-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
488 lines (408 loc) · 22.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import json
from glob import glob
from transformers import BertTokenizer
from torchtext.data import Field, Example, Dataset
# import constants
from constants import *
class CSQADataset:
def __init__(self):
self.train_path = str(ROOT_PATH.parent) + args.data_path + '/train/*'
self.val_path = str(ROOT_PATH.parent) + args.data_path + '/val/*'
self.test_path = str(ROOT_PATH.parent) + args.data_path + '/test/*'
self.load_data_and_fields()
def _prepare_data(self, data):
input_data = []
helper_data = {QUESTION_TYPE: []}
for conversation in data:
prev_user_conv = None
prev_system_conv = None
is_clarification = False
is_history_ner_spurious = False
turns = len(conversation) // 2
for i in range(turns):
input = []
logical_form = []
ner_tag = []
coref = []
graph_cls = []
if is_clarification:
is_clarification = False
continue
user = conversation[2*i]
system = conversation[2*i + 1]
if user['question-type'] == 'Clarification':
# get next context
is_clarification = True
next_user = conversation[2*(i+1)]
next_system = conversation[2*(i+1) + 1]
# skip if ner history is spurious
if is_history_ner_spurious:
is_history_ner_spurious = False
if not next_user['is_ner_spurious'] and not next_system['is_ner_spurious']:
prev_user_conv = next_user.copy()
prev_system_conv = next_system.copy()
else:
is_history_ner_spurious = True
continue
# skip if ner is spurious
if user['is_ner_spurious'] or system['is_ner_spurious'] or next_user['is_ner_spurious'] or next_system['is_ner_spurious']:
is_history_ner_spurious = True
continue
# skip if no gold action (or spurious)
if 'gold_actions' not in next_system or next_system['is_spurious']:
prev_user_conv = next_user.copy()
prev_system_conv = next_system.copy()
continue
if i == 0: # NA + [SEP] + NA + [SEP] + current_question
input.extend([NA_TOKEN, SEP_TOKEN, NA_TOKEN, SEP_TOKEN])
ner_tag.extend([O, O, O, O])
else:
# add prev context user
for context in prev_user_conv['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# sep token
input.append(SEP_TOKEN)
ner_tag.append(O)
# add prev context answer
for context in prev_system_conv['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# sep token
input.append(SEP_TOKEN)
ner_tag.append(O)
# user context
for context in user['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# system context
for context in system['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# next user context
for context in next_user['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# coref entities - prepare coref values
action_entities = [action[1] for action in next_system[GOLD_ACTIONS] if action[0] == ENTITY]
for context in reversed(user['context'] + system['context'] + next_user['context']):
if context[2] in action_entities and context[4] == B and str(action_entities.index(context[2])) not in coref:
coref.append(str(action_entities.index(context[2])))
else:
coref.append(NA_TOKEN)
if i == 0:
coref.extend([NA_TOKEN, NA_TOKEN, NA_TOKEN, NA_TOKEN])
else:
coref.append(NA_TOKEN)
for context in reversed(prev_system_conv['context']):
if context[2] in action_entities and context[4] == B and str(action_entities.index(context[2])) not in coref:
coref.append(str(action_entities.index(context[2])))
else:
coref.append(NA_TOKEN)
coref.append(NA_TOKEN)
for context in reversed(prev_user_conv['context']):
if context[2] in action_entities and context[4] == B and str(action_entities.index(context[2])) not in coref:
coref.append(str(action_entities.index(context[2])))
else:
coref.append(NA_TOKEN)
# get gold actions
gold_actions = next_system[GOLD_ACTIONS]
# track context history
prev_user_conv = next_user.copy()
