forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpectralOps.cpp
608 lines (526 loc) · 23.2 KB
/
SpectralOps.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Config.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Resize.h>
#include <ATen/native/SpectralOpsUtils.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_fft_c2c_native.h>
#include <ATen/ops/_fft_c2r_native.h>
#include <ATen/ops/_fft_r2c_native.h>
#include <ATen/ops/empty.h>
#endif
#if AT_MKL_ENABLED() || AT_POCKETFFT_ENABLED()
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
namespace at { namespace native {
// In real-to-complex transform, MKL FFT only fills half of the values due to
// conjugate symmetry. See native/SpectralUtils.h for more details.
// The following structs are used to fill in the other half with symmetry in
// case of real-to-complex transform with onesided=False flag.
// See NOTE [ Fourier Transform Conjugate Symmetry ] in native/SpectralOpsUtils.h.
template <typename scalar_t>
static __ubsan_ignore_undefined__ // UBSAN gives false positives on using negative indexes with a pointer
void _fft_fill_with_conjugate_symmetry_slice(
Range range, at::ArrayRef<bool> is_mirrored_dim, IntArrayRef signal_half_sizes,
IntArrayRef in_strides, const scalar_t * in_ptr,
IntArrayRef out_strides, scalar_t * out_ptr) {
const auto ndim = signal_half_sizes.size();
DimVector iter_index(ndim, 0);
// We explicitly loop over one row, then use this lambda to iterate over
// n-dimensions. This advances iter_index by one row, while updating in_ptr
// and out_ptr to point to the new row of data.
auto advance_index = [&] () __ubsan_ignore_undefined__ {
for (const auto i : c10::irange(1, iter_index.size())) {
if (iter_index[i] + 1 < signal_half_sizes[i]) {
++iter_index[i];
in_ptr += in_strides[i];
if (is_mirrored_dim[i]) {
if (iter_index[i] == 1) {
out_ptr += (signal_half_sizes[i] - 1) * out_strides[i];
} else {
out_ptr -= out_strides[i];
}
} else {
out_ptr += out_strides[i];
}
return;
}
in_ptr -= in_strides[i] * iter_index[i];
if (is_mirrored_dim[i]) {
out_ptr -= out_strides[i];
} else {
out_ptr -= out_strides[i] * iter_index[i];
}
iter_index[i] = 0;
}
};
// The data slice we operate on may start part-way into the data
// Update iter_index and pointers to reference the start of the slice
if (range.begin > 0) {
iter_index[0] = range.begin % signal_half_sizes[0];
auto linear_idx = range.begin / signal_half_sizes[0];
for (size_t i = 1; i < ndim && linear_idx > 0; ++i) {
iter_index[i] = linear_idx % signal_half_sizes[i];
linear_idx = linear_idx / signal_half_sizes[i];
if (iter_index[i] > 0) {
in_ptr += in_strides[i] * iter_index[i];
if (is_mirrored_dim[i]) {
out_ptr += out_strides[i] * (signal_half_sizes[i] - iter_index[i]);
} else {
out_ptr += out_strides[i] * iter_index[i];
}
}
}
}
auto numel_remaining = range.end - range.begin;
if (is_mirrored_dim[0]) {
// Explicitly loop over a Hermitian mirrored dimension
if (iter_index[0] > 0) {
auto end = std::min(signal_half_sizes[0], iter_index[0] + numel_remaining);
for (const auto i : c10::irange(iter_index[0], end)) {
out_ptr[(signal_half_sizes[0] - i) * out_strides[0]] = std::conj(in_ptr[i * in_strides[0]]);
}
numel_remaining -= (end - iter_index[0]);
iter_index[0] = 0;
advance_index();
}
while (numel_remaining > 0) {
auto end = std::min(signal_half_sizes[0], numel_remaining);
out_ptr[0] = std::conj(in_ptr[0]);
for (const auto i : c10::irange(1, end)) {
out_ptr[(signal_half_sizes[0] - i) * out_strides[0]] = std::conj(in_ptr[i * in_strides[0]]);
}
numel_remaining -= end;
advance_index();
}
} else {
