-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplay_buffer.py
41 lines (35 loc) · 1.89 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow as tf
import numpy as np
import random
from collections import namedtuple, deque
import warnings
warnings.filterwarnings("ignore")
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size: maximum size of buffer
batch_size: size of each training batch
"""
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self, batch_size=64):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = tf.convert_to_tensor(np.array([e.state for e in experiences if e is not None]), dtype=tf.float64)
actions = tf.convert_to_tensor(np.array([e.action for e in experiences if e is not None]), dtype=tf.float64)
rewards = tf.convert_to_tensor(np.array([e.reward for e in experiences if e is not None]), dtype=tf.float64)
next_states = tf.convert_to_tensor(np.array([e.next_state for e in experiences if e is not None]), dtype=tf.float64)
dones = tf.convert_to_tensor(np.array([e.done for e in experiences if e is not None]).astype(np.uint8), dtype=tf.float64)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)