKqp38cDIK2xp74qqDFK8DpirDvzK80p5F/Lfz35wk66Bod3PbjxneMxQgf7NxhhDjkId5AbMMOOYD8KfLMDGWNp2DySAetICKs7bsSPc1rnSZzs9ho49S+hNEt4k4PCgUBaKxp4b0HgexzTZZd7vMZvbo9q0G3WkTIh5LCBxPbvWvjmsyyYZJU9TsISZ4iEZVVKfarQV2+WYZddklszexhdUj2LBRIeBNW3/DFwMh3TZW9SjK7AoihQd/vwNVUiPVHrxjkxRSW5fZA7GpHX6MBCOHZOLaSLkjA/ZYr3avgRgaZApn67F1iKkChJDEL09slbUArLyKlWJ5fzbCo8dsBDHkll6wNrKpHIGvJjvWp2GLOH1PzE1K3aT83vzBj5CPjqjEqOoPBaf7WdDA1pYe57nSH0fAfc950K14JBVmd3UHjUkEkdvo3zVZC4+aXN6ZpUfABQZmVule5G23jmM6vMb32ZDb3RjDB3ZDzUqTTavz74Ru48oWri6hkE7ets7leGxoe52wEbWx4SK2UvXCvbhSHcLQngTXavUfKmNNlXdp7E/KNf3pAKgkMABkS0EeSYy8CnNJHVU+3RwdgOnTC0gG3nfmJ444Jz8TOdgOX2ga7mm22WQdhpwSQ+HvzfmkaCjrxJUsu/UA9xnRdnjd22Y/ui8t/KOVxFqUITmi3vPidqVUdG65l9pDkfJw+wpVjmOnE+wdDaVIIA0YARm7g0qaggDOcnVuyygEvVtLkL249Pk1eqKNifDxGYUhu6zKPVuyG2X1Cq0AY0NSR0PWoyLjz2ZHarF6chBDAKODjf7PX5dMDiyJtH26pKCCORIpT5dPwxYyNJrCI4vTkVmB5LWp7EEHA1GzsUenCR1LkElgVrsem2NNZ2CYRhk9MAgIW6g96+GSaTumaozRCr7q3h3rh5sLSXW7cPZ3EY3JWniT7ZEhnil6npujSeroukSVrzs4t/dVC/wzZQ+kOkyiskveUwP+3k2Cz5DbvgSpkdvwwqsI6E/QMCrT40xVrx/mwq6g8MVf/U+h+5zk7t6GlTwp2yS2uFRT9WBVZTXrilWU1riqsu9ffFL5R/5zW8yz6D+SD6PazmCfzvrlnpM1ACXtIuVzcxmvZgig0zM0EOLML6Wf1OXoI8WS+4fe/LXQ19OaNwVWmwr+qgzbZjYeu0sKe96BG0kca8WPGpdRWn0n55psxou52D23RIhzpUH4VCt8qEmnfNdkcfITT1fT+PFeJK8qBXHUGtd8w3WZLZpbAcVJ+0Izy5Hbf9eLhSRypRuSoXHwqz0qK8aUA+WJYK6iP13c7mNAvFjyFQK9B0yKLPCrxOQxLMxVqEUIAr09sUSCaxuoJJUA926mo98NtBCMElNyagDr0r3piwpBXTs9sBwBBJ+Hw+eFlEep+Z1/6zfnF+Ykki0pqlaVHxHiv+3m+BH5aHue30g/d+VD7nv2jMFNtIpBITdR1qBsabUzVZOVOPlFgs7tJnpFQCjD4iPehGY/J1+SPNNApqUJVizowY/EVqOlfHJxDQSqxNJBHLyB2lJ5bD/MDJAINEhFQz1duLEc16cuIJpSuVk9yeDZObB5GLiU0RlHFSQeg6iuRtpyADkm7RsI+bGoajcFADeOEOPxC6eXebmmXmsaI/NR6xICgciaVHf3OZGOnZaQB8U/myZVjmJRAFVipO+1TSmdBoHZZT+6LyT8pZCJdY7st0pQDoPh6H55mdpDYe5wfZ82Ml/wA79D660m7jMI9QSKrSqUUjoxHt0Gc3ki7rJHd6lpFwkUciBiXJqq79z0+W+Ykw63NEmmX2bRpIjAcTWrP1rv3ylw52QyWCYNGx4laGhIAHfFxTFNYGAVWC0+KjHv8AEOpwMCEdBwO7EMEA+Gng2LCQKdwkEqiKpUFaEdCu4xcaXeUxiHNZAKj4gabAVrtvhaijFWQA/CBVqk1/hgKdihdRRmiYN0p9kDw8TiUR5st8oyiXy3poDV9H1Yfl6cjCn3Zn4D6A6vWCs0mRUH9cucdZ4jFKxuv6hiqmfuxVb9GBWvu9/fFWq+3bDaH/1fogBXOU5vQlUpvWtcKF6kUP+ZxSF1aEYpVkO3vilEL4YCh+dn/OfGuGW/8Ayn8oBwYYodR125iB39R2S1iJA3FAGpmz7MG85eQH6XadmYwSSe98R6VCyyh0iLU29OvWvjmblOz1mCPk998sF2WEOhAKqJFB+yOtNuuafO7KQ23e5aMIhK/BAVZKb7Gh718ds1eXk4mXk9LsUKRwemgo0u6g+2xOY7rpmyWYRERsqgbNHuaU6dt8XFO6YQOHRq7nkCpNSR92AtUhuoFgGlYGnI1Pbp44hsHREWssZHE0JNT1+IAb4SwmCniOhWoP+qDTvuci45tEc122BVmIqenh1OSpiAUrv7lVjKeoACGpXr4fThbMcd7fmvq10P8AlcP5gyqTwbUl4vvt+7UVp9Gb+Ef8Fh7ns9IDwUe4fc9w0e7gKRu5BqAHf38ae+avJGmGTGXoGnXlqECvcKoUclWoFajMUguDlxy6BkX163mUOsgYKADSgBC9t6YjZwzikOYSz9Iwq08Ypz5n1GCgkLXoeuTra2wYiaUJddSO4tQo4xkFPiAqOhGQMC3w0xMSySw1X1mE4cOitTjxNa9iPDIUXFy4OHZN7jU+I4VWr78qCo96DwyQcYYrYPr93ZvBOVY+q0ZLkgsWIP4Dfpl+NzMGOVh8WfmpIX+tuaxqylVVd/EmudFoHYZ41iPueQflc4S415g3FjLH8WwFCKdPbM7tAbRdf2DV5PeH1voJf0EbkGKqp4tsD47eNM5rKN3e5CHpujTKzOzIHUoOJJ3J+WYmR12aPJ6BaSJ6MTFWRA3xU6b9K++UkOBIbshoEVwzNxZfh+R26ZFx11rMr0ikYycQG361RtjiQykOoZTBxoXpXnUV8BscXDkmSlpJImC0Vgak7EGvhi1cgUwgKApt+zvv8JoceTWQU1FWQ/DSgB6/qwMEJdxs6yDiAOPTvTAQkGk58jyEabf2Zpysr5+3aVQ2ZumNxcDtAfvAe8MyJzJtwlhP+ZxSsJoffxxVTPy+jAq2owq14k99z8sCt7/hir//1vointnKRehVlptkkN7V/wA64Eubrviqqnv198Uota06YFL8i/8AnMt9Rb/nILU/0jDJHax6BpCaHVqrJahGLOlNhWUsCOtRm77O/uTXPiP4+Tuuz6EB+Orw7RaepUE8eXxrv1pk83J6jT89nunlg/HF8I5cVB5E1+ZzUZ3PL2uxLCnFSW+DiCduNfuzXTceVdXqGlszQqHjaM892qCPalCcxXV5hR2ZPIWHp81cuF2Jpv8Aji0RbQzAEhSzVrQdKeHWnzxTshZpLngoS3YihBYkUpXc9cDKIF80ysmlEIpGWYEdCor4U3wtcwL5p1bPcVWsJ6HhQjrTvviHHmB3ornJ6YPpNzqtQSKU+dcWFC+bH79ivMxxmScLuCaA770r/DFyIfY/NfU5L4/m555LQcJDqfxgsDQ8FpTelKZ02MD8tD3PU6SuIjpQr5PbNEM/E8QAlNx7U3rmryVbdlqnpVo2lK0DSpHJLQFY2NF+RJ2zElxODLjINI4taPDMsEUMQY0MjMTx8CAta/RkaNi2upAiySl1nZWi3N036ZaQgpWOOGVa1HxfEykinyy6R25MpZJ0Lh9oQF1a237kpqhFx67cFEUpNK7blR2wX5OVinL+btXeE60+2laRK6hNHAX/AHpRHJBr7KRlZ4WjLMVtEX8GYW1uizr/AKe0jenWnpmvKvT4gO2VB12WZI+mvixjzbPcLHIlvYh4gh/fM6BjUbbBq7fLMrH5tujjHmT974d/MkXha4ed+MZXeEVIA+dKZ0mhqtnO1392e6nnP5YcvreukA8PXhqDT+U0zK7Q5R+LrOwLvL7x9z6q0IUVjWRyY0JXpSv2RU+HtnPZney8nrehi551jepI6ECgT9n6cwclU4Wfhrdn+ntPwoIxwqPUYkfaBPQA98x3X5QGS3RcxniqpGR8Xen2afj4YHFx1aHtS3JOIG/MMV6jbrtgLbLkyu2M4ANGeq/GDsOhr7YuJKkxVpyF+DgQwpU1rtvTwxDVQRlrX1l48qfH17ff74OrCfLdPYeXDcGtPi8MWiVKktd+g+E8q9aYliifJhk+va8FX/R6Qkv29Xeo+dMydLe/c4uuqod+/wAmdn7szHXhae23y8MCrD+OFKkaVP4YqsatN/pxQt8dvn44q74sC7v/2Q==", "text/plain": [ "" ] }, + "execution_count": 1, "metadata": { - "image/jpeg": { - "height": 100, - "width": 500 - } + "image/jpeg": { + "height": 100, + "width": 500 + } }, - "execution_count": 1 + "output_type": "execute_result" } ], "source": [ "# Outputs included with width/height in output metadata,\n", "# cell is not executed\n", "from IPython.display import Image\n", + "\n", "Image(filename=\"./example.jpg\", width=500, height=100)" ] }, @@ -46,32 +49,33 @@ "source": [ "# No outputs, cell is executed, image should have original size (370, 254)\n", "from IPython.display import Image\n", + "\n", "Image(filename=\"./example.jpg\")" ] } ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "mystnb": { - "execution_mode": "force" - }, - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.1" - } + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "mystnb": { + "execution_mode": "force" + }, + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, "nbformat": 4, "nbformat_minor": 4 } diff --git a/tests/notebooks/sleep_10.ipynb b/tests/notebooks/sleep_10.ipynb index 7473264a..6d3e7ebf 100644 --- a/tests/notebooks/sleep_10.ipynb +++ b/tests/notebooks/sleep_10.ipynb @@ -9,14 +9,15 @@ "outputs": [], "source": [ "import time\n", + "\n", "time.sleep(10)" ] } ], "metadata": { "celltoolbar": "Edit Metadata", - "hide_input": false, "execution": {}, + "hide_input": false, "jupytext": {}, "kernelspec": { "display_name": "Python 