// Explicit loop over a non-mirrored dimension, so just a simple conjugated copy
while (numel_remaining > 0) {
auto end = std::min(signal_half_sizes[0], iter_index[0] + numel_remaining);
for (int64_t i = iter_index[0]; i != end; ++i) {
out_ptr[i * out_strides[0]] = std::conj(in_ptr[i * in_strides[0]]);
}
numel_remaining -= (end - iter_index[0]);
iter_index[0] = 0;
advance_index();
}
}
}
static void _fft_fill_with_conjugate_symmetry_cpu_(
ScalarType dtype, IntArrayRef mirror_dims, IntArrayRef signal_half_sizes,
IntArrayRef in_strides_bytes, const void * in_data,
IntArrayRef out_strides_bytes, void * out_data) {
// Convert strides from bytes to elements
const auto element_size = scalarTypeToTypeMeta(dtype).itemsize();
const auto ndim = signal_half_sizes.size();
DimVector in_strides(ndim), out_strides(ndim);
for (const auto i : c10::irange(ndim)) {
TORCH_INTERNAL_ASSERT(in_strides_bytes[i] % element_size == 0);
in_strides[i] = in_strides_bytes[i] / element_size;
TORCH_INTERNAL_ASSERT(out_strides_bytes[i] % element_size == 0);
out_strides[i] = out_strides_bytes[i] / element_size;
}
// Construct boolean mask for mirrored dims
c10::SmallVector<bool, at::kDimVectorStaticSize> is_mirrored_dim(ndim, false);
for (const auto& dim : mirror_dims) {
is_mirrored_dim[dim] = true;
}
const auto numel = c10::multiply_integers(signal_half_sizes);
AT_DISPATCH_COMPLEX_TYPES(dtype, "_fft_fill_with_conjugate_symmetry", [&] {
at::parallel_for(0, numel, at::internal::GRAIN_SIZE,
[&](int64_t begin, int64_t end) {
_fft_fill_with_conjugate_symmetry_slice(
{begin, end}, is_mirrored_dim, signal_half_sizes,
in_strides, static_cast<const scalar_t*>(in_data),
out_strides, static_cast<scalar_t*>(out_data));
});
});
}
// Register this one implementation for all cpu types instead of compiling multiple times
REGISTER_ARCH_DISPATCH(fft_fill_with_conjugate_symmetry_stub, DEFAULT, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_AVX2_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_AVX512_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_ZVECTOR_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_VSX_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
REGISTER_SVE256_DISPATCH(fft_fill_with_conjugate_symmetry_stub, &_fft_fill_with_conjugate_symmetry_cpu_)
// _out variants can be shared between PocketFFT and MKL
Tensor& _fft_r2c_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,
bool onesided, Tensor& out) {
auto result = _fft_r2c_mkl(self, dim, normalization, /*onesided=*/true);
if (onesided) {
resize_output(out, result.sizes());
return out.copy_(result);
}
resize_output(out, self.sizes());
auto last_dim = dim.back();
auto last_dim_halfsize = result.sizes()[last_dim];
auto out_slice = out.slice(last_dim, 0, last_dim_halfsize);
out_slice.copy_(result);
at::native::_fft_fill_with_conjugate_symmetry_(out, dim);
return out;
}
Tensor& _fft_c2r_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,
int64_t last_dim_size, Tensor& out) {
auto result = _fft_c2r_mkl(self, dim, normalization, last_dim_size);
resize_output(out, result.sizes());
return out.copy_(result);
}
Tensor& _fft_c2c_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,
bool forward, Tensor& out) {
auto result = _fft_c2c_mkl(self, dim, normalization, forward);
resize_output(out, result.sizes());
return out.copy_(result);
}
}} // namespace at::native
#endif /* AT_MKL_ENABLED() || AT_POCKETFFT_ENABLED() */
#if AT_POCKETFFT_ENABLED()
#include <pocketfft_hdronly.h>
namespace at { namespace native {
namespace {
using namespace pocketfft;
stride_t stride_from_tensor(const Tensor& t) {
