-
Notifications
You must be signed in to change notification settings - Fork 0
/
118.pascals-triangle.cpp
67 lines (66 loc) · 1.25 KB
/
118.pascals-triangle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
* @lc app=leetcode id=118 lang=cpp
*
* [118] Pascal's Triangle
*
* https://leetcode.com/problems/pascals-triangle/description/
*
* algorithms
* Easy (44.61%)
* Total Accepted: 229.6K
* Total Submissions: 514.7K
* Testcase Example: '5'
*
* Given a non-negative integer numRows, generate the first numRows of Pascal's
* triangle.
*
*
* In Pascal's triangle, each number is the sum of the two numbers directly
* above it.
*
* Example:
*
*
* Input: 5
* Output:
* [
* [1],
* [1,1],
* [1,2,1],
* [1,3,3,1],
* [1,4,6,4,1]
* ]
*
*
*/
#include <vector>
using namespace std;
class Solution
{
public:
vector<vector<int>> generate(int numRows)
{
vector<vector<int>> prev;
if (numRows == 0)
return prev;
if (numRows == 1)
{
vector<int> base;
base.push_back(1);
prev.push_back(base);
return prev;
}
prev = generate(numRows - 1);
vector<int> row;
row = prev.back();
int p = row[0];
for (int i = 1; i < row.size(); i++)
{
row[i] += p;
p = row[i] - p;
}
row.push_back(1);
prev.push_back(row);
return prev;
}
};