prev_system_conv = next_system.copy()
else:
if is_history_ner_spurious: # skip if history is ner spurious
is_history_ner_spurious = False
if not user['is_ner_spurious'] and not system['is_ner_spurious']:
prev_user_conv = user.copy()
prev_system_conv = system.copy()
else:
is_history_ner_spurious = True
continue
if user['is_ner_spurious'] or system['is_ner_spurious']: # skip if ner is spurious
is_history_ner_spurious = True
continue
if GOLD_ACTIONS not in system or system['is_spurious']: # skip if logical form is spurious
prev_user_conv = user.copy()
prev_system_conv = system.copy()
continue
if i == 0: # NA + [SEP] + NA + [SEP] + current_question
input.extend([NA_TOKEN, SEP_TOKEN, NA_TOKEN, SEP_TOKEN])
ner_tag.extend([O, O, O, O])
else:
# add prev context user
for context in prev_user_conv['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# sep token
input.append(SEP_TOKEN)
ner_tag.append(O)
# add prev context answer
for context in prev_system_conv['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# sep token
input.append(SEP_TOKEN)
ner_tag.append(O)
# user context
for context in user['context']:
input.append(context[1])
ner_tag.append(f'{context[-1]}-{context[-2]}' if context[-1] in [B, I] else context[-1])
# coref entities - prepare coref values
action_entities = [action[1] for action in system[GOLD_ACTIONS] if action[0] == ENTITY]
for context in reversed(user['context']):
if context[2] in action_entities and context[4] == B and str(action_entities.index(context[2])) not in coref and user['description'] not in ['Simple Question|Mult. Entity', 'Verification|one entity, multiple entities (as object) referred indirectly']:
coref.append(str(action_entities.index(context[2])))
else:
coref.append(NA_TOKEN)
if i == 0:
coref.extend([NA_TOKEN, NA_TOKEN, NA_TOKEN, NA_TOKEN])
else:
coref.append(NA_TOKEN)
for context in reversed(prev_system_conv['context']):
if context[2] in action_entities and context[4] == B and str(action_entities.index(context[2])) not in coref and user['description'] not in ['Simple Question|Mult. Entity', 'Verification|one entity, multiple entities (as object) referred indirectly']:
coref.append(str(action_entities.index(context[2])))
else:
coref.append(NA_TOKEN)
coref.append(NA_TOKEN)
for context in reversed(prev_user_conv['context']):
if context[2] in action_entities and context[4] == B and str(action_entities.index(context[2])) not in coref and user['description'] not in ['Simple Question|Mult. Entity', 'Verification|one entity, multiple entities (as object) referred indirectly']:
coref.append(str(action_entities.index(context[2])))
else:
coref.append(NA_TOKEN)
# get gold actions
gold_actions = system[GOLD_ACTIONS]
# track context history
prev_user_conv = user.copy()
prev_system_conv = system.copy()
# prepare logical form
for action in gold_actions:
if action[0] == ACTION:
logical_form.append(action[1])
graph_cls.append(NA_TOKEN)
elif action[0] == RELATION:
logical_form.append(RELATION)
graph_cls.append(action[1])
elif action[0] == TYPE:
logical_form.append(TYPE)
graph_cls.append(action[1])
elif action[0] == ENTITY:
logical_form.append(PREV_ANSWER if action[1] == PREV_ANSWER else ENTITY)
graph_cls.append(NA_TOKEN)
elif action[0] == VALUE:
logical_form.append(action[0])
graph_cls.append(NA_TOKEN)
else:
raise Exception(f'Unkown logical form action {action[0]}')
assert len(input) == len(ner_tag)
assert len(input) == len(coref)
assert len(logical_form) == len(graph_cls)
input_data.append([input, logical_form, ner_tag, list(reversed(coref)), graph_cls])
helper_data[QUESTION_TYPE].append(user['question-type'])
return input_data, helper_data
def get_inference_data(self, inference_partition):
if inference_partition == 'val':