stride_t stride(t.strides().begin(), t.strides().end());
for(auto& s: stride) {
s *= t.element_size();
}
return stride;
}
inline shape_t shape_from_tensor(const Tensor& t) {
return shape_t(t.sizes().begin(), t.sizes().end());
}
template<typename T>
inline std::complex<T> *tensor_cdata(Tensor& t) {
return reinterpret_cast<std::complex<T>*>(t.data_ptr<c10::complex<T>>());
}
template<typename T>
inline const std::complex<T> *tensor_cdata(const Tensor& t) {
return reinterpret_cast<const std::complex<T>*>(t.const_data_ptr<c10::complex<T>>());
}
template<typename T>
T compute_fct(int64_t size, int64_t normalization) {
constexpr auto one = static_cast<T>(1);
switch (static_cast<fft_norm_mode>(normalization)) {
case fft_norm_mode::none: return one;
case fft_norm_mode::by_n: return one / static_cast<T>(size);
case fft_norm_mode::by_root_n: return one / std::sqrt(static_cast<T>(size));
}
AT_ERROR("Unsupported normalization type", normalization);
}
template<typename T>
T compute_fct(const Tensor& t, IntArrayRef dim, int64_t normalization) {
if (static_cast<fft_norm_mode>(normalization) == fft_norm_mode::none) {
return static_cast<T>(1);
}
const auto& sizes = t.sizes();
int64_t n = 1;
for(auto idx: dim) {
n *= sizes[idx];
}
return compute_fct<T>(n, normalization);
}
} // anonymous namespace
Tensor _fft_c2r_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
auto in_sizes = self.sizes();
DimVector out_sizes(in_sizes.begin(), in_sizes.end());
out_sizes[dim.back()] = last_dim_size;
auto out = at::empty(out_sizes, self.options().dtype(c10::toRealValueType(self.scalar_type())));
pocketfft::shape_t axes(dim.begin(), dim.end());
if (self.scalar_type() == kComplexFloat) {
pocketfft::c2r(shape_from_tensor(out), stride_from_tensor(self), stride_from_tensor(out), axes, false,
tensor_cdata<float>(self),
out.data_ptr<float>(), compute_fct<float>(out, dim, normalization));
} else {
pocketfft::c2r(shape_from_tensor(out), stride_from_tensor(self), stride_from_tensor(out), axes, false,
tensor_cdata<double>(self),
out.data_ptr<double>(), compute_fct<double>(out, dim, normalization));
}
return out;
}
Tensor _fft_r2c_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, bool onesided) {
TORCH_CHECK(self.is_floating_point());
auto input_sizes = self.sizes();
DimVector out_sizes(input_sizes.begin(), input_sizes.end());
auto last_dim = dim.back();
auto last_dim_halfsize = (input_sizes[last_dim]) / 2 + 1;
if (onesided) {
out_sizes[last_dim] = last_dim_halfsize;
}
auto out = at::empty(out_sizes, self.options().dtype(c10::toComplexType(self.scalar_type())));
pocketfft::shape_t axes(dim.begin(), dim.end());
if (self.scalar_type() == kFloat) {
pocketfft::r2c(shape_from_tensor(self), stride_from_tensor(self), stride_from_tensor(out), axes, true,
self.const_data_ptr<float>(),
tensor_cdata<float>(out), compute_fct<float>(self, dim, normalization));
} else {
pocketfft::r2c(shape_from_tensor(self), stride_from_tensor(self), stride_from_tensor(out), axes, true,
self.const_data_ptr<double>(),
tensor_cdata<double>(out), compute_fct<double>(self, dim, normalization));
}
if (!onesided) {
at::native::_fft_fill_with_conjugate_symmetry_(out, dim);
}
return out;
}
Tensor _fft_c2c_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, bool forward) {
TORCH_CHECK(self.is_complex());
if (dim.empty()) {
return self.clone();
}
auto out = at::empty(self.sizes(), self.options());
pocketfft::shape_t axes(dim.begin(), dim.end());
if (self.scalar_type() == kComplexFloat) {
pocketfft::c2c(shape_from_tensor(self), stride_from_tensor(self), stride_from_tensor(out), axes, forward,
