-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathassistant_graph.py
421 lines (353 loc) · 14.2 KB
/
assistant_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import json
from datetime import datetime, timezone
from langchain_core.documents import Document
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage, ToolMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableConfig
from langgraph.graph import StateGraph, START, END
from pydantic import BaseModel
from typing import cast
from langgraph_mcp.configuration import Configuration
from langgraph_mcp import mcp_wrapper as mcp
from langgraph_mcp.retriever import make_retriever
from langgraph_mcp.state import InputState, State
from langgraph_mcp.utils.utils import get_message_text, load_chat_model, format_docs
from langgraph_mcp.utils.openapi_spec import OpenAPISpec
from langgraph_mcp.utils.openapi_utils import openapi_spec_to_openai_fn
NOTHING_RELEVANT = "No MCP server with an appropriate tool to address current context" # When available MCP servers seem to be irrelevant for the query
IDK_RESPONSE = "No appropriate tool available." # Default response where the current MCP Server can't help
OTHER_SERVERS_MORE_RELEVANT = "Other servers are more relevant." # Default response when other servers are more relevant than the currnet one
AMBIGUITY_PREFIX = (
"Ambiguity:" # Prefix to indicate ambiguity when asking the user for clarification
)
################## MCP Server Router: Sub-graph Components ###################
class SearchQuery(BaseModel):
"""Search the indexed documents for a query."""
query: str
async def generate_routing_query(
state: State, *, config: RunnableConfig
) -> dict[str, list[str]]:
"""Generate a routing query based on the current state and configuration.
This function analyzes the messages in the state and generates an appropriate
search query. For the first message, it uses the user's input directly.
For subsequent messages, it uses a language model to generate a refined query.
Args:
state (State): The current state containing messages and other information.
config (RunnableConfig | None, optional): Configuration for the query generation process.
Returns:
dict[str, list[str]]: A dictionary with a 'queries' key containing a list of generated queries.
Behavior:
- If there's only one message (first user input), it uses that as the query.
- For subsequent messages, it uses a language model to generate a refined query.
- The function uses the configuration to set up the prompt and model for query generation.
"""
messages = state.messages
if len(messages) == 1:
# It's the first user question. We will use the input directly to search.
human_input = get_message_text(messages[-1])
return {"queries": [human_input]}
else:
configuration = Configuration.from_runnable_config(config)
# Feel free to customize the prompt, model, and other logic!
prompt = ChatPromptTemplate.from_messages(
[
("system", configuration.routing_query_system_prompt),
("placeholder", "{messages}"),
]
)
model = load_chat_model(
configuration.routing_query_model
).with_structured_output(SearchQuery)
message_value = await prompt.ainvoke(
{
"messages": state.messages,
"queries": "\n- ".join(state.queries),
"system_time": datetime.now(tz=timezone.utc).isoformat(),
},
config,
)
generated = cast(SearchQuery, await model.ainvoke(message_value, config))
return {
"queries": [generated.query],
}
async def retrieve(
state: State, *, config: RunnableConfig
) -> dict[str, list[Document]]:
"""Retrieve documents based on the latest query in the state.
This function takes the current state and configuration, uses the latest query
from the state to retrieve relevant documents using the retriever, and returns
the retrieved documents.
Args:
state (State): The current state containing queries and the retriever.
config (RunnableConfig | None, optional): Configuration for the retrieval process.
Returns:
dict[str, list[Document]]: A dictionary with a single key "retrieved_docs"
containing a list of retrieved Document objects.
