-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathhelpers.py
297 lines (174 loc) · 9.17 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import json
from TTS.api import TTS
import os
from pydub import AudioSegment
import librosa
import soundfile as sf
import streamlit as st
import datetime
import zipfile
import requests
from tqdm import tqdm
clonner_file_path = "clonner_output/voice_clonning_audio.wav"
def download_audio_file(audio, file_name):
st.download_button(
label="Download The Audio File",
data=audio,
file_name="{}-{}.wav".format(file_name, datetime.datetime.now()),
mime="audio/wav")
class DownloadModels():
def __init__(self):
pass
def download_models(self):
# Set the URL of the ZIP file on Google Drive
url = "https://drive.google.com/uc?id=16cP_FBEejiQhGhhrPP7u9LZj-DM2L9aB&export=download&confirm=t&uuid=0cc5bfb7-8242-4558-988c-c05ed63daf9b&confirm=t&uuid=48657c6e-7d73-496b-9d39-6852de088676&confirm=t&uuid=42cd659c-7823-4151-be6e-1b9c0ff10814&at=ALgDtswGngwh3ZGdgQo1J0e6ra29:1677086779517"
temp_path = 'temp.zip'
model_path = "language_model"
dict_list = os.listdir(path=model_path)
if len(dict_list) == 1:
# Download the ZIP file to a temporary folder
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(temp_path, 'wb') as f:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
f.write(data)
progress_bar.close()
print("Downloading Of Models Completed!")
print("Starting The Extraction Process to {} Folder...".format(model_path))
# Extract the contents of the ZIP file to a specific folder
extract_folder = model_path
with zipfile.ZipFile(temp_path, 'r') as zip_ref:
zip_ref.extractall(extract_folder)
# Delete the ZIP file
os.remove(temp_path)
print("Extraction Completed!")
else:
print("Models already exists, skipping download and extraction.")
class ProcessModelList():
def __init__(self) -> None:
pass
def read_file(self):
f = open("model_list.json", "r")
data = json.load(f)
return data
def get_langauge_labels(self):
data = self.read_file()
return data["labels"]
def get_popular_voice_list(self, model_name):
data = self.read_file()
if model_name in data["custom_voice"]:
return True
else:
return False
def get_popular_voice_path(self, selected_language, selected_model):
data = self.read_file()
model_names = data["data"][selected_language]
for i in range(len(model_names)):
model_name = model_names[i]["name"]
if model_name == selected_model:
model_voice = model_names[i]["model_voice"]
return model_voice
def get_model_name(self, selected_language):
model_name_list = []
data = self.read_file()
model_names = data["data"][selected_language]
for i in range(len(model_names)):
model_name = model_names[i]["name"]
model_name_list.append(model_name)
return model_name_list
def get_model_path(self, selected_language, selected_model):
data = self.read_file()
model_names = data["data"][selected_language]
for i in range(len(model_names)):
model_name = model_names[i]["name"]
if model_name == selected_model:
model_path = model_names[i]["model_path"]
return model_path
def multi_language_selected(self, model_path):
tts = TTS(model_path="language_model/{}/model_file.pth".format(str(model_path)), config_path="language_model/{}/config.json".format(str(model_path)))
return tts.speakers, tts.languages
def get_multi_speaker_model(self, model_path):
search_model_path = "language_model/{}".format(str(model_path))
subdirectories = os.listdir(path=search_model_path)
if "speaker_ids.json" in subdirectories:
tts = TTS(model_path="language_model/{}/model_file.pth".format(str(model_path)), config_path="language_model/{}/config.json".format(str(model_path)))
return True, tts.speakers
else:
return False, None
class ConvertTextToSpeech():
def __init__(self, model_name, model_path, text):
self.model_name = model_name
