Skip to content
This repository has been archived by the owner on Dec 16, 2020. It is now read-only.

Latest commit

 

History

History

ci

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Developer use of CI Docker images

There are two available flavors of Envoy Docker images for Linux, based on Ubuntu and Alpine Linux and an image based on Windows2019.

Ubuntu Envoy image

The Ubuntu based Envoy Docker image at envoyproxy/envoy-build:<hash> is used for CircleCI checks, where <hash> is specified in envoy_build_sha.sh. Developers may work with the latest build image SHA in envoy-build-tools repo to provide a self-contained environment for building Envoy binaries and running tests that reflects the latest built Ubuntu Envoy image. Moreover, the Docker image at envoyproxy/envoy-dev:<hash> is an image that has an Envoy binary at /usr/local/bin/envoy. The <hash> corresponds to the master commit at which the binary was compiled. Lastly, envoyproxy/envoy-dev:latest contains an Envoy binary built from the latest tip of master that passed tests.

Alpine Envoy image

Minimal images based on Alpine Linux allow for quicker deployment of Envoy. Two Alpine based images are built, one with an Envoy binary with debug (envoyproxy/envoy-alpine-debug) symbols and one stripped of them (envoyproxy/envoy-alpine). Both images are pushed with two different tags: <hash> and latest. Parallel to the Ubuntu images above, <hash> corresponds to the master commit at which the binary was compiled, and latest corresponds to a binary built from the latest tip of master that passed tests.

Windows 2019 Envoy image

The Windows 2019 based Envoy Docker image at envoyproxy/envoy-build-windows2019:<hash> is used for CI checks, where <hash> is specified in envoy_build_sha.sh. Developers may work with the most recent envoyproxy/envoy-build-windows2019 image to provide a self-contained environment for building Envoy binaries and running tests that reflects the latest built Windows 2019 Envoy image.

Build image base and compiler versions

Currently there are three build images for Linux and one for Windows:

  • envoyproxy/envoy-build — alias to envoyproxy/envoy-build-ubuntu.
  • envoyproxy/envoy-build-ubuntu — based on Ubuntu 18.04 (Bionic) with GCC 9 and Clang 10 compiler.
  • envoyproxy/envoy-build-centos — based on CentOS 7 with GCC 9 and Clang 10 compiler, this image is experimental and not well tested.
  • envoyproxy/envoy-build-windows2019 — based on Windows 2019 LTS with VS 2019 Build Tools.

The source for these images is located in the envoyproxy/envoy-build-tools repository.

We use the Clang compiler for all Linux CI runs with tests. We have an additional Linux CI run with GCC which builds binary only.

C++ standard library

As of November 2019 after #8859 the official released binary is linked against libc++ on Linux. To override the C++ standard library in your build, set environment variable ENVOY_STDLIB to libstdc++ or libc++ and run ./ci/do_ci.sh as described below.

Building and running tests as a developer

The ./ci/run_envoy_docker.sh script can be used to set up a Docker container on Linux and Windows to build an Envoy static binary and run tests.

The build image defaults to envoyproxy/envoy-build-ubuntu on Linux and envoyproxy/envoy-build-windows2019 on Windows, but you can choose build image by setting IMAGE_NAME in the environment.

In case your setup is behind a proxy, set http_proxy and https_proxy to the proxy servers before invoking the build.

IMAGE_NAME=envoyproxy/envoy-build-ubuntu http_proxy=http://proxy.foo.com:8080 https_proxy=http://proxy.bar.com:8080 ./ci/run_envoy_docker.sh <build_script_args>'

On Linux

An example basic invocation to build a developer version of the Envoy static binary (using the Bazel fastbuild type) is:

./ci/run_envoy_docker.sh './ci/do_ci.sh bazel.dev'

The Envoy binary can be found in /tmp/envoy-docker-build/envoy/source/exe/envoy-fastbuild on the Docker host. You can control this by setting ENVOY_DOCKER_BUILD_DIR in the environment, e.g. to generate the binary in ~/build/envoy/source/exe/envoy-fastbuild you can run:

ENVOY_DOCKER_BUILD_DIR=~/build ./ci/run_envoy_docker.sh './ci/do_ci.sh bazel.dev'

For a release version of the Envoy binary you can run:

./ci/run_envoy_docker.sh './ci/do_ci.sh bazel.release.server_only'

The build artifact can be found in /tmp/envoy-docker-build/envoy/source/exe/envoy (or wherever $ENVOY_DOCKER_BUILD_DIR points).

For a debug version of the Envoy binary you can run:

./ci/run_envoy_docker.sh './ci/do_ci.sh bazel.debug.server_only'

The build artifact can be found in /tmp/envoy-docker-build/envoy/source/exe/envoy-debug (or wherever $ENVOY_DOCKER_BUILD_DIR points).

To leverage a bazel remote cache add the http_remote_cache endpoint to the BAZEL_BUILD_EXTRA_OPTIONS environment variable

./ci/run_envoy_docker.sh "BAZEL_BUILD_EXTRA_OPTIONS='--remote_http_cache=http://127.0.0.1:28080' ./ci/do_ci.sh bazel.release"

The ./ci/run_envoy_docker.sh './ci/do_ci.sh <TARGET>' targets are:

