forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_functional_graphs.cpp
225 lines (196 loc) · 7.29 KB
/
create_functional_graphs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include <torch/csrc/jit/passes/create_functional_graphs.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <cstddef>
#include <limits>
namespace torch::jit {
namespace {
struct FunctionalGraphSlicer {
FunctionalGraphSlicer(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
void run() {
bool changed = true;
// TODO: more sane strategy
size_t MAX_NUM_ITERATIONS = 4;
// First, analyze the functional subset of the graph, and then create
// functional graphs. The graph gets mutated when we create functional
// subgraphs, invalidating the AliasDb, so we need to do our analysis
// first.
for (size_t i = 0; i < MAX_NUM_ITERATIONS && changed; ++i) {
aliasDb_ = std::make_unique<AliasDb>(graph_);
AnalyzeFunctionalSubset(graph_->block());
changed = CreateFunctionalGraphsImpl(graph_->block());
}
}
private:
bool isEmptyFunctionalGraph(Node* n) {
auto g = n->g(attr::Subgraph);
return g->inputs().empty() && g->outputs().empty();
}
void nonConstNodes(Block* block, size_t* num) {
for (auto it = block->nodes().begin();
it != block->nodes().end() && *num < minSubgraphSize_;
++it) {
Node* n = *it;
if (n->kind() == prim::Constant) {
continue;
}
*num = *num + 1;
for (Block* b : n->blocks()) {
nonConstNodes(b, num);
}
}
}
bool inlineIfTooSmall(Node* n) {
AT_ASSERT(n->kind() == prim::FunctionalGraph);
auto subgraph = SubgraphUtils::getSubgraph(n);
size_t num_modes = 0;
nonConstNodes(subgraph->block(), &num_modes);
if (num_modes < minSubgraphSize_) {
SubgraphUtils::unmergeSubgraph(n);
return true;
}
return false;
}
bool CreateFunctionalGraphsImpl(Block* block) {
/*
Iterate the block in reverse and create FunctionalSubgraphs.
When we encounter a node that isn't functional, we skip it. Otherwise,
we try to merge the functional node into the current functional subgraph.
If it can't be merged into the current functional subgraph node, then we
start a functional subgraph group.
*/
bool changed = false;
std::vector<Node*> functional_graph_nodes;
Node* functional_subgraph_node =
graph_->createWithSubgraph(prim::FunctionalGraph)
->insertBefore(block->return_node());
auto reverse_iter = block->nodes().reverse();
std::vector<Value*> graph_outputs;
for (auto it = reverse_iter.begin(); it != reverse_iter.end();) {
Node* n = *it++;
// constants get copied into the graph
if (n->kind() == prim::Constant || n == functional_subgraph_node) {
continue;
}
// if `n` is functional, all of its blocks will be merged into the
// new functional subgraph, so we only need to recurse if it is not
// functional
if (!functional_nodes_.count(n)) {
for (Block* b : n->blocks()) {
auto block_changed = CreateFunctionalGraphsImpl(b);
changed = block_changed && changed;
}
continue;
}
if (n->kind() == prim::FunctionalGraph &&
isEmptyFunctionalGraph(functional_subgraph_node)) {
functional_subgraph_node->destroy();
functional_subgraph_node = n;
continue;
}
changed = true;
if (aliasDb_->moveBeforeTopologicallyValid(n, functional_subgraph_node)) {
SubgraphUtils::mergeNodeIntoSubgraph(n, functional_subgraph_node);
} else {
functional_graph_nodes.emplace_back(functional_subgraph_node);
functional_subgraph_node =
graph_->createWithSubgraph(prim::FunctionalGraph)->insertAfter(n);
SubgraphUtils::mergeNodeIntoSubgraph(n, functional_subgraph_node);
}
}
functional_graph_nodes.emplace_back(functional_subgraph_node);
for (Node* functional_node : functional_graph_nodes) {
if (!inlineIfTooSmall(functional_node)) {
ConstantPooling(functional_node->g(attr::Subgraph));
}
}
return changed;
}
bool AnalyzeFunctionalSubset(Node* n) {
// TODO: clarify hasSideEffects, isNondeterministic
bool is_functional_node = true;
// Functional Graphs are not responsible for maintaining aliasing
// relationships. If an output of a functional graph escapes scope
// or is mutated then we might change semantics of the program if
// aliasing relationships are changed.
// We don't allow any node in the functional graph to output a value
// that escapes scope or is mutated, and we don't allow any mutating nodes
// into the graph.
// - allow functional graphs to have at most one value that can escape scope
// - allow outputs which alias the wildcard set but do not "re-escape"
for (Value* v : n->outputs()) {
bool has_writers = aliasDb_->hasWriters(v);
bool escapes_scope = aliasDb_->escapesScope(v);
if (has_writers) {
mutated_values_.insert(v);
}
is_functional_node = is_functional_node && !escapes_scope && !has_writers;
}
for (Block* block : n->blocks()) {
auto functional_block = AnalyzeFunctionalSubset(block);
is_functional_node = is_functional_node && functional_block;
}
is_functional_node = is_functional_node && !aliasDb_->isMutable(n);
if (is_functional_node) {
functional_nodes_.insert(n);
}
return is_functional_node;
}
void AnalyzeFunctionalSubset(at::ArrayRef<Block*> blocks) {
for (Block* block : blocks) {
AnalyzeFunctionalSubset(block);
}
}
bool AnalyzeFunctionalSubset(Block* block) {
bool is_functional_block = true;
// block inputs will not yet have been iterated through,
// so we need to add them to our set of mutated & escape values.
for (Value* v : block->inputs()) {
bool has_writers = aliasDb_->hasWriters(v);
if (has_writers) {
mutated_values_.insert(v);
}
}
// if a block output is not functional, then the corresponding output for
// the node that contains the block will not be functional either, so we do
// not need to analyze the block outputs here.
for (Node* n : block->nodes()) {
bool functional = AnalyzeFunctionalSubset(n);
is_functional_block = is_functional_block && functional;
}
return is_functional_block;
}
std::unordered_set<Node*> functional_nodes_;
std::unordered_set<Value*> mutated_values_;
std::shared_ptr<Graph> graph_;
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
size_t minSubgraphSize_ = 6;
};
void InlineFunctionalGraphs(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* n = *it;
it++;
for (Block* b : n->blocks()) {
InlineFunctionalGraphs(b);
}
if (n->kind() == prim::FunctionalGraph) {
SubgraphUtils::unmergeSubgraph(n);
}
}
}
} // namespace
void CreateFunctionalGraphs(const std::shared_ptr<Graph>& graph) {
// Run Constant Pooling so constants get hoisted
ConstantPooling(graph);
FunctionalGraphSlicer func(graph);
func.run();
// Creation of Functional Subgraphs & Deinlining creates excess constants
ConstantPooling(graph);
}
void InlineFunctionalGraphs(const std::shared_ptr<Graph>& graph) {
InlineFunctionalGraphs(graph->block());
}
} // namespace torch::jit