forked from Silin159/DiffuCOMET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader_utils.py
481 lines (387 loc) · 19 KB
/
dataloader_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import logging
import pandas as pd
from torch.utils.data import DataLoader, Dataset
import torch
from functools import partial
from mpi4py import MPI
import json
import numpy as np
from copy import deepcopy
logging.basicConfig(level=logging.INFO)
def get_dataloader(tokenizer, data_path, batch_size, max_seq_len, max_seq_len_src, args):
dataset = TextDatasetSeq2Seq(tokenizer=tokenizer, data_path=data_path, source=args.src, target=args.tgt,
shard=MPI.COMM_WORLD.Get_rank(),
num_shards=MPI.COMM_WORLD.Get_size())
dataloader = DataLoader(
dataset,
batch_size=batch_size, # 20,
drop_last=True,
shuffle='train' in data_path,
num_workers=10,
collate_fn=partial(TextDatasetSeq2Seq.collate_pad,
args=args,
cutoff=max_seq_len,
cutoff_src=max_seq_len_src,
padding_token=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else
tokenizer.get_vocab()['<pad>'])
)
while True:
for batch in dataloader:
yield batch
def get_dataloader_kg(tokenizer, data_path, batch_size, max_seq_len_src, max_seq_len, max_fact_len, args):
dataset = TextDatasetSeq2KG(tokenizer=tokenizer, data_path=data_path, source=args.src, target=args.tgt,
shard=MPI.COMM_WORLD.Get_rank(),
num_shards=MPI.COMM_WORLD.Get_size())
dataloader = DataLoader(
dataset,
batch_size=batch_size, # 20,
drop_last=True,
shuffle='train' in data_path,
num_workers=10,
collate_fn=partial(TextDatasetSeq2KG.collate_pad,
args=args,
cutoff_src=max_seq_len_src,
cutoff_tgt=max_seq_len,
cutoff_fact=max_fact_len,
padding_token=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else
tokenizer.get_vocab()['<pad>'],
bos_token=tokenizer.bos_token_id if hasattr(tokenizer, 'bos_token_id') else
tokenizer.get_vocab()['<s>'],
eos_token=tokenizer.eos_token_id if hasattr(tokenizer, 'eos_token_id') else
tokenizer.get_vocab()['</s>'],
decoder_start_token=tokenizer.decoder_start_token_id if
hasattr(tokenizer, 'decoder_start_token_id') else tokenizer.get_vocab()['</s>'],
eos_fact=tokenizer.get_vocab()['<eos_fact>'])
)
while True:
for batch in dataloader:
yield batch
def get_dataloader_pte(tokenizer, data_path, batch_size, max_fact_len, args):
dataset = TextDatasetPTE(tokenizer=tokenizer, data_path=data_path,
shard=MPI.COMM_WORLD.Get_rank(),
num_shards=MPI.COMM_WORLD.Get_size())
dataloader = DataLoader(
dataset,
batch_size=batch_size,
drop_last=True,
shuffle='train' in data_path,
num_workers=10,
collate_fn=partial(TextDatasetPTE.collate_pad,
args=args,
cutoff_fact=max_fact_len,
padding_token=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else
tokenizer.get_vocab()['<pad>'],
bos_token=tokenizer.bos_token_id if hasattr(tokenizer, 'bos_token_id') else
tokenizer.get_vocab()['<s>'],
eos_token=tokenizer.eos_token_id if hasattr(tokenizer, 'eos_token_id') else
tokenizer.get_vocab()['</s>'],
decoder_start_token=tokenizer.decoder_start_token_id if
hasattr(tokenizer, 'decoder_start_token_id') else tokenizer.get_vocab()['</s>'])
)
while True:
for batch in dataloader:
yield batch
class TextDataset(Dataset):
def __init__(
self,
tokenizer,
data_path: str,
has_labels: bool = False
) -> None:
super().__init__()
self.data_path = data_path
self.tokenizer = tokenizer
self.read_data()
if has_labels:
self.read_labels()
def read_data(self):
logging.info("Reading data from {}".format(self.data_path))
data = pd.read_csv(self.data_path, sep="\t", header=None) # read text file
logging.info(f"Tokenizing {len(data)} sentences")
self.text = data[0].apply(lambda x: x.strip()).tolist()
if hasattr(self.tokenizer, 'encode_batch'):
encoded_input = self.tokenizer.encode_batch(self.text)
self.input_ids = [x.ids for x in encoded_input]
else:
encoded_input = self.tokenizer(self.text)
self.input_ids = encoded_input["input_ids"]
