-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
281 lines (239 loc) · 10.4 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import numpy as np
import torch
import cv2
from PIL import Image
from detectron2 import model_zoo
from detectron2.engine import DefaultTrainer
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.visualizer import Visualizer
from detectron2.utils.visualizer import ColorMode
from detectron2.structures.instances import Instances
import data
class BrightfieldPredictor:
def __init__(self, weights_path=None, confidence=0.7):
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATALOADER.NUM_WORKERS = 2
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
cfg.SOLVER.MAX_ITER = 30000
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (cell)
cfg.INPUT.MASK_FORMAT='bitmask'
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence # set the testing threshold for this model
cfg.TEST.DETECTIONS_PER_IMAGE = 1000
cfg.MODEL.DEVICE='cuda' if torch.cuda.is_available() else 'cpu'
if weights_path is not None:
cfg.MODEL.WEIGHTS = weights_path
else:
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from
self.cfg = cfg
MetadataCatalog.get('training_dataset').set(thing_classes=['cell'])
self.metadata = MetadataCatalog.get('training_dataset')
self.prediction_model = DefaultPredictor(self.cfg)
def train(self, dataset_path, max_iterations=30000):
DatasetCatalog.register('training_dataset', lambda : data.to_coco(dataset_path))
self.cfg.DATASETS.TRAIN = ('training_dataset',)
self.cfg.DATASETS.TEST = ()
self.cfg.SOLVER.MAX_ITER = max_iterations
trainer = DefaultTrainer(self.cfg)
trainer.resume_or_load(resume=False)
trainer.train()
def predict(self, im):
outputs = self.prediction_model(im)
v = Visualizer(im[:, :, ::-1],
metadata=self.metadata,
scale=3.0,
instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
return v.get_image()[:, :, ::-1]
def visualize(self, im, all_instances):
v = Visualizer(im[:, :, ::-1],
metadata=self.metadata,
scale=2.0,
#instance_mode=ColorMode.IMAGE_BW
)
v = v.draw_instance_predictions(all_instances.to("cpu"))
return Image.fromarray(v.get_image()[:, :, ::-1])
def predict_large(self, im, span = 256, stride=96, nmsalg = 'poly'):
print('run model')
#add padding
padding = 60
im = np.pad(im, ((padding, padding), (padding, padding), (0, 0)),
mode='constant', constant_values=0)
im_height, im_width, _ = im.shape
all_instances = []
for i in range(0, im_height, stride):
for j in range(0, im_width, stride):
sub_img = im[i:i+span, j:j+span, :]
predictions = self.prediction_model(sub_img)
sub_instances = predictions['instances']
sub_instances = exclude_boundary(sub_instances, padding=60) # 30
sub_instances = offset_instances(sub_instances, (j, i), (im_height, im_width))
all_instances.append(sub_instances)
all_instances.append(sub_instances)
all_instances = Instances.cat(all_instances)
all_instances.pred_masks = np.asarray(all_instances.pred_masks, dtype=object)
if nmsalg == 'poly':
all_instances = polygon_nms(all_instances)
elif nmsalg == 'bbox':
all_instances = bbox_nms(all_instances, overlap=0.6)
else:
assert False, 'nms algorithm must be polygon or bbox'
#strip padding
all_instances.pred_boxes.tensor -= padding
all_instances.pred_masks = [[comp - 60 for comp in mask] for mask in all_instances.pred_masks]
return all_instances
#def nonmax_suppression(instances):
def exclude_boundary(instances, padding):
image_height, image_width = instances.image_size
boxes = instances.to('cpu').pred_boxes
"""
keep = ((boxes.tensor[:, 0] > padding) &
(boxes.tensor[:, 1] > padding) &
(boxes.tensor[:, 2] < image_height - padding) &
(boxes.tensor[:, 3] < image_width - padding))
"""
box_centers = boxes.get_centers()
keep = ((box_centers[:, 0] > padding) &
(box_centers[:, 1] > padding) &
(box_centers[:, 0] < image_height - padding) &
(box_centers[:, 1] < image_width - padding))
return instances[keep]
'''alright, it's time for the big boys to take over the computer typey typey
things. nothing wrong can do to the bigger dinosaur. woW! that isn't a very
good bOx oF cElLz.
he attac, he defend, but most importantly...
he delet one char from a random spot in the program'''
def bbox_nms(instances, overlap=0.65, top_k=10000):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
top_k: (int) The Maximum number of box preds to consider.