  • bazel.api — build and run API tests under -c fastbuild with clang.
  • bazel.asan — build and run tests under -c dbg --config=clang-asan with clang.
  • bazel.asan <test> — build and run a specified test or test dir under -c dbg --config=clang-asan with clang.
  • bazel.debug — build Envoy static binary and run tests under -c dbg.
  • bazel.debug <test> — build Envoy static binary and run a specified test or test dir under -c dbg.
  • bazel.debug.server_only — build Envoy static binary under -c dbg.
  • bazel.dev — build Envoy static binary and run tests under -c fastbuild with clang.
  • bazel.dev <test> — build Envoy static binary and run a specified test or test dir under -c fastbuild with clang.
  • bazel.release — build Envoy static binary and run tests under -c opt with clang.
  • bazel.release <test> — build Envoy static binary and run a specified test or test dir under -c opt with clang.
  • bazel.release.server_only — build Envoy static binary under -c opt with clang.
  • bazel.sizeopt — build Envoy static binary and run tests under -c opt --config=sizeopt with clang.
  • bazel.sizeopt <test> — build Envoy static binary and run a specified test or test dir under -c opt --config=sizeopt with clang.
  • bazel.sizeopt.server_only — build Envoy static binary under -c opt --config=sizeopt with clang.
  • bazel.coverage — build and run tests under -c dbg with gcc, generating coverage information in $ENVOY_DOCKER_BUILD_DIR/envoy/generated/coverage/coverage.html.
  • bazel.coverage <test> — build and run a specified test or test dir under -c dbg with gcc, generating coverage information in $ENVOY_DOCKER_BUILD_DIR/envoy/generated/coverage/coverage.html.
  • bazel.coverity — build Envoy static binary and run Coverity Scan static analysis.
  • bazel.msan — build and run tests under -c dbg --config=clang-msan with clang.
  • bazel.msan <test> — build and run a specified test or test dir under -c dbg --config=clang-msan with clang.
  • bazel.tsan — build and run tests under -c dbg --config=clang-tsan with clang.
  • bazel.tsan <test> — build and run a specified test or test dir under -c dbg --config=clang-tsan with clang.
  • bazel.fuzz — build and run fuzz tests under -c dbg --config=asan-fuzzer with clang.
  • bazel.fuzz <test> — build and run a specified fuzz test or test dir under -c dbg --config=asan-fuzzer with clang. If specifying a single fuzz test, must use the full target name with "_with_libfuzzer" for <test>.
  • bazel.compile_time_options — build Envoy and run tests with various compile-time options toggled to their non-default state, to ensure they still build.
  • bazel.compile_time_options <test> — build Envoy and run a specified test or test dir with various compile-time options toggled to their non-default state, to ensure they still build.
  • bazel.clang_tidy <files> — build and run clang-tidy specified source files, if no files specified, runs against the diff with the last GitHub commit.
  • check_format— run clang-format and buildifier on entire source tree.
  • fix_format— run and enforce clang-format and buildifier on entire source tree.
  • check_spelling— run misspell on entire project.
  • fix_spelling— run and enforce misspell on entire project.
  • check_spelling_pedantic— run aspell on C++ and proto comments.
  • docs— build documentation tree in generated/docs.

On Windows

An example basic invocation to build the Envoy static binary and run tests is:

./ci/run_envoy_docker.sh './ci/windows_ci_steps.sh'

You can modify ./ci/windows_ci_steps.sh to modify bazel arguments, tests to run, etc. as well as set environment variables to adjust your container build environment as described above.

The Envoy binary can be found in C:\Windows\Temp\envoy-docker-build\envoy\source\exe on the Docker host. You can control this by setting ENVOY_DOCKER_BUILD_DIR in the environment, e.g. to generate the binary in C:\Users\foo\build\envoy\source\exe you can run:

ENVOY_DOCKER_BUILD_DIR="C:\Users\foo\build" ./ci/run_envoy_docker.sh './ci/do_ci.sh bazel.dev'

Note the quotations around the ENVOY_DOCKER_BUILD_DIR value to preserve the backslashes in the path.

If you would like to run an interactive session to keep the build container running (to persist your local build environment), run:

./ci/run_envoy_docker.sh 'bash'

From an interactive session, you can invoke bazel manually or use the ./ci/windows_ci_steps.sh script to build and run tests.

Testing changes to the build image as a developer

While all changes to the build image should eventually be upstreamed, it can be useful to test those changes locally before sending out a pull request. To experiment with a local clone of the upstream build image you can make changes to files such as build_container.sh locally and then run:

DISTRO=ubuntu
cd ci/build_container
LINUX_DISTRO="${DISTRO}" CIRCLE_SHA1=my_tag ./docker_build.sh  # Wait patiently for quite some time
cd ../..
IMAGE_NAME="envoyproxy/envoy-build-${DISTRO}" IMAGE_ID=my_tag ./ci/run_envoy_docker.sh './ci/do_ci.sh bazel.whatever'

This build the Ubuntu based envoyproxy/envoy-build-ubuntu image, and the final call will run against your local copy of the build image.

macOS Build Flow

The macOS CI build is part of the CircleCI workflow. Dependencies are installed by the ci/mac_ci_setup.sh script, via Homebrew, which is pre-installed on the CircleCI macOS image. The dependencies are cached are re-installed on every build. The ci/mac_ci_steps.sh script executes the specific commands that build and test Envoy. Note that the full version of Xcode (not just Command Line Tools) is required.

Coverity Scan Build Flow

Coverity Scan Envoy Project

Coverity Scan static analysis is not run within Envoy CI. However, Envoy can be locally built and submitted for analysis. A Coverity Scan Envoy project token must be generated from the Coverity Project Settings. Only a Coverity Project Administrator can create a token. With this token, running ci/do_coverity_local.sh will use the Ubuntu based envoyproxy/envoy-build-ubuntu image to build the Envoy static binary with the Coverity Scan tool chain. This process generates an artifact, envoy-coverity-output.tgz, that is uploaded to Coverity for static analysis.

To build and submit for analysis:

COVERITY_TOKEN={generated Coverity project token} ./ci/do_coverity_local.sh