def read_labels(self):
self.labels = pd.read_csv(self.data_path, sep="\t", header=None)[1].tolist()
# check if labels are already numerical
self.labels = [str(x) for x in self.labels]
if isinstance(self.labels[0], int):
return
# if not, convert to numerical
all_labels = sorted(list(set(self.labels)))
self.label_to_idx = {label: i for i, label in enumerate(all_labels)}
self.idx_to_label = {i: label for i, label in self.label_to_idx.items()}
self.labels = [self.label_to_idx[label] for label in self.labels]
def __len__(self) -> int:
return len(self.text)
def __getitem__(self, i):
out_dict = {
"input_ids": self.input_ids[i],
# "attention_mask": [1] * len(self.input_ids[i]),
}
if hasattr(self, "labels"):
out_dict["label"] = self.labels[i]
return out_dict
@staticmethod
def collate_pad(batch, cutoff: int):
max_token_len = 0
num_elems = len(batch)
# batch[0] -> __getitem__[0] --> returns a tuple (embeddings, out_dict)
for i in range(num_elems):
max_token_len = max(max_token_len, len(batch[i]["input_ids"]))
max_token_len = min(cutoff, max_token_len)
tokens = torch.zeros(num_elems, max_token_len).long()
tokens_mask = torch.zeros(num_elems, max_token_len).long()
has_labels = False
if "label" in batch[0]:
labels = torch.zeros(num_elems).long()
has_labels = True
for i in range(num_elems):
toks = batch[i]["input_ids"]
length = len(toks)
tokens[i, :length] = torch.LongTensor(toks)
tokens_mask[i, :length] = 1
if has_labels:
labels[i] = batch[i]["label"]
# TODO: the first return None is just for backward compatibility -- can be removed
if has_labels:
return None, {"input_ids": tokens, "attention_mask": tokens_mask, "labels": labels}
else:
return None, {"input_ids": tokens, "attention_mask": tokens_mask}
class TextDatasetSeq2Seq(Dataset):
def __init__(
self,
tokenizer,
data_path: str,
source,
target,
shard,
num_shards,
) -> None:
super().__init__()
self.src_text = None
self.tgt_text = None
self.data_path = data_path
self.tokenizer = tokenizer
self.shard = shard
self.src = source
self.tgt = target
self.num_shards = num_shards
self.read_data()
def read_data(self):
print("Reading data from {}".format(self.data_path))
data = [open(self.data_path + '.' + self.src, 'r').readlines(),
open(self.data_path + '.' + self.tgt, 'r').readlines()]
print(f"Tokenizing {len(data[0])} sentences")
data = [[src, tgt] for src, tgt in zip(data[0], data[1])]
# random.shuffle(data)
self.src_text = [item[0].strip('\n') for item in data]
self.tgt_text = [item[1].strip('\n') for item in data]
bos_idx = (len(self.src_text) // self.num_shards) * self.shard
eos_idx = (len(self.src_text) // self.num_shards) * (self.shard + 1)
self.src_text = self.src_text[bos_idx:eos_idx]
self.tgt_text = self.tgt_text[bos_idx:eos_idx]
print('examples src', self.src_text[0])
print('examples tgt', self.tgt_text[0])
# check if tokenizer has a method 'encode_batch'
if hasattr(self.tokenizer, 'encode_batch'):
encoded_input_src = self.tokenizer.encode_batch(self.src_text)
self.input_ids_src = [x.ids for x in encoded_input_src]
encoded_input_tgt = self.tokenizer.encode_batch(self.tgt_text)
self.input_ids_tgt = [x.ids for x in encoded_input_tgt]
else:
encoded_input_src = self.tokenizer(self.src_text)
self.input_ids_src = encoded_input_src["input_ids"]
encoded_input_tgt = self.tokenizer(self.tgt_text)
self.input_ids_tgt = encoded_input_tgt["input_ids"]
count_length_src = np.mean([len(item) for item in self.input_ids_src])
count_length_tgt = np.mean([len(item) for item in self.input_ids_tgt])
print(f'average number of tokens in source {count_length_src}')
print(f'average number of tokens in target {count_length_tgt}')
def __len__(self) -> int:
return len(self.src_text)
def __getitem__(self, i):
out_dict = {
"encoder_input_ids": self.input_ids_src[i],
"decoder_input_ids": self.input_ids_tgt[i],
}
return out_dict
@staticmethod