files = glob(self.val_path + '/*.json')
elif inference_partition == 'test':
files = glob(self.test_path + '/*.json')
else:
raise ValueError(f'Unknown inference partion {inference_partition}')
partition = []
for f in files:
with open(f) as json_file:
partition.append(json.load(json_file))
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased').tokenize
inference_data = []
for conversation in partition:
is_clarification = False
prev_user_conv = {}
prev_system_conv = {}
turns = len(conversation) // 2
for i in range(turns):
input = []
gold_entities = []
if is_clarification:
is_clarification = False
continue
user = conversation[2*i]
system = conversation[2*i + 1]
if i > 0 and 'context' not in prev_system_conv:
if len(prev_system_conv['entities_in_utterance']) > 0:
tok_utterance = tokenizer(prev_system_conv['utterance'].lower())
prev_system_conv['context'] = [[i, tok] for i, tok in enumerate(tok_utterance)]
elif prev_system_conv['utterance'].isnumeric():
prev_system_conv['context'] = [[0, 'num']]
elif prev_system_conv['utterance'] == 'YES':
prev_system_conv['context'] = [[0, 'yes']]
elif prev_system_conv['utterance'] == 'NO':
prev_system_conv['context'] = [[0, 'no']]
elif prev_system_conv['utterance'] == 'YES and NO respectively':
prev_system_conv['context'] = [[0, 'no']]
elif prev_system_conv['utterance'] == 'NO and YES respectively':
prev_system_conv['context'] = [[0, 'no']]
elif prev_system_conv['utterance'][0].isnumeric():
prev_system_conv['context'] = [[0, 'num']]
if user['question-type'] == 'Clarification':
# get next context
is_clarification = True
next_user = conversation[2*(i+1)]
next_system = conversation[2*(i+1) + 1]
if i == 0: # NA + [SEP] + NA + [SEP] + current_question
input.extend([NA_TOKEN, SEP_TOKEN, NA_TOKEN, SEP_TOKEN])
else:
# add prev context user
for context in prev_user_conv['context']:
input.append(context[1])
# sep token
input.append(SEP_TOKEN)
# add prev context answer
for context in prev_system_conv['context']:
input.append(context[1])
# sep token
input.append(SEP_TOKEN)
# user context
for context in user['context']:
input.append(context[1])
# system context
for context in system['context']:
input.append(context[1])
# next user context
for context in next_user['context']:
input.append(context[1])
question_type = [user['question-type'], next_user['question-type']] if 'question-type' in next_user else user['question-type']
results = next_system['all_entities']
answer = next_system['utterance']
gold_actions = next_system[GOLD_ACTIONS] if GOLD_ACTIONS in next_system else None
prev_answer = prev_system_conv['all_entities'] if 'all_entities' in prev_system_conv else None
context_entities = user['entities_in_utterance'] + system['entities_in_utterance']
if 'entities_in_utterance' in next_user: context_entities.extend(next_user['entities_in_utterance'])
if 'entities_in_utterance' in prev_user_conv: context_entities.extend(prev_user_conv['entities_in_utterance'])
if 'entities_in_utterance' in prev_system_conv: context_entities.extend(prev_system_conv['entities_in_utterance'])
# track context history
prev_user_conv = next_user.copy()
prev_system_conv = next_system.copy()
else:
if i == 0: # NA + [SEP] + NA + [SEP] + current_question
input.extend([NA_TOKEN, SEP_TOKEN, NA_TOKEN, SEP_TOKEN])
else:
# add prev context user
for context in prev_user_conv['context']:
input.append(context[1])
# sep token
input.append(SEP_TOKEN)
# add prev context answer
for context in prev_system_conv['context']:
input.append(context[1])
# sep token
input.append(SEP_TOKEN)
if 'context' not in user:
tok_utterance = tokenizer(user['utterance'].lower())
user['context'] = [[i, tok] for i, tok in enumerate(tok_utterance)]
# user context
for context in user['context']:
input.append(context[1])
question_type = user['question-type']
results = system['all_entities']
answer = system['utterance']
gold_actions = system[GOLD_ACTIONS] if GOLD_ACTIONS in system else None
prev_results = prev_system_conv['all_entities'] if 'all_entities' in prev_system_conv else None
context_entities = user['entities_in_utterance'] + system['entities_in_utterance']
if 'entities_in_utterance' in prev_user_conv: context_entities.extend(prev_user_conv['entities_in_utterance'])
if 'entities_in_utterance' in prev_system_conv: context_entities.extend(prev_system_conv['entities_in_utterance'])
# track context history
prev_user_conv = user.copy()
prev_system_conv = system.copy()
inference_data.append({
QUESTION_TYPE: question_type,
QUESTION: user['utterance'],
CONTEXT_QUESTION: input,
CONTEXT_ENTITIES: context_entities,
ANSWER: answer,
RESULTS: results,
PREV_RESULTS: prev_results,
GOLD_ACTIONS: gold_actions
})
return inference_data
def _make_torchtext_dataset(self, data, fields):
examples = [Example.fromlist(i, fields) for i in data]
return Dataset(examples, fields)
def load_data_and_fields(self):
train, val, test = [], [], []
# read data
train_files = glob(self.train_path + '/*.json')
for f in train_files:
with open(f) as json_file:
train.append(json.load(json_file))
val_files = glob(self.val_path + '/*.json')
for f in val_files:
with open(f) as json_file:
val.append(json.load(json_file))
test_files = glob(self.test_path + '/*.json')
for f in test_files:
with open(f) as json_file:
test.append(json.load(json_file))
# prepare data
train, self.train_helper = self._prepare_data(train)
val, self.val_helper = self._prepare_data(val)
test, self.test_helper = self._prepare_data(test)
# create fields
self.input_field = Field(init_token=START_TOKEN,
eos_token=CTX_TOKEN,
pad_token=PAD_TOKEN,
unk_token=UNK_TOKEN,
lower=True,
batch_first=True)
self.lf_field = Field(init_token=START_TOKEN,
eos_token=END_TOKEN,
pad_token=PAD_TOKEN,
unk_token=UNK_TOKEN,
lower=True,
batch_first=True)
self.ner_field = Field(init_token=O,
eos_token=O,
pad_token=PAD_TOKEN,
unk_token=O,
batch_first=True)
self.coref_field = Field(init_token='0',
eos_token='0',
pad_token=PAD_TOKEN,
unk_token='0',
batch_first=True)
self.graph_field = Field(init_token=NA_TOKEN,
eos_token=NA_TOKEN,
pad_token=PAD_TOKEN,
unk_token=NA_TOKEN,
batch_first=True)
fields_tuple = [(INPUT, self.input_field), (LOGICAL_FORM, self.lf_field),
(NER, self.ner_field), (COREF, self.coref_field),
(GRAPH, self.graph_field)]
# create toechtext datasets
self.train_data = self._make_torchtext_dataset(train, fields_tuple)
self.val_data = self._make_torchtext_dataset(val, fields_tuple)
self.test_data = self._make_torchtext_dataset(test, fields_tuple)
# build vocabularies
self.input_field.build_vocab(self.train_data, self.val_data, self.test_data, min_freq=0, vectors='glove.840B.300d')
self.lf_field.build_vocab(self.train_data, self.val_data, self.test_data, min_freq=0)
self.ner_field.build_vocab(self.train_data, self.val_data, self.test_data, min_freq=0)
self.coref_field.build_vocab(self.train_data, self.val_data, self.test_data, min_freq=0)
self.graph_field.build_vocab(self.train_data, self.val_data, self.test_data, min_freq=0)
def get_data(self):
return self.train_data, self.val_data, self.test_data
def get_data_helper(self):
return self.train_helper, self.val_helper, self.test_helper
def get_fields(self):
return {
INPUT: self.input_field,
LOGICAL_FORM: self.lf_field,
NER: self.ner_field,
COREF: self.coref_field,
GRAPH: self.graph_field,
}
def get_vocabs(self):
return {
INPUT: self.input_field.vocab,
LOGICAL_FORM: self.lf_field.vocab,
NER: self.ner_field.vocab,
COREF: self.coref_field.vocab,
GRAPH: self.graph_field.vocab,
}