3", diff --git a/tests/notebooks/sleep_10_metadata_timeout.ipynb b/tests/notebooks/sleep_10_metadata_timeout.ipynb index 946cb38a..a495b71e 100644 --- a/tests/notebooks/sleep_10_metadata_timeout.ipynb +++ b/tests/notebooks/sleep_10_metadata_timeout.ipynb @@ -9,16 +9,17 @@ "outputs": [], "source": [ "import time\n", + "\n", "time.sleep(10)" ] } ], "metadata": { "celltoolbar": "Edit Metadata", - "hide_input": false, "execution": { - "timeout": 1 + "timeout": 1 }, + "hide_input": false, "jupytext": {}, "kernelspec": { "display_name": "Python 3", diff --git a/tests/notebooks/unknown_mimetype.ipynb b/tests/notebooks/unknown_mimetype.ipynb index e6978922..2c3d087f 100644 --- a/tests/notebooks/unknown_mimetype.ipynb +++ b/tests/notebooks/unknown_mimetype.ipynb @@ -1,44 +1,44 @@ { - "cells": [ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "source": [ - "a=1\n", - "print(a)" - ], - "outputs": [ - { - "output_type": "display_data", - "metadata": {}, - "data": { - "unknown": "" - } - } - ] - } - ], - "metadata": { - "test_name": "notebook1", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" + "data": { + "unknown": "" + }, + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "a = 1\n", + "print(a)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" }, - "nbformat": 4, - "nbformat_minor": 2 + "test_name": "notebook1" + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/tests/notebooks/with_glue.ipynb b/tests/notebooks/with_glue.ipynb index c0006fcc..74b034b1 100644 --- a/tests/notebooks/with_glue.ipynb +++ b/tests/notebooks/with_glue.ipynb @@ -143,6 +143,7 @@ ], "source": [ "import pandas as pd\n", + "\n", "df = pd.DataFrame({\"header\": [1, 2, 3]})\n", "glue(\"key_df\", df)" ] @@ -180,6 +181,7 @@ ], "source": [ "import matplotlib.pyplot as plt\n", + "\n", "plt.plot([1, 2, 3])\n", "glue(\"key_plt\", plt.gcf(), display=False)" ] @@ -246,11 +248,12 @@ ], "source": [ "import sympy as sym\n", - "f = sym.Function('f')\n", - "y = sym.Function('y')\n", - "n = sym.symbols(r'\\alpha')\n", - "f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)\n", - "glue(\"sym_eq\", sym.rsolve(f,y(n),[1,4]))" + "\n", + "f = sym.Function(\"f\")\n", + "y = sym.Function(\"y\")\n", + "n = sym.symbols(r\"\\alpha\")\n", + "f = y(n) - 2 * y(n - 1 / sym.pi) - 5 * y(n - 2)\n", + "glue(\"sym_eq\", sym.rsolve(f, y(n), [1, 4]))" ] }, { diff --git a/tests/test_cli.py b/tests/test_cli.py index 2153a650..18e7001a 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -1,4 +1,5 @@ """Test the quickstart CLI""" + import os from pathlib import Path diff --git a/tests/test_codecell_file.py b/tests/test_codecell_file.py index 1af9ce8f..ab447279 100644 --- a/tests/test_codecell_file.py +++ b/tests/test_codecell_file.py @@ -1,4 +1,5 @@ """Test notebooks containing code cells with the `load` option.""" + import pytest from sphinx.util.fileutil import copy_asset_file diff --git a/tests/test_codecell_file/test_codecell_file.ipynb b/tests/test_codecell_file/test_codecell_file.ipynb index dfab3618..7107533f 100644 --- a/tests/test_codecell_file/test_codecell_file.ipynb +++ b/tests/test_codecell_file/test_codecell_file.ipynb @@ -19,7 +19,7 @@ "source": [ "# flake8: noqa\n", "\n", - "import numpy as np\n" + "import numpy as np" ] } ], diff --git a/tests/test_codecell_file/test_codecell_file_warnings.ipynb b/tests/test_codecell_file/test_codecell_file_warnings.ipynb index 8152749c..de0228ae 100644 --- a/tests/test_codecell_file/test_codecell_file_warnings.ipynb +++ b/tests/test_codecell_file/test_codecell_file_warnings.ipynb @@ -19,7 +19,7 @@ "source": [ "# flake8: noqa\n", "\n", - "import numpy as np\n" + "import numpy as np" ] } ], diff --git a/tests/test_docutils.py b/tests/test_docutils.py index 3f3e3af6..74ffcc85 100644 --- a/tests/test_docutils.py +++ b/tests/test_docutils.py @@ -1,4 +1,5 @@ """Run parsing tests against the docutils parser.""" + from io import StringIO import json from pathlib import Path diff --git a/tests/test_eval.py b/tests/test_eval.py index 3a87eab1..7b2da350 100644 --- a/tests/test_eval.py +++ b/tests/test_eval.py @@ -1,4 +1,5 @@ """Test the `eval` directives and roles.""" + import pytest diff --git a/tests/test_execute.py b/tests/test_execute.py index f39d1df0..b6074c7f 100644 --- a/tests/test_execute.py +++ b/tests/test_execute.py @@ -1,4 +1,5 @@ """Test sphinx builds which execute notebooks.""" + import os from pathlib import Path diff --git a/tests/test_execute/test_allow_errors_auto.ipynb b/tests/test_execute/test_allow_errors_auto.ipynb index 74c4ff6f..96266860 100644 --- a/tests/test_execute/test_allow_errors_auto.ipynb +++ b/tests/test_execute/test_allow_errors_auto.ipynb @@ -27,7 +27,7 @@ } ], "source": [ - "raise Exception('oopsie!')" + "raise Exception(\"oopsie!\")" ] } ], diff --git a/tests/test_execute/test_allow_errors_cache.ipynb b/tests/test_execute/test_allow_errors_cache.ipynb index 74c4ff6f..96266860 100644 --- a/tests/test_execute/test_allow_errors_cache.ipynb +++ b/tests/test_execute/test_allow_errors_cache.ipynb @@ -27,7 +27,7 @@ } ], "source": [ - "raise Exception('oopsie!')" + "raise Exception(\"oopsie!\")" ] } ], diff --git a/tests/test_execute/test_basic_failing_auto.ipynb b/tests/test_execute/test_basic_failing_auto.ipynb index 74c4ff6f..96266860 100644 --- a/tests/test_execute/test_basic_failing_auto.ipynb +++ b/tests/test_execute/test_basic_failing_auto.ipynb @@ -27,7 +27,7 @@ } ], "source": [ - "raise Exception('oopsie!')" + "raise Exception(\"oopsie!