-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnms_altered.py
355 lines (271 loc) · 12 KB
/
nms_altered.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""
.. module:: malisiewicz
:synopsis: Malisiewicz et al implementation of NMS
.. moduleauthor:: tom hoag <[email protected]>
Malisiewicz et al implementation of NMS
The functions in this module are not usually called directly. Instead use :func:`nms.nms.boxes`,
:func:`nms.nms.rboxes`, or :func:`nms.nms.polygons`
"""
import numpy as np
import cv2
#import nms.helpers as help
def rect_areas(rects):
"""Return an np.array of the areas of the rectangles
:param rects: a list of rectangles, each specified as (x, y, w, h)
:type rects: list
:return: an numpy array of corresponding areas
:rtype: :class:`numpy.ndarray`
"""
# rect = x,y,w,h
w = rects[:,2]
h = rects[:,3]
return w * h
def rect_compare(box, boxes, area):
"""Calculate the intersection of box to boxes divided by area
:param box: a rectangle specified by (x, y, w, h)
:type box: tuple
:param boxes: a list of rectangles, each specified by (x, y, w, h)
:type boxes: list
:param area: a list of areas of the corresponding boxes
:type area: list
:return: a numpy array of the ratio of overlap of box to each of boxes to the corresponding area. e.g. overlap(box, boxes[n])/area[n]
:rtype: :class:`numpy.ndarray`
"""
# box and boxes are XYWH
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
w = boxes[:, 2]
h = boxes[:, 3]
x2 = x1 + w
y2 = y1 + h
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(box[0], x1)
yy1 = np.maximum(box[1], y1)
xx2 = np.minimum(box[0] + box[2], x2)
yy2 = np.minimum(box[1] + box[3], y2)
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
return (w * h)/area
def poly_areas(polys):
"""Calculate the area of the list of polygons
:param polys: a list of polygons, each specified by a list of its verticies
:type polys: list
:return: numpy array of areas of the polygons
:rtype: :class:`numpy.ndarray`
"""
areas = []
def poly_area(polygon): #Implementation of Shoelace formula for calculation of polygon area
if len(polygon) < 3: return 1 #-------------------------------------------THIS NEEDS TO BE INVESTIGATED MORE-----point/line guesses?
polygon = np.transpose(polygon)
x = polygon[0]
y = polygon[1]
return 0.5 * np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
for poly in polys:
areas.append(poly_area(poly))
return np.array(areas)
def poly_compare(poly1, polygons, area):
"""Calculate the intersection of poly1 to polygons divided by area
:param poly1: a polygon specified by a list of its verticies
:type poly1: list
:param polygons: a list of polygons, each specified a list of its verticies
:type polygons: list
:param area: a list of areas of the corresponding polygons
:type area: list
:return: a numpy array of the ratio of overlap of poly1 to each of polygons to the corresponding area. e.g. overlap(poly1, polygons[n])/area[n]
:rtype: :class:`numpy.ndarray`
"""
def polygon_intersection_area(polygons):
""" Compute the area of intersection of an array of polygons
:param polygons: a list of polygons
:type polygons: list
:return: the area of intersection of the polygons
:rtype: int
"""
def createImage(width=800, height=800, depth=3):
""" Return a black image with an optional scale on the edge
:param width: width of the returned image
:type width: int
:param height: height of the returned image
:type height: int
:param depth: either 3 (rgb/bgr) or 1 (mono). If 1, no scale is drawn
:type depth: int
:return: A zero'd out matrix/black image of size (width, height)
:rtype: :class:`numpy.ndarray`
"""
# create a black image and put a scale on the edge
assert depth == 3 or depth == 1
assert width > 0
assert height > 0
hashDistance = 50
hashLength = 20
img = np.zeros((int(height), int(width), depth), np.uint8)
if(depth == 3):
for x in range(0, int(width / hashDistance)):
cv2.line(img, (x * hashDistance, 0), (x * hashDistance, hashLength), (0,0,255), 1)
for y in range(0, int(width / hashDistance)):
cv2.line(img, (0, y * hashDistance), (hashLength, y * hashDistance), (0,0,255), 1)
return img
if len(polygons) == 0:
return 0
dx = 0
dy = 0
maxx = max([np.amax(np.array(poly)[...,0]) for poly in polygons])
minx = min([np.amin(np.array(poly)[...,0]) for poly in polygons])
maxy = max([np.amax(np.array(poly)[...,1]) for poly in polygons])
miny = min([np.amin(np.array(poly)[...,1]) for poly in polygons])
'''maxx = np.amax(np.array(polygons)[...,0])
minx = np.amin(np.array(polygons)[...,0])
maxy = np.amax(np.array(polygons)[...,1])
miny = np.amin(np.array(polygons)[...,1])'''
if minx < 0:
dx = -int(minx)
maxx = maxx + dx
if miny < 0:
dy = -int(miny)
maxy = maxy + dy
# (dx, dy) is used as an offset in fillPoly
for i, polypoints in enumerate(polygons):
newImage = createImage(maxx, maxy, 1)
polypoints = np.array(polypoints, np.int32)
polypoints = polypoints.reshape(-1, 1, 2)
cv2.fillPoly(newImage, [polypoints], (255, 255, 255), cv2.LINE_8, 0, (dx, dy))
