forked from Silin159/DiffuCOMET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
238 lines (223 loc) · 6.73 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import src.modeling.diffusion.gaussian_diffusion as gd
from src.modeling.diffusion.respace import SpacedDiffusion, space_timesteps
from src.modeling.predictor.transformer_model import TransformerNetModel_encoder_decoder, BART_Embedder_PT
def create_model_and_diffusion(
class_cond,
learn_sigma,
sigma_small,
num_channels,
num_heads,
dropout,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
use_checkpoint,
model_arch,
in_channel,
out_channel,
training_mode,
vocab_size,
config_name,
config_name_embedder,
logits_mode,
init_pretrained,
init_pretrained_embedder,
freeze_embeddings,
use_pretrained_embeddings,
load_ckpt,
sequence_len,
resume_checkpoint,
pad_tok_id,
loss_update_granu,
schedule_update_stride,
noise_amplifier,
embedder_args,
tokenizer,
**kwargs,
):
model = create_model(
num_channels,
learn_sigma=learn_sigma,
class_cond=class_cond,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
dropout=dropout,
in_channel=in_channel,
out_channel=out_channel,
training_mode=training_mode,
vocab_size=vocab_size,
config_name=config_name,
config_name_embedder=config_name_embedder,
logits_mode=logits_mode,
init_pretrained=init_pretrained,
init_pretrained_embedder=init_pretrained_embedder,
freeze_embeddings=freeze_embeddings,
use_pretrained_embeddings=use_pretrained_embeddings,
load_ckpt=load_ckpt,
embedder_args=embedder_args,
tokenizer=tokenizer
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
sigma_small=sigma_small,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
model_arch=model_arch,
training_mode=training_mode,
sequence_len=sequence_len,
resume_checkpoint=resume_checkpoint,
pad_tok_id=pad_tok_id,
loss_update_granu=loss_update_granu,
schedule_update_stride=schedule_update_stride,
noise_amplifier=noise_amplifier
)
return model, diffusion
def create_model(
num_channels,
learn_sigma,
use_checkpoint,
class_cond, # TODO for the next version
num_heads,
dropout,
init_pretrained,
init_pretrained_embedder,
freeze_embeddings,
use_pretrained_embeddings,
in_channel,
out_channel,
training_mode,
vocab_size,
config_name,
config_name_embedder,
logits_mode,
load_ckpt,
encoder_layers=6,
decoder_layers=6,
model_type='encoder_decoder',
tokenizer=None,
embedder_args=None
):
return TransformerNetModel_encoder_decoder(
in_channels=in_channel,
model_channels=num_channels,
out_channels=(out_channel if not learn_sigma else out_channel * 2),
dropout=dropout,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
config_name=config_name,
config_name_embedder=config_name_embedder,
vocab_size=vocab_size,
logits_mode=logits_mode,
init_pretrained=init_pretrained,
init_pretrained_embedder=init_pretrained_embedder,
use_pretrained_embeddings=use_pretrained_embeddings,
freeze_embeddings=freeze_embeddings,
encoder_layers=encoder_layers,
decoder_layers=decoder_layers,
embedding_dim=in_channel,
load_ckpt=load_ckpt,
tokenizer=tokenizer,
embedder_args=embedder_args
)
def create_gaussian_diffusion(
*,
steps=1000,
learn_sigma=False,
sigma_small=False,
noise_schedule="linear",
use_kl=False,
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
timestep_respacing="",
model_arch="transformer",
training_mode="diffusion-lm",
sequence_len=None,
resume_checkpoint='',
pad_tok_id=None,
loss_update_granu=None,
schedule_update_stride=0,
noise_amplifier=1
):
betas = gd.get_named_beta_schedule(noise_schedule, steps)
if use_kl:
loss_type = gd.LossType.E2E_KL
else:
loss_type = gd.LossType.E2E_MSE
if not timestep_respacing:
timestep_respacing = [steps]
# Whether variance is learned or fixed
model_var_type = None
if not learn_sigma:
if sigma_small:
model_var_type = gd.ModelVarType.FIXED_SMALL
else:
model_var_type = gd.ModelVarType.FIXED_LARGE
else:
model_var_type = gd.ModelVarType.LEARNED_RANGE
# what is the interpretation of the output generated by the model? Is it generating the noise or the mean directly?
model_mean_type = None
if not predict_xstart:
model_mean_type = gd.ModelMeanType.EPSILON # predicts noise
else: # predicts starting x (x0 estimate, possibly used by DDIM?)
model_mean_type = gd.ModelMeanType.START_X
return SpacedDiffusion(
use_timesteps=space_timesteps(steps, timestep_respacing),
betas=betas,
model_var_type=model_var_type,
model_mean_type=model_mean_type,
loss_type=loss_type,
rescale_timesteps=rescale_timesteps,
model_arch=model_arch,
training_mode=training_mode,
token_max_length=sequence_len,
save_dir=resume_checkpoint,
pad_tok_id=pad_tok_id,
loss_update_granu=loss_update_granu,
schedule_update_stride=schedule_update_stride,
noise_amplifier=noise_amplifier
)
def create_embedder(
learn_sigma,
num_channels,
num_heads,
dropout,
use_checkpoint,
in_channel,
out_channel,
vocab_size,
config_name_embedder,
logits_mode,
init_pretrained_embedder,
freeze_embeddings,
use_pretrained_embeddings,
load_ckpt,
tokenizer,
**kwargs
):
return BART_Embedder_PT(
in_channel=in_channel,
num_channels=num_channels,
out_channel=(out_channel if not learn_sigma else out_channel * 2),
dropout=dropout,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
config_name_embedder=config_name_embedder,
vocab_size=vocab_size,
logits_mode=logits_mode,
init_pretrained_embedder=init_pretrained_embedder,
use_pretrained_embeddings=use_pretrained_embeddings,
embedding_dim=in_channel,
freeze_embeddings=freeze_embeddings,
load_ckpt=load_ckpt,
tokenizer=tokenizer
)