tensor_cdata<float>(self),
tensor_cdata<float>(out), compute_fct<float>(self, dim, normalization));
} else {
pocketfft::c2c(shape_from_tensor(self), stride_from_tensor(self), stride_from_tensor(out), axes, forward,
tensor_cdata<double>(self),
tensor_cdata<double>(out), compute_fct<double>(self, dim, normalization));
}
return out;
}
}}
#elif AT_MKL_ENABLED()
#include <ATen/Dispatch.h>
#include <algorithm>
#include <numeric>
#include <cmath>
#include <mkl_dfti.h>
#include <ATen/mkl/Exceptions.h>
#include <ATen/mkl/Descriptors.h>
#include <ATen/mkl/Limits.h>
namespace at { namespace native {
// Constructs an mkl-fft plan descriptor representing the desired transform
// For complex types, strides are in units of 2 * element_size(dtype)
// sizes are for the full signal, including batch size and always two-sided
static DftiDescriptor _plan_mkl_fft(
IntArrayRef in_strides, IntArrayRef out_strides, IntArrayRef sizes,
bool complex_input, bool complex_output,
int64_t normalization, bool forward, ScalarType dtype) {
const int64_t signal_ndim = sizes.size() - 1;
TORCH_INTERNAL_ASSERT(in_strides.size() == sizes.size());
TORCH_INTERNAL_ASSERT(out_strides.size() == sizes.size());
// precision
const DFTI_CONFIG_VALUE prec = [&]{
switch (c10::toRealValueType(dtype)) {
case ScalarType::Float: return DFTI_SINGLE;
case ScalarType::Double: return DFTI_DOUBLE;
default: TORCH_CHECK(false, "MKL FFT doesn't support tensors of type: ", dtype);
}
}();
// signal type
const DFTI_CONFIG_VALUE signal_type = [&]{
if (forward) {
return complex_input ? DFTI_COMPLEX : DFTI_REAL;
} else {
return complex_output ? DFTI_COMPLEX : DFTI_REAL;
}
}();
// create descriptor with signal size
using MklDimVector = c10::SmallVector<MKL_LONG, at::kDimVectorStaticSize>;
MklDimVector mkl_signal_sizes(sizes.begin() + 1, sizes.end());
DftiDescriptor descriptor;
descriptor.init(prec, signal_type, signal_ndim, mkl_signal_sizes.data());
// out of place FFT
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), DFTI_PLACEMENT, DFTI_NOT_INPLACE));
// batch mode
MKL_LONG mkl_batch_size = sizes[0];
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), DFTI_NUMBER_OF_TRANSFORMS, mkl_batch_size));
// batch dim stride, i.e., dist between each data
TORCH_CHECK(in_strides[0] <= MKL_LONG_MAX && out_strides[0] <= MKL_LONG_MAX);
MKL_LONG idist = in_strides[0];
MKL_LONG odist = out_strides[0];
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), DFTI_INPUT_DISTANCE, idist));
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), DFTI_OUTPUT_DISTANCE, odist));
// signal strides
// first val is offset, set to zero (ignored)
MklDimVector mkl_istrides(1 + signal_ndim, 0), mkl_ostrides(1 + signal_ndim, 0);
for (int64_t i = 1; i <= signal_ndim; i++) {
TORCH_CHECK(in_strides[i] <= MKL_LONG_MAX && out_strides[i] <= MKL_LONG_MAX);
mkl_istrides[i] = in_strides[i];
mkl_ostrides[i] = out_strides[i];
}
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), DFTI_INPUT_STRIDES, mkl_istrides.data()));
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), DFTI_OUTPUT_STRIDES, mkl_ostrides.data()));
// if conjugate domain of real is involved, set standard CCE storage type
// this will become default in MKL in future
if (!complex_input || !complex_output) {
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX));
}
// rescale if requested
const auto norm = static_cast<fft_norm_mode>(normalization);
int64_t signal_numel = c10::multiply_integers(IntArrayRef(sizes.data() + 1, signal_ndim));
if (norm != fft_norm_mode::none) {
const double scale = (
(norm == fft_norm_mode::by_root_n) ?