self.model_path = model_path
self.text = text
def convert_text_to_speech(self, speaker_id=None):
tts = TTS(model_path="language_model/{}/model_file.pth".format(str(self.model_path)), config_path="language_model/{}/config.json".format(str(self.model_path)))
if speaker_id == None:
tts.tts_to_file(text=self.text, file_path="output/output.wav")
else:
tts.tts_to_file(text=self.text, speaker=speaker_id, file_path="output/output.wav")
def convert_text_to_speech_multi_langauge(self, speaker, language, model_name, selected_langauge):
if ProcessModelList().get_popular_voice_list(model_name=model_name):
tts = TTS(model_path="language_model/{}/model_file.pth".format(str(self.model_path)), config_path="language_model/{}/config.json".format(str(self.model_path)))
tts.tts_to_file(text=self.text, speaker=tts.speakers[0], language=tts.languages[0], speaker_wav="language_model/{}".format(ProcessModelList().get_popular_voice_path(selected_model=model_name, selected_language=selected_langauge)), file_path="output/output.wav")
else:
tts = TTS(model_path="language_model/{}/model_file.pth".format(str(self.model_path)), config_path="language_model/{}/config.json".format(str(self.model_path)))
tts.tts_to_file(text=self.text, speaker=speaker, language=language, file_path="output/output.wav")
def read_audio_file(self):
audio_file = open("output/output.wav", 'rb')
audio_bytes = audio_file.read()
return audio_bytes
class AudioClonning():
def __init__(self, audio, audio_filename, text, emotion):
self.audio = audio
self.audio_filename = audio_filename
self.text = text
self.emotion = emotion
def convert_mp3_to_wav(self):
input_file = self.audio
# load the audio file using pydub
audio = AudioSegment.from_file(input_file)
# convert the audio to wav format
audio.export(clonner_file_path, format='wav')
def check_audio_file_format(self):
audio_file_name = str(self.audio_filename).split(".")[-1]
if audio_file_name == "mp3":
self.convert_mp3_to_wav()
return clonner_file_path
else:
audio = AudioSegment.from_file(self.audio)
audio.export(clonner_file_path, format='wav')
return clonner_file_path
def convert_text_to_speech(self):
clonner_audio = self.check_audio_file_format()
tts = TTS(model_path="language_model/tts_models--multilingual--multi-dataset--your_tts/model_file.pth", config_path="language_model/tts_models--multilingual--multi-dataset--your_tts/config.json")
tts.tts_to_file(text=self.text, speaker=tts.speakers[0], language=tts.languages[0], speaker_wav=clonner_audio, file_path="clonner_output/voice_clonning_audio.wav")
audio_file = open(clonner_file_path, 'rb')
return audio_file.read()
def emotion_modification(self):
emotion = str(self.emotion).lower()
# load audio file
y, sr = librosa.load(clonner_file_path)
# modify audio file
if emotion == 'happy':
y_pitch = librosa.effects.pitch_shift(y, sr, n_steps=2) # increase pitch by 2 semitones
y_energy = y * 1.5 # increase energy level by 50%
elif emotion == 'sad':
y_pitch = librosa.effects.pitch_shift(y, sr, n_steps=-2) # decrease pitch by 2 semitones
y_energy = y * 0.5 # reduce energy level by 50%
elif emotion == 'angry':
y_pitch = librosa.effects.pitch_shift(y, sr, n_steps=-1) # decrease pitch by 1 semitone
y_energy = y * 2.0 # increase energy level by 100%
elif emotion == 'surprise':
y_pitch = librosa.effects.pitch_shift(y, sr, n_steps=3) # increase pitch by 3 semitones
y_energy = y * 2.5 # increase energy level by 150%
elif emotion == 'neutral':
y_pitch = y
y_energy = y * 1.0 # no change in energy level
elif emotion == 'dull': # emotion is dull
y_pitch = librosa.effects.pitch_shift(y, sr, n_steps=-3) # decrease pitch by 3 semitones
y_energy = y * 0.5 # reduce energy level by 50%
# save modified audio file
sf.write('clonner_output/voice_clonning_audio1.wav', y_pitch * y_energy, sr)