if(i == 0):
compositeImage = newImage
else:
compositeImage = cv2.bitwise_and(compositeImage, newImage)
area = cv2.countNonZero(compositeImage)
return area
# return intersection of poly1 with polys[i]/area[i]
overlap = []
for i,poly2 in enumerate(polygons):
intersection_area = polygon_intersection_area([poly1, poly2])
if area[i] == 0:
overlap.append(0)
else:
overlap.append(intersection_area/area[i])
return np.array(overlap)
def nms(boxes, scores, **kwargs):
#** boxes is a list of polygons, each a list of vertices
"""NMS using Malisiewicz et al. method
Adapted from non_max_suppression_fast(boxes, overlapThresh) from
`(Faster) Non-Maximum Suppression in Python <https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/>`_
Note that when using this on rotated rectangles or polygons (as opposed to upright rectangles), some of the
vectorized performance gains are lost as comparisons between rrects and polys cannot(?) be vectorized
This function is not usually called directly. Instead use :func:`nms.nms.boxes`, :func:`nms.nms.rboxes`,
or :func:`nms.nms.polygons` and set parameter `nms_algorithm=nms.malisiewicz`
:param boxes: a list of boxes to perform NMS on
:type boxes: list
:param scores: a list of scores corresponding to boxes
:type scores: list
:param kwargs: optional keyword parameters (see below)
:type kwargs: dict
:returns: a list of the indicies of the best boxes
:kwargs:
- top_k (int): if >0, keep at most top_k picked indices. default:0
- score_threshold (float): the minimum score necessary to be a viable solution, default 0.3
- nms_threshold (float): the minimum nms value to be a viable solution, default: 0.4
- compare_function (function): function that accepts two boxes and returns their overlap ratio,
this function must accept two boxes and return an overlap ratio between 0 and 1
- area_function (function): function used to calculate the area of an element of boxes
"""
def get_max_score_index(scores, threshold=0, top_k=0, descending=True):
""" Get the max scores with corresponding indicies
Adapted from the OpenCV c++ source in
`nms.inl.hpp <https://github.com/opencv/opencv/blob/ee1e1ce377aa61ddea47a6c2114f99951153bb4f/modules/dnn/src/nms.inl.hpp#L33>`__
:param scores: a list of scores
:type scores: list
:param threshold: consider scores higher than this threshold
:type threshold: float
:param top_k: return at most top_k scores; if 0, keep all
:type top_k: int
:param descending: if True, list is returened in descending order, else ascending
:returns: a sorted by score list of [score, index]
"""
score_index = []
# Generate index score pairs
for i, score in enumerate(scores):
if (threshold > 0) and (score > threshold):
score_index.append([score, i])
else:
score_index.append([score, i])
# Sort the score pair according to the scores in descending order
npscores = np.array(score_index)
if descending:
npscores = npscores[npscores[:,0].argsort()[::-1]] #descending order
else:
npscores = npscores[npscores[:,0].argsort()] # ascending order
if top_k > 0:
npscores = npscores[0:top_k]
return npscores.tolist()
if 'top_k' in kwargs:
top_k = kwargs['top_k']
else:
top_k = 0
assert 0 <= top_k
if 'score_threshold' in kwargs:
score_threshold = kwargs['score_threshold']
else:
score_threshold = 0.3
assert 0 < score_threshold
if 'nms_threshold' in kwargs:
nms_threshold = kwargs['nms_threshold']
else:
nms_threshold = 0.4
assert 0 < nms_threshold < 1
if 'compare_function' in kwargs:
compare_function = kwargs['compare_function']
else:
compare_function = poly_compare
#compare_function = None
assert compare_function is not None
if 'area_function' in kwargs:
area_function = kwargs['area_function']
else:
area_function = poly_areas
#area_function = None
assert area_function is not None
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
if scores is not None:
assert len(scores) == len(boxes)
boxes = np.array(boxes)
if compare_function == rect_compare:
# if the bounding boxes integers, convert them to floats --
# this is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
areas = area_function(boxes) #(x2 - x1 + 1) * (y2 - y1 + 1)
# sort the boxes by score or the bottom-right y-coordinate of the bounding box
if scores is not None:
# sort the bounding boxes by the associated scores
scores = get_max_score_index(scores, score_threshold, top_k, False)
idxs = np.array(scores, np.int32)[:, 1]
# idxs = np.argsort(scores)
else:
# sort the bounding boxes by the bottom-right y-coordinate of the bounding box
y2 = boxes[:3]
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
#boxes = np.array(boxes)
while len(idxs) > 0:
# grab the last index in the indexes list and add the index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# compute the ratio of overlap
overlap = compare_function(boxes[i], boxes[idxs[:last]], areas[idxs[:last]])
#(w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > nms_threshold)[0])))
# return the indicies of the picked bounding boxes that were picked
return pick