1.0 / std::sqrt(static_cast<double>(signal_numel)) :
1.0 / static_cast<double>(signal_numel));
const auto scale_direction = forward ? DFTI_FORWARD_SCALE : DFTI_BACKWARD_SCALE;
MKL_DFTI_CHECK(DftiSetValue(descriptor.get(), scale_direction, scale));
}
if (sizeof(MKL_LONG) < sizeof(int64_t)) {
TORCH_CHECK(signal_numel <= MKL_LONG_MAX,
"MKL FFT: input signal numel exceeds allowed range [1, ", MKL_LONG_MAX, "]");
}
// finalize
MKL_DFTI_CHECK(DftiCommitDescriptor(descriptor.get()));
return descriptor;
}
// Execute a general fft operation (can be c2c, onesided r2c or onesided c2r)
static Tensor& _exec_fft(Tensor& out, const Tensor& self, IntArrayRef out_sizes,
IntArrayRef dim, int64_t normalization, bool forward) {
const auto ndim = self.dim();
const int64_t signal_ndim = dim.size();
const auto batch_dims = ndim - signal_ndim;
// Permute dimensions so batch dimensions come first, and in stride order
// This maximizes data locality when collapsing to a single batch dimension
DimVector dim_permute(ndim);
std::iota(dim_permute.begin(), dim_permute.end(), int64_t{0});
c10::SmallVector<bool, kDimVectorStaticSize> is_transformed_dim(ndim);
for (const auto& d : dim) {
is_transformed_dim[d] = true;
}
auto batch_end = std::partition(dim_permute.begin(), dim_permute.end(),
[&](int64_t d) {return !is_transformed_dim[d]; });
auto self_strides = self.strides();
std::sort(dim_permute.begin(), batch_end,
[&](int64_t a, int64_t b) { return self_strides[a] > self_strides[b]; });
std::copy(dim.cbegin(), dim.cend(), batch_end);
auto input = self.permute(dim_permute);
// Collapse batch dimensions into a single dimension
DimVector batched_sizes(signal_ndim + 1);
batched_sizes[0] = -1;
std::copy(input.sizes().cbegin() + batch_dims, input.sizes().cend(), batched_sizes.begin() + 1);
input = input.reshape(batched_sizes);
const auto batch_size = input.sizes()[0];
DimVector signal_size(signal_ndim + 1);
signal_size[0] = batch_size;
for (const auto i : c10::irange(signal_ndim)) {
auto in_size = input.sizes()[i + 1];
auto out_size = out_sizes[dim[i]];
signal_size[i + 1] = std::max(in_size, out_size);
TORCH_INTERNAL_ASSERT(in_size == signal_size[i + 1] ||
in_size == (signal_size[i + 1] / 2) + 1);
TORCH_INTERNAL_ASSERT(out_size == signal_size[i + 1] ||
out_size == (signal_size[i + 1] / 2) + 1);
}
batched_sizes[0] = batch_size;
DimVector batched_out_sizes(batched_sizes.begin(), batched_sizes.end());
for (const auto i : c10::irange(dim.size())) {
batched_out_sizes[i + 1] = out_sizes[dim[i]];
}
const auto value_type = c10::toRealValueType(input.scalar_type());
out.resize_(batched_out_sizes, MemoryFormat::Contiguous);
auto descriptor = _plan_mkl_fft(
input.strides(), out.strides(), signal_size, input.is_complex(),
out.is_complex(), normalization, forward, value_type);
// run the FFT
if (forward) {
MKL_DFTI_CHECK(DftiComputeForward(descriptor.get(), const_cast<void*>(input.const_data_ptr()), out.data_ptr()));
} else {
MKL_DFTI_CHECK(DftiComputeBackward(descriptor.get(), const_cast<void*>(input.const_data_ptr()), out.data_ptr()));
}
// Inplace reshaping to original batch shape and inverting the dimension permutation
DimVector out_strides(ndim);
int64_t batch_numel = 1;
for (int64_t i = batch_dims - 1; i >= 0; --i) {
out_strides[dim_permute[i]] = batch_numel * out.strides()[0];
batch_numel *= out_sizes[dim_permute[i]];
}
for (const auto i : c10::irange(batch_dims, ndim)) {
out_strides[dim_permute[i]] = out.strides()[1 + (i - batch_dims)];
}
out.as_strided_(out_sizes, out_strides, out.storage_offset());
return out;
}
// Sort transform dimensions by input layout, for best performance
// exclude_last is for onesided transforms where the last dimension cannot be reordered
static DimVector _sort_dims(const Tensor& self, IntArrayRef dim, bool exclude_last=false) {
DimVector sorted_dims(dim.begin(), dim.end());
auto self_strides = self.strides();
std::sort(sorted_dims.begin(), sorted_dims.end() - exclude_last,
[&](int64_t a, int64_t b) { return self_strides[a] > self_strides[b]; });
return sorted_dims;
}
// n-dimensional complex to real IFFT
Tensor _fft_c2r_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
TORCH_CHECK(self.is_complex());
// NOTE: Multi-dimensional C2R transforms don't agree with numpy in cases
// where the input isn't strictly Hermitian-symmetric. Instead, we use a
// multi-dim C2C transform followed by a 1D C2R transform.
