Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

espefuse.py reports strapping pin for ESP32-S3 is GPIO10 instead of GPIO3 (ESPTOOL-967) #1037

Closed
1 task done
GrantGeno opened this issue Nov 21, 2024 · 2 comments
Closed
1 task done

Comments

@GrantGeno
Copy link

Operating System

Win10

Esptool Version

espefuse.py v4.8.1

Python Version

Python 3.11.2 (tags/v3.11.2:878ead1, Feb 7 2023, 16:38:35) [MSC v.1934 64 bit (AMD64)] on win32

Chip Description

ESP32-S3-WROOM-1

Device Description

ESP32-S3-DevKitC-1 v1.0

When I run the espefuse utility, it is telling me, in the comments for STRAP_JTAG_SEL, that the strapping pin for JTAG switching is GPIO10, but everything I've read says GPIO3. Which is correct?

Hardware Configuration

DevKitC (probably two years old) with single USB cable connected to UART bridge chip (CP210x) output.

How is Esptool Run

Both command line (powershell) and espefuse.exe

Full Esptool Command Line that Was Run

espefuse.py --port COM10 summary

Esptool Output

espefuse.py v4.8.1
Connecting....
Detecting chip type... ESP32-S3

=== Run "summary" command ===
EFUSE_NAME (Block) Description  = [Meaningful Value] [Readable/Writeable] (Hex Value)
----------------------------------------------------------------------------------------
Calibration fuses:
K_RTC_LDO (BLOCK1)                                 BLOCK1 K_RTC_LDO                                   = 32 R/W (0b0001000)
K_DIG_LDO (BLOCK1)                                 BLOCK1 K_DIG_LDO                                   = -32 R/W (0b1001000)
V_RTC_DBIAS20 (BLOCK1)                             BLOCK1 voltage of rtc dbias20                      = 68 R/W (0x11)
V_DIG_DBIAS20 (BLOCK1)                             BLOCK1 voltage of digital dbias20                  = -64 R/W (0x90)
DIG_DBIAS_HVT (BLOCK1)                             BLOCK1 digital dbias when hvt                      = -40 R/W (0b11010)
ADC2_CAL_VOL_ATTEN3 (BLOCK1)                       ADC2 calibration voltage at atten3                 = 104 R/W (0b011010)
TEMP_CALIB (BLOCK2)                                Temperature calibration data                       = -10.600000000000001 R/W (0b101101010)
OCODE (BLOCK2)                                     ADC OCode                                          = 97 R/W (0x61)
ADC1_INIT_CODE_ATTEN0 (BLOCK2)                     ADC1 init code at atten0                           = -20 R/W (0x85)
ADC1_INIT_CODE_ATTEN1 (BLOCK2)                     ADC1 init code at atten1                           = 120 R/W (0b011110)
ADC1_INIT_CODE_ATTEN2 (BLOCK2)                     ADC1 init code at atten2                           = 108 R/W (0b011011)
ADC1_INIT_CODE_ATTEN3 (BLOCK2)                     ADC1 init code at atten3                           = 108 R/W (0b011011)
ADC2_INIT_CODE_ATTEN0 (BLOCK2)                     ADC2 init code at atten0                           = -140 R/W (0xa3)
ADC2_INIT_CODE_ATTEN1 (BLOCK2)                     ADC2 init code at atten1                           = -8 R/W (0b100010)
ADC2_INIT_CODE_ATTEN2 (BLOCK2)                     ADC2 init code at atten2                           = 56 R/W (0b001110)
ADC2_INIT_CODE_ATTEN3 (BLOCK2)                     ADC2 init code at atten3                           = 112 R/W (0b011100)
ADC1_CAL_VOL_ATTEN0 (BLOCK2)                       ADC1 calibration voltage at atten0                 = 416 R/W (0x68)
ADC1_CAL_VOL_ATTEN1 (BLOCK2)                       ADC1 calibration voltage at atten1                 = 412 R/W (0x67)
ADC1_CAL_VOL_ATTEN2 (BLOCK2)                       ADC1 calibration voltage at atten2                 = 372 R/W (0x5d)
ADC1_CAL_VOL_ATTEN3 (BLOCK2)                       ADC1 calibration voltage at atten3                 = 428 R/W (0x6b)
ADC2_CAL_VOL_ATTEN0 (BLOCK2)                       ADC2 calibration voltage at atten0                 = 408 R/W (0x66)
ADC2_CAL_VOL_ATTEN1 (BLOCK2)                       ADC2 calibration voltage at atten1                 = 180 R/W (0b0101101)
ADC2_CAL_VOL_ATTEN2 (BLOCK2)                       ADC2 calibration voltage at atten2                 = 220 R/W (0b0110111)