def collate_pad(batch, args, cutoff: int, cutoff_src: int, padding_token: int):
max_token_len_src, max_token_len_tgt = cutoff_src, cutoff
num_elems = len(batch)
tokens_src = torch.ones(num_elems, max_token_len_src).long() * padding_token
tokens_mask_src = torch.zeros(num_elems, max_token_len_src).long()
tokens_tgt = torch.ones(num_elems, max_token_len_tgt).long() * padding_token
tokens_mask_tgt = torch.zeros(num_elems, max_token_len_tgt).long()
for i in range(num_elems):
toks_src = batch[i]["encoder_input_ids"][:max_token_len_src]
toks_tgt = batch[i]["decoder_input_ids"][:max_token_len_tgt]
l_s, l_t = len(toks_src), len(toks_tgt)
tokens_src[i, :l_s] = torch.LongTensor(toks_src)
tokens_tgt[i, :l_t] = torch.LongTensor(toks_tgt)
tokens_mask_src[i, :l_s] = 1
tokens_mask_tgt[i, :] = 1
return {"input_ids": tokens_src, "attention_mask": tokens_mask_src,
'decoder_input_ids': tokens_tgt, 'decoder_attention_mask': tokens_mask_tgt}, None
class TextDatasetSeq2KG(Dataset):
def __init__(
self,
tokenizer,
data_path: str,
source,
target,
shard,
num_shards,
) -> None:
super().__init__()
self.src_text = None
self.tgt_text = None
self.src_text_tokens = None
self.tgt_text_tokens = None
self.input_ids_src = None
self.input_ids_tgt = None
self.data_path = data_path
self.tokenizer = tokenizer
self.shard = shard
self.src = source
self.tgt = target
self.num_shards = num_shards
self.read_data()
def read_data(self):
print("Reading data from {}".format(self.data_path))
source_data = open(self.data_path + '.' + self.src, 'r').readlines()
print(f"Tokenizing {len(source_data)} sentences")
self.src_text = [item.strip('\n') for item in source_data]
self.tgt_text = json.load(open(self.data_path + '.' + self.tgt + '.json', 'r'))
bos_idx = (len(self.src_text) // self.num_shards) * self.shard
eos_idx = (len(self.src_text) // self.num_shards) * (self.shard + 1)
self.src_text = self.src_text[bos_idx:eos_idx]
self.tgt_text = self.tgt_text[bos_idx:eos_idx]
print('examples src', self.src_text[0])
print('examples tgt', self.tgt_text[0])
self.src_text_tokens = [self.tokenizer.tokenize(item) for item in self.src_text]
self.tgt_text_tokens = [[self.tokenizer.tokenize(item) for item in facts] for facts in self.tgt_text]
self.input_ids_src = [self.tokenizer.convert_tokens_to_ids(item) for item in self.src_text_tokens]
self.input_ids_tgt = [[self.tokenizer.convert_tokens_to_ids(item) for item in facts]
for facts in self.tgt_text_tokens]
count_length_src = np.mean([len(item) for item in self.input_ids_src])
count_length_tgt_facts = np.mean([len(item) for item in self.input_ids_tgt])
# count_length_tgt_tokens = np.mean([[len(item) for item in facts] for facts in self.input_ids_tgt])
print(f'average number of tokens in source {count_length_src}')
print(f'average number of facts in target {count_length_tgt_facts}')
# print(f'average number of fact tokens in target {count_length_tgt_tokens}')
def __len__(self) -> int:
return len(self.src_text)
def __getitem__(self, i):
out_dict = {
"encoder_input_ids": self.input_ids_src[i],
"decoder_input_ids": self.input_ids_tgt[i],
}
return out_dict
@staticmethod
def collate_pad(batch, args, cutoff_src: int, cutoff_tgt: int, cutoff_fact: int,
padding_token: int, bos_token: int, eos_token: int, decoder_start_token: int,
eos_fact: int):
max_token_len_src, max_fact_len_tgt, max_fact_token_len_tgt = cutoff_src, cutoff_tgt, cutoff_fact
num_elems = len(batch)
tokens_src = torch.ones(num_elems, max_token_len_src).long() * padding_token
tokens_mask_src = torch.zeros(num_elems, max_token_len_src).long()
tokens_enc_tgt = torch.ones(num_elems, max_fact_len_tgt, max_fact_token_len_tgt).long() * padding_token
tokens_tgt = torch.ones(num_elems, max_fact_len_tgt, max_fact_token_len_tgt).long() * padding_token
labels = torch.ones(num_elems, max_fact_len_tgt, max_fact_token_len_tgt).long() * padding_token
tokens_mask_tgt = torch.zeros(num_elems, max_fact_len_tgt).long()
tokens_mask_tgt_fact = torch.zeros(num_elems, max_fact_len_tgt).long()
tokens_mask_tgt_fact_text = torch.zeros(num_elems, max_fact_len_tgt, max_fact_token_len_tgt).long()
for i in range(num_elems):
toks_src = batch[i]["encoder_input_ids"][:max_token_len_src]
l_s = len(toks_src)
tokens_src[i, :l_s] = torch.LongTensor(toks_src)
tokens_mask_src[i, :l_s] = 1
tokens_mask_tgt[i, :] = 1
for j in range(max_fact_len_tgt):
if j < len(batch[i]["decoder_input_ids"][:max_fact_len_tgt-1]):
toks_enc_tgt = [bos_token] + batch[i]["decoder_input_ids"][j][:max_fact_token_len_tgt-3] + [eos_token]
elif j == len(batch[i]["decoder_input_ids"][:max_fact_len_tgt-1]):
toks_enc_tgt = [bos_token, eos_fact, eos_token]
else:
toks_enc_tgt = None
if toks_enc_tgt is not None:
l_f = len(toks_enc_tgt)
toks_tgt = [decoder_start_token] + deepcopy(toks_enc_tgt)
toks_labels = deepcopy(toks_enc_tgt)
tokens_enc_tgt[i, j, :l_f] = torch.LongTensor(toks_enc_tgt)
tokens_tgt[i, j, :l_f+1] = torch.LongTensor(toks_tgt)
labels[i, j, :l_f] = torch.LongTensor(toks_labels)
tokens_mask_tgt_fact[i, j] = 1
tokens_mask_tgt_fact_text[i, j, :l_f] = 1
labels.masked_fill_(labels == padding_token, -100)
# if training with dae, randomly mask target tokens for reconstruction, else not masked
# to do
return {"input_ids": tokens_src, "attention_mask": tokens_mask_src,
'embedder_input_ids': tokens_tgt, 'decoder_attention_mask': tokens_mask_tgt,
'embedder_enc_input_ids': tokens_enc_tgt, "embedder_labels": labels,
'embedder_fact_mask': tokens_mask_tgt_fact,
'embedder_attention_mask': tokens_mask_tgt_fact_text}, None
class TextDatasetPTE(Dataset):
def __init__(
self,
tokenizer,
data_path: str,
shard,
num_shards,
) -> None:
super().__init__()
self.fact_text_3d = None
self.fact_text = None
self.fact_text_tokens = None
self.input_fact_ids = None
self.data_path = data_path
self.tokenizer = tokenizer
self.shard = shard
self.num_shards = num_shards
self.read_data()
def read_data(self):
print("Reading data from {}".format(self.data_path))
self.fact_text = json.load(open(self.data_path, 'r'))
bos_idx = (len(self.fact_text) // self.num_shards) * self.shard
eos_idx = (len(self.fact_text) // self.num_shards) * (self.shard + 1)
self.fact_text = self.fact_text[bos_idx:eos_idx]
self.fact_text_tokens = [self.tokenizer.tokenize(item) for item in self.fact_text]
self.input_fact_ids = [self.tokenizer.convert_tokens_to_ids(item) for item in self.fact_text_tokens]
# count_length_fact = np.mean([len(item) for item in self.input_fact_ids])
# print(f'average number of tokens in facts {count_length_fact }')
def __len__(self) -> int:
return len(self.fact_text)
def __getitem__(self, i):
out_dict = {
"input_fact_ids": self.input_fact_ids[i]
}
return out_dict
@staticmethod
def collate_pad(batch, args, cutoff_fact: int, padding_token: int, bos_token: int,
eos_token: int, decoder_start_token: int):
max_fact_token_len = cutoff_fact
num_elems = len(batch)
tokens = torch.ones(num_elems, max_fact_token_len).long() * padding_token
tokens_mask = torch.zeros(num_elems, max_fact_token_len).long()
tokens_dec = torch.ones(num_elems, max_fact_token_len).long() * padding_token
labels = torch.ones(num_elems, max_fact_token_len).long() * padding_token
for i in range(num_elems):
toks = [bos_token] + batch[i]["input_fact_ids"][:max_fact_token_len-3] + [eos_token]
toks_dec = [decoder_start_token] + deepcopy(toks)
toks_label = deepcopy(toks)
l_f = len(toks)
tokens[i, :l_f] = torch.LongTensor(toks)
tokens_mask[i, :l_f] = 1
tokens_dec[i, :l_f+1] = torch.LongTensor(toks_dec)
labels[i, :l_f] = torch.LongTensor(toks_label)
labels.masked_fill_(labels == padding_token, -100)
# if training with dae, randomly mask target tokens for reconstruction, else not masked
# to do
return {"input_ids": tokens, "attention_mask": tokens_mask,
"decoder_input_ids": tokens_dec, "labels": labels}, None