"""
with make_retriever(config) as retriever:
response = await retriever.ainvoke(state.queries[-1], config)
return {"retrieved_docs": response}
async def route(
state: State, *, config: RunnableConfig
) -> dict[str, list[BaseMessage]]:
"""Call the LLM powering our "agent"."""
configuration = Configuration.from_runnable_config(config)
# Feel free to customize the prompt, model, and other logic!
prompt = ChatPromptTemplate.from_messages(
[
("system", configuration.routing_response_system_prompt),
("placeholder", "{messages}"),
]
)
model = load_chat_model(configuration.routing_response_model)
retrieved_docs = format_docs(state.retrieved_docs)
message_value = await prompt.ainvoke(
{
"messages": state.messages,
"retrieved_docs": retrieved_docs,
"nothing_relevant": NOTHING_RELEVANT,
"ambiguity_prefix": AMBIGUITY_PREFIX,
"system_time": datetime.now(tz=timezone.utc).isoformat(),
},
config,
)
response = await model.ainvoke(message_value, config)
if response.content == NOTHING_RELEVANT or response.content.startswith(
AMBIGUITY_PREFIX
):
# No relevant server found or ambiguity in the response
return {"messages": [response]}
mcp_server = (
response.content.split(":")[1].strip()
if ":" in response.content
else response.content
)
if len(mcp_server.split(" ")) > 1:
# Likely a clarification. model has not adhered to the prompt instructions
return {"messages": [response]}
return {"current_mcp_server": mcp_server}
def decide_mcp_or_not(state: State) -> str:
"""Decide whether to route to MCP server processing or not"""
if state.current_mcp_server:
return "mcp_orchestrator"
return END
################## MCP Server Router: Sub-graph Components ###################
async def mcp_orchestrator(
state: State, *, config: RunnableConfig
) -> dict[str, list[BaseMessage]]:
"""Orchestrates MCP server processing."""
# Fetch the current MCP server from state
server_name = state.current_mcp_server
# Fetch mcp server config
configuration = Configuration.from_runnable_config(config)
mcp_servers = configuration.mcp_server_config["mcpServers"]
server_config = mcp_servers[server_name]
def list_other_servers(servers: list[tuple[str, str]], current_server: str) -> str:
"""
Generates a description listing all servers except the current one.
Args:
servers (list[tuple[str, str]]): A list of tuples where each tuple contains a server name and its description.
current_server (str): The name of the current server to exclude from the list.
Returns:
str: A formatted string listing the other servers and their descriptions.
"""
return "\n".join(
f"- {name}: {description}"
for name, description in servers
if name != current_server
)
# Fetch tools from the MCP server
tools = []
args = (
server_config["args"][1:]
if server_config["args"][0] == "-y"
else server_config["args"]
)
# Separate integration for [email protected]
openapi_path = args[1]
# TODO: refactor
# Get the openapi file as a json
with open(openapi_path, "r") as file:
openapi_spec = json.load(file) # Converts JSON to a Python dictionary
# convert the spec to openai tools
tools = await mcp.apply(
server_name,
server_config,
mcp.GetOpenAPITools(openapi_spec),
)
else:
tools = await mcp.apply(server_name, server_config, mcp.GetTools())
# Prepare the LLM
prompt = ChatPromptTemplate.from_messages(
[
("system", configuration.mcp_orchestrator_system_prompt),
("placeholder", "{messages}"),
]
)
model = load_chat_model(configuration.mcp_orchestrator_model)
message_value = await prompt.ainvoke(
{
"messages": state.messages,
"idk_response": IDK_RESPONSE,
"other_servers": list_other_servers(
configuration.get_mcp_server_descriptions(), current_server=server_name
),
"other_servers_response": OTHER_SERVERS_MORE_RELEVANT,
"system_time": datetime.now(tz=timezone.utc).isoformat(),
},
config,
)
# Bind tools to model and invoke
response = await model.bind_tools(tools).ainvoke(message_value, config)
# If the model has an AI response with a tool_call, find the selected tool
current_tool = None
if response.__class__ == AIMessage and response.tool_calls:
current_tool = next(
(
tool
for tool in tools
if tool["name"] == response.tool_calls[0].get("name")
),
None,
)
if (
response.content == IDK_RESPONSE
or response.content == OTHER_SERVERS_MORE_RELEVANT
):
"""model doesn't know how to proceed"""
if state.messages[-1].__class__ != ToolMessage:
"""and this is not immediately after a tool call response"""
# let's setup for routing again
return {"current_mcp_server": None}
return {"messages": [response], "current_tool": current_tool}
async def refine_tool_call(
state: State, *, config: RunnableConfig
) -> dict[str, list[BaseMessage]]:
"""Call the MCP server tool."""
if state.current_tool == None:
return
# Fetch the current MCP server from state
server_name = state.current_mcp_server
# Fetch mcp server config
configuration = Configuration.from_runnable_config(config)
mcp_servers = configuration.mcp_server_config["mcpServers"]
server_config = mcp_servers[server_name]
# Get the tool info
tool_info = state.current_tool.get("metadata", {}).get("tool_info", {})
# Bind the tool call to the model
# Prepare the LLM
prompt = ChatPromptTemplate.from_messages(
[
("system", configuration.tool_refiner_prompt),
("placeholder", "{messages}"),
]
)
model = load_chat_model(configuration.tool_refiner_model)
message_value = await prompt.ainvoke(
{
"messages": state.messages[:-1],
"tool_info": str(tool_info),
"system_time": datetime.now(tz=timezone.utc).isoformat(),
},
config,
)
# get the last response id
last_msg_id = state.messages[-1].id
# Bind tools to model and invoke
response = await model.bind_tools([state.current_tool]).ainvoke(
message_value, config
)
response.id = last_msg_id
return {"messages": [response], "current_tool": None}
async def mcp_tool_call(
state: State, *, config: RunnableConfig
) -> dict[str, list[BaseMessage]]:
"""Call the MCP server tool."""
# Fetch the current MCP server from state
server_name = state.current_mcp_server
# Fetch mcp server config
configuration = Configuration.from_runnable_config(config)
mcp_servers = configuration.mcp_server_config["mcpServers"]
server_config = mcp_servers[server_name]
# Execute MCP server Tool
tool_call = state.messages[-1].tool_calls[0]
try:
tool_output = await mcp.apply(
server_name,
server_config,
mcp.RunTool(tool_call["name"], **tool_call["args"]),
)
except Exception as e:
tool_output = f"Error: {e}"
return {
"messages": [ToolMessage(content=tool_output, tool_call_id=tool_call["id"])]
}
def route_tools(state: State) -> str:
"""
Route to the mcp_tool_call if last message has tool calls.
Otherwise, route to the END.
"""
last_message = state.messages[-1]
if last_message.__class__ == HumanMessage:
return "generate_routing_query"
if last_message.model_dump().get("tool_calls"): # suggests tool calls
return "refine_tool_call"
if (
last_message.__class__ == ToolMessage
): # re-routing. todo: check if HITL makes more sense?
return "generate_routing_query"
return END
############################# Subgraph decider ###############################
def decide_subgraph(state: State) -> str:
"""
Route to MCP Server Router sub-graph if there is no state.current_mcp_server
else route to MCP Server processing sub-graph.
"""
if state.current_mcp_server:
return "mcp_orchestrator"
return "generate_routing_query"
################################## Wiring ####################################
builder = StateGraph(State, input=InputState, config_schema=Configuration)
builder.add_node(generate_routing_query)
builder.add_node(retrieve)
builder.add_node(route)
builder.add_node(mcp_orchestrator)
builder.add_node(refine_tool_call)
builder.add_node(mcp_tool_call)
builder.add_conditional_edges(
START,
decide_subgraph,
{
"generate_routing_query": "generate_routing_query",
"mcp_orchestrator": "mcp_orchestrator",
},
)
builder.add_edge("generate_routing_query", "retrieve")
builder.add_edge("retrieve", "route")
builder.add_conditional_edges(
"route",
decide_mcp_or_not,
{
"mcp_orchestrator": "mcp_orchestrator",
END: END,
},
)
builder.add_conditional_edges(
"mcp_orchestrator",
route_tools,
{
"mcp_tool_call": "mcp_tool_call",
"generate_routing_query": "generate_routing_query",
"refine_tool_call": "refine_tool_call",
END: END,
},
)
builder.add_edge("refine_tool_call", "mcp_tool_call")
builder.add_edge("mcp_tool_call", "mcp_orchestrator")
graph = builder.compile(
interrupt_before=[], # if you want to update the state before calling the tools
interrupt_after=[],
)
graph.name = "AssistantGraph"