-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_predict_func.py
60 lines (49 loc) · 2.2 KB
/
model_predict_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from modules import BrightfieldPredictor
import cv2
import os
import matplotlib.pyplot as plt
import pickle
import sys
from sys import argv
from detectron2.structures import Instances, Boxes
model = BrightfieldPredictor(weights_path='./models/bright-field.pth', confidence=0.6)
assert len(argv) > 1, "missing data file"
file_name = argv[1]
rerun = 0
if len(argv) > 2:
if argv[2] == 'rerun':
rerun = 1
#if both output files exist, exit
if os.path.isfile(file_name[0:-4]+'_instances.data') and os.path.isfile(file_name[0:-4]+'_visual.JPG') and rerun == 0:
sys.exit(file_name[0:-4]+'_instances.data'+' and '+file_name[0:-4]+'_visual.JPG'+' already exist')
image = cv2.imread(file_name)
#if instance file does not exist, run model; else, load in instance file to Instances object (required for visualizer)
if not os.path.isfile(file_name[0:-4]+'_instances.data') or rerun == 1:
instances = model.predict_large(image)
#instances = instances.to('cpu')
instance_dict = {
"pred_boxes":instances.pred_boxes.tensor,
"pred_masks":instances.pred_masks,
"scores":instances.scores,
"classes":instances.pred_classes,
"image_size": instances.image_size,
}
with open(file_name[0:-4]+'_instances.data', 'wb') as filehandle:
pickle.dump(instance_dict, filehandle)
else:
#load an instances object from reading file
print('load instances from '+file_name[0:-4]+'_instances.data')
with open(file_name[0:-4]+'_instances.data', 'rb') as filehandle:
instance_dict = pickle.load(filehandle)
kwargs = {
'pred_boxes':Boxes(instance_dict['pred_boxes']),
'pred_masks':instance_dict['pred_masks'],
'scores':instance_dict['scores'],
'pred_classes':instance_dict['classes'],
}
instances = Instances(instance_dict['image_size'], **kwargs)
#if check here not really necessary, visual output will never be produced unless the model has been run
if not os.path.isfile(file_name[0:-4]+'_visual.JPG') or rerun == 0:
print('output verification saved to '+file_name[0:-4]+'_visual.JPG')
out_img = model.visualize(image,instances)
out_img.save(file_name[0:-4]+'_visual.JPG')