forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstart_autopilot_job.py
51 lines (47 loc) · 1.52 KB
/
start_autopilot_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import sys
from pip._internal import main
# Upgrading boto3 to the newest release to be able to use the latest SageMaker features
main(
[
"install",
"-I",
"-q",
"boto3",
"--target",
"/tmp/",
"--no-cache-dir",
"--disable-pip-version-check",
]
)
sys.path.insert(0, "/tmp/")
import boto3
sagemaker_client = boto3.client("sagemaker")
def lambda_handler(event, context):
sagemaker_client.create_auto_ml_job(
AutoMLJobName=event["AutopilotJobName"],
InputDataConfig=[
{
"DataSource": {
"S3DataSource": {
"S3DataType": "S3Prefix",
"S3Uri": event["TrainValDatasetS3Path"],
}
},
"TargetAttributeName": event["TargetAttributeName"],
}
],
OutputDataConfig={"S3OutputPath": event["TrainingOutputS3Path"]},
ProblemType=event["ProblemType"],
AutoMLJobObjective={"MetricName": event["AutopilotObjectiveMetricName"]},
AutoMLJobConfig={
"CompletionCriteria": {
"MaxCandidates": event["MaxCandidates"],
"MaxRuntimePerTrainingJobInSeconds": event[
"MaxRuntimePerTrainingJobInSeconds"
],
"MaxAutoMLJobRuntimeInSeconds": event["MaxAutoMLJobRuntimeInSeconds"],
},
"Mode": event["AutopilotMode"],
},
RoleArn=event["AutopilotExecutionRoleArn"],
)