Config fuses:
WR_DIS (BLOCK0)                                    Disable programming of individual eFuses           = 0 R/W (0x00000000)
RD_DIS (BLOCK0)                                    Disable reading from BlOCK4-10                     = 0 R/W (0b0000000)
DIS_ICACHE (BLOCK0)                                Set this bit to disable Icache                     = False R/W (0b0)
DIS_DCACHE (BLOCK0)                                Set this bit to disable Dcache                     = False R/W (0b0)
DIS_TWAI (BLOCK0)                                  Set this bit to disable CAN function               = False R/W (0b0)
DIS_APP_CPU (BLOCK0)                               Disable app cpu                                    = False R/W (0b0)
DIS_DIRECT_BOOT (BLOCK0)                           Disable direct boot mode                           = False R/W (0b0)
UART_PRINT_CONTROL (BLOCK0)                        Set the default UART boot message output mode      = Enable R/W (0b00)
PIN_POWER_SELECTION (BLOCK0)                       Set default power supply for GPIO33-GPIO37; set wh = VDD_SPI R/W (0b1)
                                                   en SPI flash is initialized                       
PSRAM_CAP (BLOCK1)                                 PSRAM capacity                                     = 8M R/W (0b01)
PSRAM_TEMP (BLOCK1)                                PSRAM temperature                                  = 85C R/W (0b10)
PSRAM_VENDOR (BLOCK1)                              PSRAM vendor                                       = AP_3v3 R/W (0b01)
BLOCK_USR_DATA (BLOCK3)                            User data                                         
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 
BLOCK_SYS_DATA2 (BLOCK10)                          System data part 2 (reserved)                     
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 

Flash fuses:
FLASH_TPUW (BLOCK0)                                Configures flash waiting time after power-up; in u = 0 R/W (0x0)
                                                   nit of ms. If the value is less than 15; the waiti
                                                   ng time is the configurable value.  Otherwise; the
                                                    waiting time is twice the configurable value     
FLASH_ECC_MODE (BLOCK0)                            Flash ECC mode in ROM                              = 16to18 byte R/W (0b0)
FLASH_TYPE (BLOCK0)                                SPI flash type                                     = 4 data lines R/W (0b0)
FLASH_PAGE_SIZE (BLOCK0)                           Set Flash page size                                = 0 R/W (0b00)
FLASH_ECC_EN (BLOCK0)                              Set 1 to enable ECC for flash boot                 = False R/W (0b0)
FORCE_SEND_RESUME (BLOCK0)                         Set this bit to force ROM code to send a resume co = False R/W (0b0)
                                                   mmand during SPI boot                             
FLASH_CAP (BLOCK1)                                 Flash capacity                                     = None R/W (0b000)
FLASH_TEMP (BLOCK1)                                Flash temperature                                  = None R/W (0b00)
FLASH_VENDOR (BLOCK1)                              Flash vendor                                       = None R/W (0b000)

Identity fuses:
DISABLE_WAFER_VERSION_MAJOR (BLOCK0)               Disables check of wafer version major              = False R/W (0b0)
DISABLE_BLK_VERSION_MAJOR (BLOCK0)                 Disables check of blk version major                = False R/W (0b0)
WAFER_VERSION_MINOR_LO (BLOCK1)                    WAFER_VERSION_MINOR least significant bits         = 1 R/W (0b001)
PKG_VERSION (BLOCK1)                               Package version                                    = 0 R/W (0b000)
BLK_VERSION_MINOR (BLOCK1)                         BLK_VERSION_MINOR                                  = 2 R/W (0b010)
WAFER_VERSION_MINOR_HI (BLOCK1)                    WAFER_VERSION_MINOR most significant bit           = False R/W (0b0)
WAFER_VERSION_MAJOR (BLOCK1)                       WAFER_VERSION_MAJOR                                = 0 R/W (0b00)
OPTIONAL_UNIQUE_ID (BLOCK2)                        Optional unique 128-bit ID                        
   = 2e 60 41 70 d4 29 67 56 21 92 f0 27 65 1e ef fc R/W 
BLK_VERSION_MAJOR (BLOCK2)                         BLK_VERSION_MAJOR of BLOCK2                        = ADC calib V1 R/W (0b01)
WAFER_VERSION_MINOR (BLOCK0)                       calc WAFER VERSION MINOR = WAFER_VERSION_MINOR_HI  = 1 R/W (0x1)
                                                   << 3 + WAFER_VERSION_MINOR_LO (read only)         

