forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlift_closures.cpp
79 lines (71 loc) · 2.67 KB
/
lift_closures.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include <torch/csrc/jit/passes/lift_closures.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/ir/ir.h>
#include <utility>
namespace torch::jit {
// Closures are initially emitted as prim::Closure nodes with a single block.
// Here, we convert the block to a subgraph, adding all closed over variables
// as a context tuple input to the closure node.
// At this point the closure has already undergone conversion to SSA,
// so closed over variables will just be value * that are not set in the
// closure block.
// Within the closure subgraph, the context tuple is unpacked and the unpacked
// values are used for closed over values.
static void liftClosure(Node* closure) {
auto block = closure->blocks().at(0);
auto subgraph = std::make_shared<Graph>();
// closures/forks can be nested, so use closure owning graph
auto g = closure->owningGraph();
Node* pack_context =
g->create(prim::TupleConstruct, {}, 1)->insertAfter(closure);
Value* context = subgraph->addInput("context");
// cannot use createTupleUnpack because the type is not known yet
Node* unpack_context =
subgraph->insertNode(subgraph->create(prim::TupleUnpack, {context}, 0));
std::unordered_map<Value*, Value*> captures;
auto env = [&](Value* v) -> Value* {
auto it = captures.find(v);
if (it != captures.end()) {
return it->second;
}
pack_context->addInput(v);
Value* r = unpack_context->addOutput()->copyMetadata(v);
captures[v] = r;
return r;
};
subgraph->block()->cloneFrom(block, env);
auto context_type = TupleType::create(
fmap(pack_context->inputs(), [](Value* v) { return v->type(); }));
context->setType(context_type);
pack_context->output()->setType(context_type);
auto closure_tuple =
g->create(prim::TupleConstruct, {}, 1)->insertAfter(pack_context);
closure->output()->replaceAllUsesWith(closure_tuple->output());
closure_tuple->addInput(closure->output());
closure_tuple->addInput(pack_context->output());
closure_tuple->output()->setType(
TupleType::create({closure->output()->type(), std::move(context_type)}));
closure->eraseBlock(0);
closure->g_(attr::Subgraph, std::move(subgraph));
runCleanupPasses(closure->g(attr::Subgraph));
}
static void liftClosures(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* n = *it;
it++;
switch (n->kind()) {
case prim::Closure: {
liftClosure(n);
} break;
default: {
for (Block* b : n->blocks()) {
liftClosures(b);
}
}
}
}
}
void liftClosures(const std::shared_ptr<Graph>& to_clean) {
liftClosures(to_clean->block());
}
} // namespace torch::jit