-
Notifications
You must be signed in to change notification settings - Fork 0
/
119.pascals-triangle-ii.cpp
59 lines (58 loc) · 1.12 KB
/
119.pascals-triangle-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/*
* @lc app=leetcode id=119 lang=cpp
*
* [119] Pascal's Triangle II
*
* https://leetcode.com/problems/pascals-triangle-ii/description/
*
* algorithms
* Easy (42.10%)
* Total Accepted: 186.1K
* Total Submissions: 442.1K
* Testcase Example: '3'
*
* Given a non-negative index k where k ≤ 33, return the k^th index row of the
* Pascal's triangle.
*
* Note that the row index starts from 0.
*
*
* In Pascal's triangle, each number is the sum of the two numbers directly
* above it.
*
* Example:
*
*
* Input: 3
* Output: [1,3,3,1]
*
*
* Follow up:
*
* Could you optimize your algorithm to use only O(k) extra space?
*
*/
#include <vector>
using namespace std;
class Solution
{
public:
vector<int> getRow(int rowIndex)
{
vector<int> prev;
if (rowIndex == 0)
{
prev.push_back(1);
return prev;
}
prev = getRow(rowIndex - 1);
int p = prev[0];
for (int i = 1, e = prev.size(); i < e; i++)
{
prev[i] += p;
p = prev[i] - p;
}
prev.push_back(1);
return prev;
}
};