\")" ] } ], diff --git a/tests/test_execute/test_basic_failing_cache.ipynb b/tests/test_execute/test_basic_failing_cache.ipynb index 74c4ff6f..96266860 100644 --- a/tests/test_execute/test_basic_failing_cache.ipynb +++ b/tests/test_execute/test_basic_failing_cache.ipynb @@ -27,7 +27,7 @@ } ], "source": [ - "raise Exception('oopsie!')" + "raise Exception(\"oopsie!\")" ] } ], diff --git a/tests/test_execute/test_basic_failing_inline.ipynb b/tests/test_execute/test_basic_failing_inline.ipynb index 74c4ff6f..96266860 100644 --- a/tests/test_execute/test_basic_failing_inline.ipynb +++ b/tests/test_execute/test_basic_failing_inline.ipynb @@ -27,7 +27,7 @@ } ], "source": [ - "raise Exception('oopsie!')" + "raise Exception(\"oopsie!\")" ] } ], diff --git a/tests/test_execute/test_basic_unrun_auto.ipynb b/tests/test_execute/test_basic_unrun_auto.ipynb index 8af8d02f..659122c8 100644 --- a/tests/test_execute/test_basic_unrun_auto.ipynb +++ b/tests/test_execute/test_basic_unrun_auto.ipynb @@ -23,7 +23,7 @@ } ], "source": [ - "a=1\n", + "a = 1\n", "print(a)" ] } diff --git a/tests/test_execute/test_basic_unrun_cache.ipynb b/tests/test_execute/test_basic_unrun_cache.ipynb index 8af8d02f..659122c8 100644 --- a/tests/test_execute/test_basic_unrun_cache.ipynb +++ b/tests/test_execute/test_basic_unrun_cache.ipynb @@ -23,7 +23,7 @@ } ], "source": [ - "a=1\n", + "a = 1\n", "print(a)" ] } diff --git a/tests/test_execute/test_basic_unrun_inline.ipynb b/tests/test_execute/test_basic_unrun_inline.ipynb index 8af8d02f..659122c8 100644 --- a/tests/test_execute/test_basic_unrun_inline.ipynb +++ b/tests/test_execute/test_basic_unrun_inline.ipynb @@ -23,7 +23,7 @@ } ], "source": [ - "a=1\n", + "a = 1\n", "print(a)" ] } diff --git a/tests/test_execute/test_complex_outputs_unrun_auto.ipynb b/tests/test_execute/test_complex_outputs_unrun_auto.ipynb index 7861b9f9..df89f6a7 100644 --- a/tests/test_execute/test_complex_outputs_unrun_auto.ipynb +++ b/tests/test_execute/test_complex_outputs_unrun_auto.ipynb @@ -11,12 +11,12 @@ }, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import sympy as sym\n", + "\n", "sym.init_printing(use_latex=True)\n", "import numpy as np\n", - "from IPython.display import Image, Latex" + "from IPython.display import Latex" ] }, { @@ -329,11 +329,11 @@ } ], "source": [ - "np.random.seed(0) \n", - "df = pd.DataFrame(np.random.rand(3,4),columns=['a','b','c','d'])\n", - "df.a = [r'$\\delta$','x','y']\n", - "df.b = ['l','m','n']\n", - "df.set_index(['a','b'])\n", + "np.random.seed(0)\n", + "df = pd.DataFrame(np.random.rand(3, 4), columns=[\"a\", \"b\", \"c\", \"d\"])\n", + "df.a = [r\"$\\delta$\", \"x\", \"y\"]\n", + "df.b = [\"l\", \"m\", \"n\"]\n", + "df.set_index([\"a\", \"b\"])\n", "df.round(3)" ] }, @@ -370,7 +370,7 @@ } ], "source": [ - "Latex('$$ a = b+c $$')" + "Latex(\"$$ a = b+c $$\")" ] }, { @@ -421,10 +421,10 @@ } ], "source": [ - "y = sym.Function('y')\n", - "n = sym.symbols(r'\\alpha')\n", - "f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)\n", - "sym.rsolve(f,y(n),[1,4])" + "y = sym.Function(\"y\")\n", + "n = sym.symbols(r\"\\alpha\")\n", + "f = y(n) - 2 * y(n - 1 / sym.pi) - 5 * y(n - 2)\n", + "sym.rsolve(f, y(n), [1, 4])" ] }, { @@ -459,6 +459,7 @@ ], "source": [ "import ipywidgets as widgets\n", + "\n", "widgets.Layout(model_id=\"1337h4x0R\")" ] }, @@ -482,7 +483,8 @@ ], "source": [ "from IPython.display import display, Markdown\n", - "display(Markdown('**_some_ markdown**'))" + "\n", + "display(Markdown(\"**_some_ markdown**\"))" ] } ], diff --git a/tests/test_execute/test_complex_outputs_unrun_cache.ipynb b/tests/test_execute/test_complex_outputs_unrun_cache.ipynb index 7861b9f9..df89f6a7 100644 --- a/tests/test_execute/test_complex_outputs_unrun_cache.ipynb +++ b/tests/test_execute/test_complex_outputs_unrun_cache.ipynb @@ -11,12 +11,12 @@ }, "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import sympy as sym\n", + "\n", "sym.init_printing(use_latex=True)\n", "import numpy as np\n", - "from IPython.display import Image, Latex" + "from IPython.display import Latex" ] }, { @@ -329,11 +329,11 @@ } ], "source": [ - "np.random.seed(0) \n", - "df = pd.DataFrame(np.random.rand(3,4),columns=['a','b','c','d'])\n", - "df.a = [r'$\\delta$','x','y']\n", - "df.b = ['l','m','n']\n", - "df.set_index(['a','b'])\n", + "np.random.seed(0)\n", + "df = pd.DataFrame(np.random.rand(3, 4), columns=[\"a\", \"b\", \"c\", \"d\"])\n", + "df.a = [r\"$\\delta$\", \"x\", \"y\"]\n", + "df.b = [\"l\", \"m\", \"n\"]\n", + "df.set_index([\"a\", \"b\"])\n", "df.round(3)" ] }, @@ -370,7 +370,7 @@ } ], "source": [ - "Latex('$$ a = b+c $$')" + "Latex(\"$$ a = b+c $$\")" ] }, { @@ -421,10 +421,10 @@ } ], "source": [ - "y = sym.Function('y')\n", - "n = sym.symbols(r'\\alpha')\n", - "f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)\n", - "sym.rsolve(f,y(n),[1,4])" + "y = sym.Function(\"y\")\n", + "n = sym.symbols(r\"\\alpha\")\n", + "f = y(n) - 2 * y(n - 1 / sym.pi) - 5 * y(n - 2)\n", + "sym.rsolve(f, y(n), [1, 4])" ] }, { @@ -459,6 +459,7 @@ ], "source": [ "import ipywidgets as widgets\n", + "\n", "widgets.Layout(model_id=\"1337h4x0R\")" ] }, @@ -482,7 +483,8 @@ ], "source": [ "from IPython.display import display, Markdown\n", - "display(Markdown('**_some_ markdown**'))" + "\n", + "display(Markdown(\"**_some_ markdown**\"))" ] } ], diff --git a/tests/test_execute/test_custom_convert_auto.ipynb b/tests/test_execute/test_custom_convert_auto.ipynb index 48e88d3c..1b8be7b3 100644 --- a/tests/test_execute/test_custom_convert_auto.ipynb +++ b/tests/test_execute/test_custom_convert_auto.ipynb @@ -30,7 +30,8 @@ "outputs": [], "source": [ "import pandas as pd\n", - "x = pd.Series({'A':1, 'B':3, 'C':2})" + "\n", + "x = pd.Series({\"A\": 1, \"B\": 3, \"C\": 2})" ] }, { @@ -68,7 +69,7 @@ } ], "source": [ - "x.plot(kind='bar', title='Sample