Releases: evidentlyai/evidently
Aggregated metrics visualization
Breaking Changes:
#601
Since this version, the following metrics will render aggregated plots instead of raw data plots:
- ColumnDriftMetric
- DataDriftTable
- ColumnValuePlot
- TextDescriptorsDriftMetric
- ColumnSummaryMetric
- RegressionPredictedVsActualScatter
- RegressionPredictedVsActualPlot
- RegressionErrorPlot
- RegressionAbsPercentageErrorPlot
- RegressionErrorNormality
- RegressionTopErrorMetric
- ClassificationClassSeparationPlot
- ClassificationQualityByFeatureTable
- RegressionErrorBiasTable
- TargetByFeaturesTable
To return raw data plots use render option :
- On a metric level:
report = Report(
metrics=[
RegressionPredictedVsActualScatter(options={"render": {"raw_data": True}}),
])
- On a report level:
report = Report(
metrics=[
RegressionQualityMetric(),
RegressionPredictedVsActualScatter(),
],
options={"render": {"raw_data": True}}
)
Fixes:
#593
Support for Text Descriptors in Column Tests and Embedding Drift Test
Breaking Changes:
#585
Drift detection method
text_content_drift
was renamed to perc_text_content_drift
This happened because an additional text data drift detection method was added: abs_text_content_drift
. This drift detection technique works more efficiently with large datasets.
Dashboards API is no longer supported! JSON output customisation & Embeddings Drift Metric
Breaking Changes:
Old API is no longer supported! There are no more Dashboards, Model Profiles, Tabs, and Profile Sections!
#550
Updates:
JSON output customisation:
#543
#545
#548
Text descriptors support in column metrics and tests:
#542
#546
#553
#557
Embeddings Drift Metric
#558
Fixes:
#560
New Examples:
How to customize JSON output for Reports and TestSuites?
How to calculate drift for embeddings?
How to apply column metrics for text descriptors?
Fix for reports json generation
MetricResult structuring (to be used for JSON adjustment later)
Text Descriptors Customisation for Text-specific Metrics and Preset
Updates:
- Added text descriptor
TriggerWordsPresence
- Added an option to specify which text descriptors should be used in the following metrics:
TextDescriptorsDriftMetric
TextDescriptorsDistribution
TextDescriptorsCorrelationMetric
- Added an option to specify which text descriptors should be used in the
TextOverviewPreset
Fix for Correlation Tests
Compatibility with Python 3.11
Updated project build to be compatible with python 3.11
Conda-compatible project build
Conda-compatible project build: prebuilt UI is stored in the repo; there is no need to build it locally.
Text data support in Reports and TestSuites
Breaking Changes:
- Python 3.6 is no longer supported
Updates:
- New parameter “text_features” was added to ColumnMapping. text_features parameter takes a list with feature names: “column_mapping.text_features=[’text_feature_1’, ‘text_feature_2’, …, ‘text_feature_k’]”
- The following metrics now support text features:
- DatasetSummaryMetric()
- DatasetMissingValuesMetric()
- ColumnSummaryMetric(column_name="name")
- ColumnMissingValuesMetric(column_name="name")
- ColumnRegExpMetric(column_name="name", reg_exp=r".ticket.")
- ConflictPredictionMetric()
- ConflictTargetMetric()
- DatasetCorrelationsMetric()
- DatasetDriftMetric()
- DataDriftTable()
- ColumnDriftMetric(column_name=”name”)
- TargetByFeaturesTable(columns=columns)
- ClassificationQualityByFeatureTable()
- RegressionErrorBiasTable()
- All metric presets now support text features
- All tests based on metrics that support text features also support texts
- The following test presets now support text features:
- NoTargetPerformanceTestPreset
- DataStabilityTestPreset
- DataQualityTestPreset
- DataDriftTestPreset
- Added metric TextDescriptorsDriftMetric for text data
- Added metric TextDescriptorsDistribution for text data
- Added metric TextDescriptorsCorrelationMetric for text data
- Added TextOverviewPreset(column_name=”name”) for text data. The preset includes:
- ColumnSummaryMetric
- TextDescriptorsDistribution
- TextDescriptorsCorrelation
- ColumnDriftMetric (if reference dataset is provided)
- TextDescriptorsDriftMetric (if reference dataset is provided)
Changes:
- Method get_parameters(self) -> Optional[tuple] from Metric(Generic[TResult]) class was updated and became optional. The algorithm to determine metric parameters and create a tuple with metric parameters and its values is updated to cover more parameter types. Since the algorithm has been significantly updated, get_parameters method should be implemented in a custom metric class only if specific behaviour is needed. For most standard scenarios, the default version is sufficient.
- Metric deduplication now includes not only metric calculation parameters but features as well. This helps to deduplicate calculations of the same metrics on top of the same features and as a result, reduce calculation time.
Fixes: