diff --git a/src/09_Operators.jl b/src/09_Operators.jl index f736e8b..2171417 100644 --- a/src/09_Operators.jl +++ b/src/09_Operators.jl @@ -263,29 +263,39 @@ Having discussed the basic properties of operators, we now turn our attention to - Generalizing from matrices, an eigenpair $(\lambda, \varphi) \in \mathbb{C} \times \hilbert$ of the operator $\opA$ satisfies ```math + \tag{$\ast$} \begin{align} \opA \varphi=\lambda \varphi & \Leftrightarrow(\opA-\lambda) \varphi=0 \\ - &\Leftrightarrow \varphi \in \color{gray} \underbrace{\color{black} (\opA-\lambda)^{-1}\{0\}}_{\ker(\opA-\lambda)} + &\Leftrightarrow \varphi \in \ker(\opA-\lambda) \end{align} ``` - Where by $\opA-\lambda$ we understand the operator $\opA -\lambda \operatorname{id}_\hilbert$. + where by $\opA-\lambda$ we understand the operator $\opA -\lambda \operatorname{id}_\hilbert$. - Again, the **resolvent** $R_{z}(\opA)=(\opA-z)^{-1}$ arises naturally, and its study is closely linked to the spectrum of $\opA$. +- Under a slight abuse of notation we can write + $\ker(\opA - \lambda) = (\opA-λ)^{-1} \{0\}$, + i.e. the solution set of applying the **resolvent** + $R_{z}(\opA)=(\opA-z)^{-1}$ to zero. - -- First we note that for eigenvalues $(\opA-\lambda)^{-1}$ *cannot be a bounded operator*. - To show this, assume it was bounded, i.e. we had a $C>0$ such that +- For eigenvalues $\opA-λ$ is clearly not invertible as $(\ast)$ + shows that $\opA-λ$ is not injective. However, let's assume for a second + it was and that a unique non-zero solution $φ = (\opA-λ)^{-1} 0$ existed. + Then we had + ```math + 0 < \|φ\| = \left\|(\opA-\lambda)^{-1} 0\right\|. + ``` + This implies that $(\opA-λ)^{-1}$ *cannot be bounded*, because if it was + than there existed a constant $C>0$ such that ```math - \left\|(\opA-\lambda)^{-1} x \right\| \leq C\|x\| \qquad \forall x \in \hilbert + \left\|(\opA-\lambda)^{-1} f \right\| \leq C\|f\| \qquad \forall f \in \hilbert ``` - in particular for one non-zero $\varphi \in \ker(\opA-\lambda) \leq \hilbert$ + and in particular ```math - 0<\|\varphi\|=\left\|(\opA-\lambda)^{-1} 0\right\| \leqslant C \| 0 \|=0, + \left\|(\opA-\lambda)^{-1} 0\right\| = C \, \|0\| = 0, ``` - which is a contradiction. + which is a contradiction to $φ$ being non-zero. - This motivates the next definition +As in the finite-dimensional case we first construct the *resolvent set*, which includes all the points that cannot be eigenvalues, i.e. the ones where the resolvent exists ($\opA-z$ can be inverted) and also the above aspect of a non-bounded $(\opA-λ)^{-1}$ is excluded: """ # ╔═╡ 59c06a2d-d980-458f-bf7a-44bb4f4a8a80 @@ -303,23 +313,27 @@ md""" ```math \left\|(\opA-z)^{-1} x\right\| \leq C \|x\| \quad \forall x \in \hilbert . ``` - For $z \in \resolvent(x)$ the resolvent $R_{z}(\opA)=(\opA-z)^{-1}$ exists and is bounded. + For $z \in \resolvent(x)$ the **resolvent** $R_{z}(\opA)=(\opA-z)^{-1}$ exists and is bounded. """ -# ╔═╡ 10aeb8f3-ecdb-4e7c-baad-caa3e1f8994b +# ╔═╡ 8db7d0bc-ff6b-4387-8009-d83e74faaad0 md""" -By construction the set $\resolvent(A)$ contains all $z \in \mathbb{C}$ for which $(\opA-z) x=y$ admits a unique solution $x \in D(\opA)$ for a given $y \in \hilbert$. -Thus, for $(\opA-z) x=0$, only the trivial solution $x=0$ is possible. -To obtain eigenvalues we thus have to study the complement. As before +!!! tip "Remark (Eigenvalues are in the complement of ρ)" + By construction the set $\resolvent(A)$ contains all $z \in \mathbb{C}$ for which $(\opA-z) x=y$ admits a unique solution $x \in D(\opA)$ for a given $y \in \hilbert$. + Thus, for $(\opA-z) x=0$, only the trivial solution $x=0$ is possible. + To obtain eigenvalues we thus have to study the complement. As before +""" +# ╔═╡ 86e5f05a-6562-48c4-80f4-10c7cee0698e +md""" !!! note "Definition (Spectrum)" The **spectrum** is $\sigma (\opA) = \mathbb C \setminus \resolvent(\opA)$. """ # ╔═╡ 9823dc80-2adb-4e21-9588-fdd7dc1b3545 md""" -From the definition of $\resolvent(\opA)$ there can be three reasons for a value $\lambda \in \mathbb{C}$ to not be in $\rho(\opA)$, namely +From the definition of $\resolvent(\opA)$ there can be three reasons for a value $\lambda \in \mathbb{C}$ to be in $\sigma(\opA)$, respectively not in $\rho(\opA)$, namely 1. $(\opA-z)$ not injective. @@ -347,11 +361,11 @@ md""" ``` !!! tip "Remark (Spectra in finite dimensions)" - For $\hilbert=\mathbb C^{N}$, (3) is always given, and 1. and 2. are equivalent because + For $\hilbert=\mathbb C^{N}$, 3. is always given, and 1. and 2. are equivalent because ```math \operatorname{dim}(\ker(\opA-\lambda))+\operatorname{dim}(\im (\opA-\lambda))=N . ``` - Therefore $\sigma(\opA)=\sigma_p(\opA) \neq \varnothing$ (see Lemma [Matrix Eigenproblems].3). + Therefore $\sigma(\opA)=\sigma_p(\opA) \neq \varnothing$ (see Lemma 3 in [Matrix eigenproblems](https://teaching.matmat.org/error-control/03_Matrix_eigenproblems.html)). """ # ╔═╡ 6b9eb655-048a-42f6-b50c-d928071636bb @@ -1349,7 +1363,8 @@ version = "17.4.0+2" # ╟─a2e86a6f-88e7-4cbd-90c6-6d0e20af7869 # ╟─85df6f49-6935-45f0-9526-0b2b4075f3af # ╟─59c06a2d-d980-458f-bf7a-44bb4f4a8a80 -# ╟─10aeb8f3-ecdb-4e7c-baad-caa3e1f8994b +# ╟─8db7d0bc-ff6b-4387-8009-d83e74faaad0 +# ╟─86e5f05a-6562-48c4-80f4-10c7cee0698e # ╟─9823dc80-2adb-4e21-9588-fdd7dc1b3545 # ╟─5827ce09-7199-4357-a5f4-8ec7ae396fca # ╟─6b9eb655-048a-42f6-b50c-d928071636bb