plot')" + "x.plot(kind=\"bar\", title=\"Sample plot\")" ] } ], diff --git a/tests/test_execute/test_custom_convert_cache.ipynb b/tests/test_execute/test_custom_convert_cache.ipynb index 05b03777..7e70aaa6 100644 --- a/tests/test_execute/test_custom_convert_cache.ipynb +++ b/tests/test_execute/test_custom_convert_cache.ipynb @@ -30,7 +30,8 @@ "outputs": [], "source": [ "import pandas as pd\n", - "x = pd.Series({'A':1, 'B':3, 'C':2})" + "\n", + "x = pd.Series({\"A\": 1, \"B\": 3, \"C\": 2})" ] }, { @@ -68,7 +69,7 @@ } ], "source": [ - "x.plot(kind='bar', title='Sample plot')" + "x.plot(kind=\"bar\", title=\"Sample plot\")" ] } ], diff --git a/tests/test_execute/test_jupyter_cache_path.ipynb b/tests/test_execute/test_jupyter_cache_path.ipynb index 8af8d02f..659122c8 100644 --- a/tests/test_execute/test_jupyter_cache_path.ipynb +++ b/tests/test_execute/test_jupyter_cache_path.ipynb @@ -23,7 +23,7 @@ } ], "source": [ - "a=1\n", + "a = 1\n", "print(a)" ] } diff --git a/tests/test_execute/test_no_execute.ipynb b/tests/test_execute/test_no_execute.ipynb index bc0a3c74..d30db534 100644 --- a/tests/test_execute/test_no_execute.ipynb +++ b/tests/test_execute/test_no_execute.ipynb @@ -15,7 +15,7 @@ "metadata": {}, "outputs": [], "source": [ - "a=1\n", + "a = 1\n", "print(a)" ] } diff --git a/tests/test_glue.py b/tests/test_glue.py index 119e0b69..e09e8249 100644 --- a/tests/test_glue.py +++ b/tests/test_glue.py @@ -1,4 +1,5 @@ """Test the `glue` directives and roles.""" + from IPython.core.displaypub import DisplayPublisher from IPython.core.interactiveshell import InteractiveShell import nbformat diff --git a/tests/test_parser.py b/tests/test_parser.py index 37f510b8..0a6f440a 100644 --- a/tests/test_parser.py +++ b/tests/test_parser.py @@ -1,4 +1,5 @@ """Test parsing of already executed notebooks.""" + import os from pathlib import Path diff --git a/tests/test_render_outputs.py b/tests/test_render_outputs.py index 1b58e181..8b89e0ac 100644 --- a/tests/test_render_outputs.py +++ b/tests/test_render_outputs.py @@ -1,4 +1,5 @@ """Tests for rendering code cell outputs.""" + import pytest from myst_nb.core.render import EntryPointError, load_renderer diff --git a/tests/test_text_based/test_basic_run.ipynb b/tests/test_text_based/test_basic_run.ipynb index 32c72215..80081d47 100644 --- a/tests/test_text_based/test_basic_run.ipynb +++ b/tests/test_text_based/test_basic_run.ipynb @@ -25,7 +25,7 @@ } ], "source": [ - "a=1\n", + "a = 1\n", "print(a)" ] } diff --git a/tests/test_text_based/test_basic_run_exec_off.ipynb b/tests/test_text_based/test_basic_run_exec_off.ipynb index 7557ed84..b07af311 100644 --- a/tests/test_text_based/test_basic_run_exec_off.ipynb +++ b/tests/test_text_based/test_basic_run_exec_off.ipynb @@ -17,7 +17,7 @@ "metadata": {}, "outputs": [], "source": [ - "a=1\n", + "a = 1\n", "print(a)" ] }