Return:
The indices of the kept boxes with respect to num_priors.
"""
boxes = instances.pred_boxes.tensor
scores = instances.scores
keep = scores.new(scores.size(0)).zero_().long()
if boxes.numel() == 0:
return keep
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = torch.mul(x2 - x1, y2 - y1)
v, idx = scores.sort(0) # sort in ascending order
# I = I[v >= 0.01]
idx = idx[-top_k:] # indices of the top-k largest vals
xx1 = boxes.new()
yy1 = boxes.new()
xx2 = boxes.new()
yy2 = boxes.new()
w = boxes.new()
h = boxes.new()
# keep = torch.Tensor()
count = 0
while idx.numel() > 0:
i = idx[-1] # index of current largest val
# keep.append(i)
keep[count] = i
count += 1
if idx.size(0) == 1:
break
idx = idx[:-1] # remove kept element from view
# load bboxes of next highest vals
torch.index_select(x1, 0, idx, out=xx1)
torch.index_select(y1, 0, idx, out=yy1)
torch.index_select(x2, 0, idx, out=xx2)
torch.index_select(y2, 0, idx, out=yy2)
# store element-wise max with next highest score
xx1 = torch.clamp(xx1, min=x1[i])
yy1 = torch.clamp(yy1, min=y1[i])
xx2 = torch.clamp(xx2, max=x2[i])
yy2 = torch.clamp(yy2, max=y2[i])
w.resize_as_(xx2)
h.resize_as_(yy2)
w = xx2 - xx1
h = yy2 - yy1
# check sizes of xx1 and xx2.. after each iteration
w = torch.clamp(w, min=0.0)
h = torch.clamp(h, min=0.0)
inter = w*h
# IoU = i / (area(a) + area(b) - i)
rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
union = (rem_areas - inter) + area[i]
IoU = inter/union # store result in iou
# keep only elements with an IoU <= overlap
idx = idx[IoU.le(overlap)]
keep = keep[:count]
return instances[keep.to('cpu')]
def polygon_nms(instances, score_threshold = .7, top_k=10000, nms_threshold = .5):
from nms_altered import nms
print('ran poly_nms')
#RUN BB NMS first to preemptively cut masks - function nms is overloaded here, should rename so as not to confuse
instances = bbox_nms(instances)
def choose_larger(poly):
#print(poly)
return max(poly, key = lambda i: len(i))
polygons = instances.pred_masks
polygons = [choose_larger(poly) if (len(poly) > 1) else poly[0] for poly in polygons]
polygons = [np.reshape(polygon,(int(len(np.transpose(polygon))/2),2)) for polygon in polygons]
# pass list of lists of polygon vertices
scores = instances.scores
new_indices = nms(polygons, scores, score_threshold = .7, top_k = 10000, nms_threshold = .5) #, nms_algorithm=<function nms>)
keep = torch.Tensor(new_indices).long()
return instances[keep.to('cpu')]
def offset_boxes(boxes, offset):
new_boxes = boxes.clone()
i, j = offset
for box in new_boxes:
box[0] += i
box[2] += i
box[1] += j
box[3] += j
return new_boxes
def offset_masks(masks, offset):
i, j = offset
polygon_masks = []
masks = masks.cpu()
for mask in masks:
polygon_mask = mask_to_polygons(mask)[0]
#print('\n\n')
#print(polygon_mask)
for sub_polygon_mask in polygon_mask:
sub_polygon_mask[::2] += i
sub_polygon_mask[1::2] += j
#polygon_mask[0][::2] += i
#polygon_mask[0][1::2] += j
polygon_masks.append(polygon_mask)
return polygon_masks
def offset_instances(instances, offset, im_size):
instance_dict = {
'pred_boxes': offset_boxes(instances.pred_boxes, offset),
'scores': instances.scores,
'pred_classes': instances.pred_classes,
'pred_masks': offset_masks(instances.pred_masks, offset)
}
return Instances(im_size, **instance_dict)
def mask_to_polygons(mask):
# cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
# hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
# Internal contours (holes) are placed in hierarchy-2.
# cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
mask = np.ascontiguousarray(mask) # some versions of cv2 does not support incontiguous arr
res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
hierarchy = res[-1]
if hierarchy is None: # empty mask
return [], False
has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
res = res[-2]
res = [x.flatten() for x in res]
res = [x for x in res if len(x) >= 6]
return res, has_holes