Jtag fuses:
SOFT_DIS_JTAG (BLOCK0)                             Set these bits to disable JTAG in the soft way (od = 0 R/W (0b000)
                                                   d number 1 means disable ). JTAG can be enabled in
                                                    HMAC module                                      
DIS_PAD_JTAG (BLOCK0)                              Set this bit to disable JTAG in the hard way. JTAG = False R/W (0b0)
                                                    is disabled permanently                          
STRAP_JTAG_SEL (BLOCK0)                            Set this bit to enable selection between usb_to_jt = False R/W (0b0)
                                                   ag and pad_to_jtag through strapping gpio10 when b
                                                   oth reg_dis_usb_jtag and reg_dis_pad_jtag are equa
                                                   l to 0                                            

Mac fuses:
MAC (BLOCK1)                                       MAC address                                       
   = f4:12:fa:df:1b:b8 (OK) R/W 
CUSTOM_MAC (BLOCK3)                                Custom MAC                                        
   = 00:00:00:00:00:00 (OK) R/W 

Security fuses:
DIS_DOWNLOAD_ICACHE (BLOCK0)                       Set this bit to disable Icache in download mode (b = False R/W (0b0)
                                                   oot_mode[3:0] is 0; 1; 2; 3; 6; 7)                
DIS_DOWNLOAD_DCACHE (BLOCK0)                       Set this bit to disable Dcache in download mode (  = False R/W (0b0)
                                                   boot_mode[3:0] is 0; 1; 2; 3; 6; 7)               
DIS_FORCE_DOWNLOAD (BLOCK0)                        Set this bit to disable the function that forces c = False R/W (0b0)
                                                   hip into download mode                            
DIS_DOWNLOAD_MANUAL_ENCRYPT (BLOCK0)               Set this bit to disable flash encryption when in d = False R/W (0b0)
                                                   ownload boot modes                                
SPI_BOOT_CRYPT_CNT (BLOCK0)                        Enables flash encryption when 1 or 3 bits are set  = Disable R/W (0b000)
                                                   and disabled otherwise                            
SECURE_BOOT_KEY_REVOKE0 (BLOCK0)                   Revoke 1st secure boot key                         = False R/W (0b0)
SECURE_BOOT_KEY_REVOKE1 (BLOCK0)                   Revoke 2nd secure boot key                         = False R/W (0b0)
SECURE_BOOT_KEY_REVOKE2 (BLOCK0)                   Revoke 3rd secure boot key                         = False R/W (0b0)
KEY_PURPOSE_0 (BLOCK0)                             Purpose of Key0                                    = USER R/W (0x0)
KEY_PURPOSE_1 (BLOCK0)                             Purpose of Key1                                    = USER R/W (0x0)
KEY_PURPOSE_2 (BLOCK0)                             Purpose of Key2                                    = USER R/W (0x0)
KEY_PURPOSE_3 (BLOCK0)                             Purpose of Key3                                    = USER R/W (0x0)
KEY_PURPOSE_4 (BLOCK0)                             Purpose of Key4                                    = USER R/W (0x0)
KEY_PURPOSE_5 (BLOCK0)                             Purpose of Key5                                    = USER R/W (0x0)
SECURE_BOOT_EN (BLOCK0)                            Set this bit to enable secure boot                 = False R/W (0b0)
SECURE_BOOT_AGGRESSIVE_REVOKE (BLOCK0)             Set this bit to enable revoking aggressive secure  = False R/W (0b0)
                                                   boot                                              
DIS_DOWNLOAD_MODE (BLOCK0)                         Set this bit to disable download mode (boot_mode[3 = False R/W (0b0)
                                                   :0] = 0; 1; 2; 3; 6; 7)                           
ENABLE_SECURITY_DOWNLOAD (BLOCK0)                  Set this bit to enable secure UART download mode   = False R/W (0b0)
SECURE_VERSION (BLOCK0)                            Secure version (used by ESP-IDF anti-rollback feat = 0 R/W (0x0000)
                                                   ure)                                              
BLOCK_KEY0 (BLOCK4)
  Purpose: USER
               Key0 or user data                                 
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 
BLOCK_KEY1 (BLOCK5)
  Purpose: USER
               Key1 or user data                                 
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 
BLOCK_KEY2 (BLOCK6)
  Purpose: USER
               Key2 or user data                                 
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 
BLOCK_KEY3 (BLOCK7)
  Purpose: USER
               Key3 or user data                                 
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 
BLOCK_KEY4 (BLOCK8)
  Purpose: USER
               Key4 or user data                                 
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 
BLOCK_KEY5 (BLOCK9)
  Purpose: USER
               Key5 or user data                                 
   = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 R/W 