//
// Such inputs are technically out of contract though, so maybe a disagreement
// is okay.
auto input = self;
if (dim.size() > 1) {
auto c2c_dims = dim.slice(0, dim.size() - 1);
input = _fft_c2c_mkl(self, c2c_dims, normalization, /*forward=*/false);
dim = dim.slice(dim.size() - 1);
}
auto in_sizes = input.sizes();
DimVector out_sizes(in_sizes.begin(), in_sizes.end());
out_sizes[dim.back()] = last_dim_size;
auto out = at::empty(out_sizes, self.options().dtype(c10::toRealValueType(self.scalar_type())));
return _exec_fft(out, input, out_sizes, dim, normalization, /*forward=*/false);
}
// n-dimensional real to complex FFT
Tensor _fft_r2c_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, bool onesided) {
TORCH_CHECK(self.is_floating_point());
auto input_sizes = self.sizes();
DimVector out_sizes(input_sizes.begin(), input_sizes.end());
auto last_dim = dim.back();
auto last_dim_halfsize = (input_sizes[last_dim]) / 2 + 1;
if (onesided) {
out_sizes[last_dim] = last_dim_halfsize;
}
auto sorted_dims = _sort_dims(self, dim, /*exclude_last=*/true);
auto out = at::empty(out_sizes, self.options().dtype(c10::toComplexType(self.scalar_type())));
_exec_fft(out, self, out_sizes, sorted_dims, normalization, /*forward=*/true);
if (!onesided) {
at::native::_fft_fill_with_conjugate_symmetry_(out, dim);
}
return out;
}
// n-dimensional complex to complex FFT/IFFT
Tensor _fft_c2c_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, bool forward) {
TORCH_CHECK(self.is_complex());
if (dim.empty()) {
return self.clone();
}
const auto sorted_dims = _sort_dims(self, dim);
auto out = at::empty(self.sizes(), self.options());
return _exec_fft(out, self, self.sizes(), sorted_dims, normalization, forward);
}
}} // namespace at::native
#else
namespace at { namespace native {
REGISTER_NO_CPU_DISPATCH(fft_fill_with_conjugate_symmetry_stub);
Tensor _fft_c2r_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
AT_ERROR("fft: ATen not compiled with FFT support");
}
Tensor _fft_r2c_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, bool onesided) {
AT_ERROR("fft: ATen not compiled with FFT support");
}
Tensor _fft_c2c_mkl(const Tensor& self, IntArrayRef dim, int64_t normalization, bool forward) {
AT_ERROR("fft: ATen not compiled with FFT support");
}
Tensor& _fft_r2c_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,
bool onesided, Tensor& out) {
AT_ERROR("fft: ATen not compiled with FFT support");
}
Tensor& _fft_c2r_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,
int64_t last_dim_size, Tensor& out) {
AT_ERROR("fft: ATen not compiled with FFT support");
}
Tensor& _fft_c2c_mkl_out(const Tensor& self, IntArrayRef dim, int64_t normalization,
bool forward, Tensor& out) {
AT_ERROR("fft: ATen not compiled with FFT support");
}
}} // namespace at::native
#endif