Spi Pad fuses:
SPI_PAD_CONFIG_CLK (BLOCK1)                        SPI_PAD_configure CLK                              = 0 R/W (0b000000)
SPI_PAD_CONFIG_Q (BLOCK1)                          SPI_PAD_configure Q(D1)                            = 0 R/W (0b000000)
SPI_PAD_CONFIG_D (BLOCK1)                          SPI_PAD_configure D(D0)                            = 0 R/W (0b000000)
SPI_PAD_CONFIG_CS (BLOCK1)                         SPI_PAD_configure CS                               = 0 R/W (0b000000)
SPI_PAD_CONFIG_HD (BLOCK1)                         SPI_PAD_configure HD(D3)                           = 0 R/W (0b000000)
SPI_PAD_CONFIG_WP (BLOCK1)                         SPI_PAD_configure WP(D2)                           = 0 R/W (0b000000)
SPI_PAD_CONFIG_DQS (BLOCK1)                        SPI_PAD_configure DQS                              = 0 R/W (0b000000)
SPI_PAD_CONFIG_D4 (BLOCK1)                         SPI_PAD_configure D4                               = 0 R/W (0b000000)
SPI_PAD_CONFIG_D5 (BLOCK1)                         SPI_PAD_configure D5                               = 0 R/W (0b000000)
SPI_PAD_CONFIG_D6 (BLOCK1)                         SPI_PAD_configure D6                               = 0 R/W (0b000000)
SPI_PAD_CONFIG_D7 (BLOCK1)                         SPI_PAD_configure D7                               = 0 R/W (0b000000)

Usb fuses:
DIS_USB_OTG (BLOCK0)                               Set this bit to disable USB function               = False R/W (0b0)
USB_EXCHG_PINS (BLOCK0)                            Set this bit to exchange USB D+ and D- pins        = False R/W (0b0)
USB_EXT_PHY_ENABLE (BLOCK0)                        Set this bit to enable external PHY                = False R/W (0b0)
DIS_USB_JTAG (BLOCK0)                              Set this bit to disable function of usb switch to  = False R/W (0b0)
                                                   jtag in module of usb device                      
DIS_USB_SERIAL_JTAG (BLOCK0)                       Set this bit to disable usb device                 = False R/W (0b0)
USB_PHY_SEL (BLOCK0)                               This bit is used to switch internal PHY and extern
   = internal PHY is assigned to USB Device while external PHY is assigned to USB OTG R/W (0b0)
                                                   al PHY for USB OTG and USB Device                 
DIS_USB_SERIAL_JTAG_ROM_PRINT (BLOCK0)             USB printing                                       = Enable R/W (0b0)
DIS_USB_SERIAL_JTAG_DOWNLOAD_MODE (BLOCK0)         Set this bit to disable UART download mode through = False R/W (0b0)
                                                    USB                                              
DIS_USB_OTG_DOWNLOAD_MODE (BLOCK0)                 Set this bit to disable download through USB-OTG   = False R/W (0b0)

Vdd fuses:
VDD_SPI_XPD (BLOCK0)                               SPI regulator power up signal                      = True R/W (0b1)
VDD_SPI_TIEH (BLOCK0)                              If VDD_SPI_FORCE is 1; determines VDD_SPI voltage 
   = VDD_SPI connects to VDD3P3_RTC_IO R/W (0b1)
VDD_SPI_FORCE (BLOCK0)                             Set this bit and force to use the configuration of = True R/W (0b1)
                                                    eFuse to configure VDD_SPI                       

Wdt fuses:
WDT_DELAY_SEL (BLOCK0)                             RTC watchdog timeout threshold; in unit of slow cl = 40000 R/W (0b00)
                                                   ock cycle                                         

Flash voltage (VDD_SPI) set to 3.3V by efuse.

More Information

No response

Other Steps to Reproduce

No response

I Have Read the Troubleshooting Guide

  • I confirm I have read the troubleshooting guide.
@github-actions github-actions bot changed the title espefuse.py reports strapping pin for ESP32-S3 is GPIO10 instead of GPIO3 espefuse.py reports strapping pin for ESP32-S3 is GPIO10 instead of GPIO3 (ESPTOOL-967) Nov 21, 2024
@GrantGeno
Copy link
Author

GPIO3 is the correct pin, as ESP_Sprite mentioned in the forum thread below. Issue with using "pad" JTAG on ESP32-S3 solved:

https://www.esp32.com/viewtopic.php?f=2&t=35090

@dobairoland
Copy link
Collaborator

Thank you for your report! We will fix this.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants